
m- 
hf. A. BIOT Shell Development Company, Houston, Texas 

Theory of Folding of Stratified Viscoelastic Media 

and its Implications in Tectonics and Orogenesis 

Al. A. BIOT 
II. ODI? 1 
W. L. ROEVER ) 

Shd Development Company, Horrston, Texas 

Experimental Verification of the 

Theory of Folding of Stratified Viscoelastic Media 

.: 

Geological Society of America hlletin, v. 72, p 1595-1632, 13 figs., November 1961 



M. A. BIOT 

H. ODE 1 

W. L. ROEVER j 

Shell Development Company, Houston, Texas 

Experimental Verification of the 

Theory of Folding of Stratified Viscoelastic Media 

Abstract: An experimental check has been obtained 
for the stability theory of stratified viscoelastic 

predictions. For a better interpretation of the tests, 

media in compression. Model tests have been con- 
the writers present a theoretical evaluation of the 

ducted for both an elastic layer and a viscous 
time history of deformation for a layer whose 

layer embedded in a viscous medium and subject 
folding develops from a given initial departure from 

to a compression parallel with the layer. The 
perfect flatness. The calculated folding of the layer 

appearance of the folds and the measured wave- 
at various intervals is plotted for different values 

lengths are in good agreement with the theoretical 
of the significant parameter. 
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1. INTRODUCTION AND 
ACKNOWLEDGMENTS 

Biot (1957; 1959a; 1959b) has described 
theoretical analyses of the folding of a visco- 
elastic layer under compression in a visco- 
elastic medium. The particular cases of a vis- 
cous or elastic layer in a viscous medium have 
been rederived and discussed by elementary 
methods in a .companion paper (Biot, 1961). 
The writers here establish an experimental 
verification of these results by model tests in 
the laboratory. The tests covered the cases of 
both the elastic layer and the viscous layer em- 
bedded in a viscous medium. It may be as- 
sumed that such simplified models embody the 

significant aspects of the physics and furnish a 

crucial check of the theory. 

To prepare adequately the qualitative, as 
well as the quantitative, interpretation of the 
tests, the writers evaluate the time history of 
the folding from the theory. Since folding can- 
not occur in a geometrically perfect plane 
layer, the writers have introduced an initial 
disturbance in the form of a kink and have 
calculated the subsequent deformation and de- 
velopment of folds that appear as a result of 
compression in the layer. This is accomplished 
in sections 2 and 3. Only the case of a viscous 
layer was evaluated. The theory indicates that 
similar results will be obtained for an elastic 
layer. The appearance of the dominant wave- 
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1622 BIOT AND OTHERS-EXPERIMENTAL VERIFICATION, THEORY OF FOLDING 

length and the qualitative aspect of the folds 
predicted by the theory are well verified by 
the tests. The experiments are described in 
Section 4, their results discussed in Section 5. 
Results for the elastic layer show good agree- 
ment with the theoretical prediction regarding 
the dependence of the dominant wavelength 
on the compression load and its independence 
of the viscosity of the medium. Satisfactory 
agreement is also obtained for the case of a 
viscous layer, in which the dominant wave- 

(h = thickness of the layer, 71 = viscosity co- 
efficient of the medium, 7 = viscosity coeffi- 
cient of the layer). 

The wavelength L is related to I by 

In the present analysis, this result will be 
used to solve a more complex problem. Instead 
of starting with an initial deflection (2.1) that 
is perfectly sinusoidal, the writers will con- 

Figure 1. Layer of thickness h and viscosity 7 under 
compressive stress P in a medium of viscosity ~1 

lengths are close to the calculated values and 
are independent of the compression loads, as 
predicted. 

The authors wish to acknowledge the valu- 
able assistance of Mr. T. J. Shankland in the 
experimental phase of this work. 

2. ANALYTICAL EVALUATION OF 
THE TIME HISTORY OF FOLDING 

Consider the case of a viscous layer of thick- 
ness h embedded in an infinite viscous medium 
(Fig. 1). The layer is under an initial compres- 
sion P per unit area. In the companion paper, 
Biot (1961) derived an equation for the lateral 
deflection, w, of the layer1 and investigated the 
stability of the layer. He restricted the analysis 
to an infinite wave of constant wavelength. He 
found that an initial sinusoidal deflection, w, 
of the layer, represented by 

w = wo cos Ix ) (2.1) 
increases exponentially with time. After a time 
t, the deflection (2.1) becomes2 

w = WOePt cos Ix , (2.2) 
where 

p= p 

z+; qh212 (2.3) 

1 The equation was also derived as a particular case 
of a more elaborate theory (Biot, 1957). 

2 See equation (4.11) of the companion paper (Biot, 
. 1961). 

sider the case in which the initial deflection, 
w&z), is localized. The problem will then be 
to evaluate the time history of the folding 
under the compression P. This can be done by 
using the principle of superposition. The initial 
deflection can be represented as a superposition 
of cosine functions by a Fourier integral. Con- 
sider an initial deflection represented by the 
expression 

we(x) = b 
1+ ; 0 

2 . 

(2.5) 

This is a bell-shaped curve, as Figure 2 shows. 
Expression (2.5) can be written as a Fourier 
integral by the well-known identity 

s m 

b 
2 = ba e-la cos lx dl. (2.6) 

0 

For any given wavelength, any sinusoidal com- 
ponent under the integral sign will be multi- 
plied by the factor e@, as expressed by equa- 
tion (2.2). The deflection w(x,t) after a time t 
is thus obtained by multiplying each com- 
ponent under the integral sign in equation 
(2.6) by this factor, i.e., 

s 

ca 

w(x,t) = ba ept-la cos Ix dl . (2.7) 
0 



,ZNALYTICAL EVALUATION OF THE TIME HISTORY OF FOLDING 1623 

The quantity p is a function of 1, given by In this case, Ld is independent of the load. For 
equation (2.3). viscosity ratios v/r]1 = 1000 and 144, Ld = 

The computation of this integral was done 34.57 h and 18.12 12, respectively. On the other 
numerically. It is convenient to make use of hand, the average wave number of the initial 
the time ti already introduced in earlier work perturbation can be defined as 
(Biot, 1959a; 1959b; 1961): m 

tl = 3 (2.8) J 
le+ (II 

P’ I,,.= 0, =I 

As pointed out, tl is the time required for the 
J 

_‘a dl 
a’ (3.2) 

e 
layer to shorten by 25 per cent if it remained 

0 

straight while under the constant pressure P. so that the average wavelength, La,., of the 

Figure 2. Shape of assumed initial disturbance of the 
layer 

It is convenient to use tl as a reference time. In 
the calculations and in plotting the results, the 
writers will represent the time by means of the 
dimensionless ratio t/ti. The method used for 
the numerical evaluation of the integral (2.7) 
is explained in the Appendix. 

3. NUMERICAL EVALUATION OF 
THE TIME HISTORY OF FOLDING 

Let us consider the parameters and variables 
of the problem. As shown by equation (A.2) in 
the Appendix, the deflection w is a function 
of a/it, t/tr, and the viscosity ratio v/r]i. It is 
also proportional to the maximum initial de- 
flection, 6. Computations were carried out for 
three values of the viscosity ratio, but results 
are presented in detail only for the two values 
r]/vr = 1000 and 144, since these adequately 
point out the significant features. For each 
ratio, three different values of the parameter 
a/h were so chosen that the average wave- 
length content of the initial perturbation is re- 
lated in a definite way to the physically domi- 
nant wavelength of the system. The latter is 
the wavelength of fastest rate of growth under 
a given load P. It tends to obliterate all others. 
As shown earlier (Biot, 1957; 1959a; 1961), the 
dominant wavelength for the present case is 
given by 0 I- 

Ld = 2?rh (3.1) 

initial perturbation is, by equations (2.4) and 

(3.2), La,. = 2ra . (3.3) 

For the computation, a was so chosen that, 
approximately, 

Ld = f La,., L,., 2Lav. . (3.4) 

From equations (3.1), (3.3), and (3.4), the 
values of a/h corresponding to equation (3.4) 
can be computed. They are, approximately, 

a/h = 11, 5.50, 2.75 

for the ratio r]/r]i = 1000, and 

(3.5) 

a/h = 5.60, 2.80, 1.50 

for r]/vi = 144. 

(3.6) 

The three cases (3.5) for the viscosity ratio 
v/v1 = 1000 are plotted in Figure 3. The shape 
of the deformed layer is plotted at various 
instants. The abscissa represents the ratio x/h 
of the distance x along the layer to the thick- 
ness h. The deformation is symmetric with re- 
spect to the origin because the initial perturba- 
tion is symmetric about this point. Hence, 
only the deformation on one side of the axis of 
symmetry is shown (X > 0). The ordinates are 
proportional to the deflections of the layer but 
do not represent the actual magnitude. The 
point of maximum deflection is on the axis of 
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symmetry (x = 0), and all deflections at that initial disturbance in the ratio 1: 4. This intro- 
point are reduced to the same value, taken as 
unity. The graphs therefore show the gradual 

duces very little difference in the time history 

development of the folds of a half-portion of 
of the folding. A definite wavelength is meas- 
urable that is very close to the dominant wave- 

the layer. The shape of the layer is shown at length, L.4 = 34.57 h. 
four instants-at t = 0, where the shape is the A similar plot is shown in Figure 4 for the 

o/h= 2.75 

o/h = 5.50 

o/h=Il 

I I I I I I I 

0 IO 20 30 40 50 60 70 I 

x/h - 

) 

Figure 3. Time history of folding for a viscosity ratio q/qr = 1000. 
Three types of initial disturbances (at t = 0) are considered. All 
amplitudes are reduced to unity at the center (x = 0). Only the 
right half of the symmetric figure is shown. 

assumed initial disturbance itself as represented 
by equation (2.5), and subsequently at 

t = 0.25tr, 0.50tr, and tr . (3.7) 

The magnitude of the deflection at any point 
is known, once it has been calculated at x = 0. 
This is discussed hereafter. 

Figure 3 also indicates that after sufficient 
time a very definite wavelength appears that 
is quite sharp. The three values of a/h for 
which the deflections have been evaluated 
correspond to a variation of the width of the 

three cases in which the viscosity ratio q/lr 
= 144 (3.6); here also, the curves have been 

plotted for the instants (3.7). 
Again, the result is fairly insensitive to the 

width of the initial disturbance. Although the 
definition in this case is less sharp, a character- 
istic wavelength appears that is close to the 
dominant wavelength, Ld = 18.12 h, at least 
in the later phase of the folding. The observed 
wavelength in this case tends to shift slightly 
toward longer waves when the width of the 
initial perturbation increases. 
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We shall now consider the amplitude of the for a purely sinusoidal deformation of domi- 
folding. We must evaluate the amplitude on nant wavelength. The amplification factor Ad 
the axis of symmetry of the initial disturbance, is given by equation (5.15) of Riot (1961): 
i.e., at x = 0. The initial deflection at that 
point is equal to b. At time t, it is found by 

t 9 % 

putting x = 0 in equation (2.7); i.e., 
log& = - - 

( ) ti 6171 
) (3.9 

w(O,t) = ba J om .s@-‘~ dl . (34 
where log is the natural logarithm. 

Figures 3 and 4 confirm the conclusions of 
In Figure 5, we have plotted the ratio to(O,t)/b, Biot’s analysis (1961) regarding band width 

a/h= 1.50 

a/h= 2.00 

a/h= 5.60 

I 

IO 
I 

20 
x/h - 

I 

30 L 

Figure 4. Time history of folding for a viscosity ratio r]/r]i = 144. 
Three types of initial disturbances (at t = 0) are considered. All 
amplitudes are reduced to unity at the center (X = 0). Only the 
right half of the symmetric figure is shown. 

z.e., the amplification factor at x = 0 as a 
function of t/ti, for the values of the viscosity 

and selectivity of the folding. Biot found that 

ratio v/vi and a/h given heretofore. 
regular waves can be expected to appear over 
a distance 

It can be verified that the amplification 
given by equation (3.8) is not very sensitive 

Ld 

to the width of the initial perturbation and D=arll, 

that it is closely approximated by the amplifi- when Al/& is the band width as given by 
cation factor Ad, which Biot (1961) derived Table 2 of the Biot (1961) paper. For an 
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Figure 5. Amplitude ~(0, t) at the center 
(X = 0) for the time histories shown in 
Figures 3 and 4 (b = amplitude at the 
center of the initial disturbance) 

amplification factor Ad = 1000, this yields the 
valueal/& = 0.632, indicating that D = 1.58 
Ld. As shown by Figure 5 for the case in which 
q/r]r = 1000, the amplification Ad = 1000 
corresponds to t/t1 g 0.3. Figure 3 shows that 

folding at this instant is regular over a distance 
of about 1.5 Ld, as calculated. We must, of 
course, consider the fact that the figure shows 
only half of the complete picture. 

The significance of these results can be il- 
lustrated by a specific example. Consider a 
layer of thickness It = 2 feet and viscosity 
77 = 10zl cgs. This layer is subject to a com- 
pression P = 1450 psi and is embedded in a 
medium of viscosity ql = 101* cgs. The initial 
deflection is assumed to correspond to a/h = 
5.50 (hence, a = 11 feet), and its maximum 
value’at the center is shown as b = 0.24 inch. 
The time tl is 

tr = 5 = 319,000 years . 

The folding deformation of this layer at the 
time 

t = 0.3tr = 95,700 years 

can be derived from Figures 3 and 5. Figure 6 
shows the shape and amplitude. The maximum 
amplitude at the center is 

to(0, t) G% 1OOOb = 20 feet . 

VERTICAL SCALE 

EXAGGERATED 

TRUE VERTICAL 

SCALE 

I I I I I I 
60 40 20 20 40 60 FEET 

Figure 6. Example of folding of a viscous layer in a viscous medium. (u) layer of 
thickness n = 2 feet with initial disturbance of maximum amplitude b = 0.24 
inch under horizontal compression P = 1450 psi. (6) deformation and folding of 
the layer after 95,700 years. At that time, the amplitude of folding is 20 feet at the 
center. (The figure does not take into account the shortening between crests due 
to the geometry of folding at finite amplitude. See Section 6 of Biot’s (1961) 
companion paper.) 
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The analysis presented is based on the as- 
sumption of an initial bell-shaped disturbance, 
represented by equation (2.5). A much more 
complicated type of initial irregularity can be 
represented by a superposition of bell-shaped 
curves of various widths and locations. The re- 
sulting deformation of the layer is then ob- 
tained by superposition of the folding due to 
each initial bell-shaped component. Time his- 
tories with such composite initial disturbances 
were evaluated. The results do not differ sig- 
nificantly from those given heretofore, except 
for the very special case in which the spacing 
of the disturbances is such that the folds tend 
to cancel each other by being exactly out of 
phase. 

At the larger amplitudes of folding, the rate 
of folding becomes much slower than pre- 
dicted by the present linear theory. This is due 
to a nonlinear effect of geometric origin. 
Therefore, the folding amplitudes will tend to 
equalize and exhibit more regular behavior at 
large strain, as already pointed out by Biot 
(1961). 

Time histories for the case of an elastic layer 
or for problems with more complex visco- 
elastic properties can be computed by the same 
method. As shown by the previous analysis of 
band width, the folding for the elastic layer 
can be expected to show more regularity of 
the waves. This conclusion is borne out by the 
model tests discussed in the following section. 

4. DESCRIPTION OF EXPERIMENTS 

Laboratory tests of the buckling theory have 
been conducted for two cases-an elastic layer 
in a viscous medium, and a viscous layer in a 
viscous medium. As derived previously (Biot, 
1957), the dominant wavelength for an elastic 
layer in a viscous medium is 

Ld = ?rh ~ 
(1: v2)P' (4.1) 

where E and v are Young’s modulus and 
Poisson’s ratio of the layer, respectively; the 
dominant wavelength for the viscous layer is 
given by equation (3.1). 

The tests were designed to verify these 
formulas and to show that the type of deforma- 
tion observed conforms with the predictions of 
the previous sections. 

The experiments were performed in a tank 
1 m high, 1 m wide, and 20 cm front to back. 
A narrow plate-glass window was provided in 
the center of the front and back for observa- 

tion and photography. The tank was filled 
with the viscous medium, and the layers were 
lowered into it in a vertical position and were 
compressed vertically by weights (Pl. 1). 
Weights were placed on a platform that moved 
vertically on guide rails above the tank. Ap- 
plication of the load to the layer tripped a 
microswitch, which started the clock used to 
read loading time to fractions of a second. 
Another clock, used to read to the nearest 
second, was started manually. 

Results were observed photographically by 
a 35-mm Robot camera with spring-loaded 
rapid film advance. With this device, up to 
five pictures per second could be taken. An 
attempt was made to record still faster de- 
formations with a 16-mm movie camera. At 
these higher deformation rates, the inertial 
forces become important in the experiment, 
and the theory is no longer applicable. 

Corn syrup was chosen as the viscous medium 
because it has relatively high viscosity at room 
temperature and is transparent, water soluble, 
nontoxic, and inexpensive. Two grades of 
syrup manufactured by the Corn Products 
Company were used-their most viscous grade, 
No. 1152, and a less viscous grade, No. 1132. 

A locally obtained grade of roofing tar was 
selected for the viscous layers because it could 
be readily cast into shape and yet was s&i- 
ciently viscous so that the layers could be 
handled into and out of the tank. The mold 
was lined with thin sheets of Teflon, which 
enabled the cast layers to be removed from the 
mold without damage. Elastic layers were 
made of sheet aluminum and of cellulose acetate 
butyrate, which were chosen primarily on the 
basis of availability. 

The viscosity of the two grades of syrup was 
determined both by using a Hoeppler viscom- 
eter and by timing the rate of fall of ball 
bearings through the syrup and applying the 
Stokes law. These measurements were in close 
agreement and are summarized in Table 1. 

The quantity E/(1 - v”) was obtained for 
the aluminum and cellulose acetate butyrate 
layers by direct measurement from the bend- 
ing of small strips, approximately 2 cm by 
10 cm, cut from the sheets. Each strip was 
measured in two ways-as a cantilever beam 
loaded at the end, and as a beam freely sup- 
ported on the ends and loaded in the center. 
The strip was assumed to be sufficiently wide 
in relation to its thickness (20 to 1 minimum) 
to bend as a plate into a cylindrical surface. In 
that case, the effective modulus used in the 
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TABLE 1. DIMENSIONS AND CONSTANTS USED 

Material 

Pitch (25’ C) 
1132 corn syrup (24.8’ C) 
1152 corn syrup (24.9’ C) 

Viscosity 
(poises) 

3.0 x 107 
7.0 x 102 

1.35 x 104 

Density 

1.253 
1.4 
1.45 

sheet used 
Thickness Width 

h (cm) (cm) 
E/(1 - v2j 
(dynes/cm ) 

Viscosity 
(poises) 

Cellulose acetate 
butyrate 

Aluminum 

Pitch 

0.102 19.72 1.25 x l@ 
0.0787 19.72 1.76 x 1O’O 
0.0510 19.72 2.42 x 1O’O 
0.0254 19.72 2.43 x l@O 

0.0531 19.70 5.79 x 10’1 

0.35 19.70 3.0 x 10’ 
0.37 19.70 3.0 x 10’ 
0.87 19.70 3.0 x 107 
1.08 19.70 3.0 x 10’ 

standard beam formulas is E/(1 - v”). Results loads, the rate of deformation was found to be 
of these measurements, which agreed within proportional to the applied load, indicating 
rt 20 per cent, are averaged together and are true Newtonian behavior. In addition, no 
summarized in Table 1. yield point was apparent, since the material 

The viscosity of the tar was determined by a would eventually flow to a plane surface under 
standard method, called the rod-viscometer the influence of gravity. 
method, which involves the shearing of a 2-cm The measurement subject to the largest error 
by 2-cm by lo-cm beam of the material (Saal, in these experiments is that of the wavelength 
1933). of the buckling. The method used here was 

From measurements with several different merely to measure the distance from the first 

0 AI-SHEET NO. I 

0 AI-SHEET NO. 2 

-I- 1.02~mm PLASTIC IN ,131 SYRVP 

Figure 7. Graph of results of buckling of elastic layers in a viscous medium. Ld = measured wavelength; 
h = layer thickness; P = compressive load; E = Young’s modulus of layer; v = Poisson’s ratio of layer. 
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peak or trough to the last (a centimeter scale Elastic layers were buckled in both of the 
is superposed on each photograph) and divide viscous media (viscosity ratio approximately 
by the number of cycles observed. This was 20) with no consistent change in observed 
very straightforward in the case of the elastic wavelength, as predicted by the theory. 

TABLE 2. DEPENDENCE OF WAYE~ENGTH ON Vrscos~r~ RATIO 

71 (poises) f+ (cm) Ld/h (talc.) La/h (exp.) 

700 4.28 x lo4 0.37 121.0 119 - 127 
1.35 x 104 2.22 x 103 0.35 45.1 35.3 - 51.4 
1.35 x 104 2.22 x 103 0.87 45.1 39.1 - 47.1 
1.35 x 104 2.22 x 103 1.08 45.1 35.2 - 48.1 

layers (PI. 2, fig. I), in which a number of 
well-defined peaks and troughs existed, but be- 
came somewhat more ambiguous in the case of 
the viscous layers, in which the buckling 
damped out rapidly away from the end where 
the load was applied (PI. 2, fig. 2). In all cases, 
however, the writers attempted to measure the 
distance between the better developed peaks 
and troughs and to average these measure- 
ments to obtain the wavelength used in the 
results. 

5. DISCUSSION OF 
EXPERIMENTAL RESULTS 

Results for the elastic layer are shown in 
Figure 7. The ratio of dominant wavelength 
to layer thickness is plotted against E/P 
1 - y2), where E is Young’s modulus, P is the 
compressive stress, and v is Poisson’s ratio. The 
results demonstrate the predicted dependence 
of wavelength upon load over most of the 
range but show more deviation at longer wave- 
lengths. This is in the region in which the ob- 
served wavelength is influenced by the length 
of the layer used in the experiments, which will 
be discussed presently. 

Experiments with the layers under an 
initial long bend showed that the observed 
wavelength was influenced by the preset bend 
whenever the expected value was within about 
one to one-half times the preset bend. Shorter 
wavelengths, however, simply superimposed 
themselves upon the longer bends with no 
change in observed wavelength from previous 
initially undistorted cases. 

A much smaller number of experiments were 
made with viscous layers. One set of four ex- 
periments was made to demonstrate the pre- 
dicted dependence of wavelength on viscosity 
ratio (Table 2). Another set of experiments 
was performed in which the load was varied 
by a factor of 4. This did not change the wave- 
length, which is in accord with the theory. 

To obtain an idea of the magnitude of the 
amplification involved in these tests, we can 
compute Ad from equations (2.8) and (3.9). 
For the folding shown in Figure 2A of Plate 2, 
P = 2.153 x lo5 dynes/cm2, t/t1 = 0.054, 
and r]/r]r = 4.28 x 104, so that Ad = 92. For 
the folding shown in Figure 2C of Plate 2, 
P = 5.348 x lo5 dynes/cm2, t/t1 = 0.339, 
and ~/qr = 2.22 x 103, so that Ad E 44. These 

PLATE 2. ELASTIC AND VISCOUS LAYERS BUCKLING IN A VISCOUS MEDIUM 

Figure 1. Buckling of elastic layers in a viscous medium under various loads. l-mm acetate layer in 
1132 corn syrup. (A) 1.6-kg load; (B) 6.6-kg load; (C) 11.6 kg- load. All loads applied from right side. 

Figure 2. Buckling of viscous layers in a viscous medium 

Load (kg) Time applied (set) Layer thickness (cm) rllt1 
___- 

A 1.6 7.5 0.37 40,000 
B 11.6 49 0.87 2,000 
C 11.6 19 1.08 2,000 

All loads applied from right side 



1630 BIOT AND OTHERS-EXPERIMENTAL VERIFICATION, THEORY OF FOLDING 

values appear to be reasonable, since they 
imply an initial waviness of the layer having 
an amplitude of the order of 1 mm or less. 

There are several obvious difficulties in these 
experiments. In the first place, the boundary 
condition of an infinite layer and a surround- 
ing medium is far from attained. Friction occurs 
as the edge of the plate is forced to shear a thin 
layer of fluid between the sheet and the glass 
windows. The extent to which this friction 
affects the results was not evaluated. Other 
difficulties with boundary conditions occur in 
cases in which the dominant wavelength is 
longer than about half the depth of the tank, 
because the ends of the plate have to be re- 
strained, thereby forcing nodes. For this 
reason, whenever possible, measurements were 
made in the range in which the wavelength 
was less than half the length of the layer. In 
addition, with very thin plates it was neces- 
sary to clamp the upper and lower ends, thus 
imposing a zero slope at the end nodes. 

Secondly, the various layers suffered from 
defects of one kind or another. The aluminum 
was slightly prestressed and tended to assume 
a single wavelength. The plastic sheets, es- 
pecially the thinnest ones, had an inherent 
transverse bend, which increased the effective 
rigidity. To counteract this tendency, the 
writers clamped the ends. 

The tar layers were less dense than the syrup 
and hence floated unless restrained. Since they 

would eventually deform and flow from any 
clamp, a different kind of restraint was neces- 
sary. Before the tar was cast, two strings were 
run down the length of the mold so that they 
occupied a position as near as possible to the 
neutral fiber. When the tar layer was in the 
tank, the strings were tied to a weight at the 
bottom; after the run, they were used to lift 
the tar from the tank. Nonetheless, they must 
have increased the stiffness of the tar and, to 
some extent, must have altered its experi- 
mental behavior. 

Thirdly, the insertion of very thin sheets 
into the syrup invariably distorted the sheets; 
in the case of the thinnest tar layer in the 
thickest syrup, the sheets were distorted irrep- 
arably. 

The results from these rather crude experi- 
ments seem to show surprisingly good quanti- 
tative agreement with the theory, but a some- 
what more elegant experiment might show 
more dramatic results. Particularly, an experi- 
ment that uses as the viscous medium a ma- 
terial of sufficiently high viscosity that it can 
be handled as a solid with the layer cast inside 
it might circumvent many of the difficulties 
encountered in these experiments. However, 
this method would lose the advantage of re- 
peatability inherent in the present technique, 
in which the same layer can be deformed sev- 
eral times. 

REFERENCES CITED 

Biot, M. A., 1957, Folding instability of a layered viscoelastic medium under compression: Royal Sot. 
London Proc., ser. A, v. 242, p. 444-454 

-- 1959a, On the instability and folding deformation of a layered viscoelastic medium in compression: 
Jour. Applied Mechanics, ser. E, v. 26, p. 393-400 

__ 1959b, Folding of a layered viscoelastic medium derived from an exact stability theory of a continuum 
under initial stress: Applied Mathematics Quart., v. XVII, no. 2, p. 185-204 

__ 1961, Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis: 
Geol. Sot. America Bull., v. 72, p. 1595-1620 

Filon, N. L., 1928, On a quadrature formula for trigonometric integrals: Royal Sot. Edinburgh Proc., 
ser. A, v. 49, p. 38-47 

Saal, R. N. J., 1933, Determinations regarding the plastic properties of asphaltic bitumen: 1st World 
Petroleum Cong. (London) Proc., pt. II, p. 515-523 

MANUSCRIPT RECEIVED BY THE SECRETARY OF THE SOCIETY, MAY 9, 1960 



APPENDIX: EVALUATION OF THE INTEGRAL (2.7) 1631 

APPENDIX: EVALUATION OF THE 
INTEGRAL (2.7) 

By putting 

s = I/a, 

we can write the integral (2.7) as 

uI(x, t) m a -=- 
b h 0 exp s 

[F + ;f-’ is)] cos (;) ds 

in which 

j(S) = 4: +fs? 

(A.11 

(A4 

(A.31 

For a given value of t/ti, the factor exp 
[(- as/h) + (t/tl) f-’ (s)], considered as a 
function of s, is replaced by straight-line in- 
tervals. 

Equation (A.2) then becomes 

k 

s ;; (UkS + bk) COS t;) ds 

a 
=- sin (z/h) Aktl 

h (aks + bk) ~ 
x/h Ak 

’ 

in which ak and bk are given for the interval. 
Because akAk+r + bk = ak+lAk+l + bk+lr 

all but two terms due to the first bracketed 
term disappear; those also disappear, however, 
because sin (xs/h)/(x/h) tends to zero for s 
vanishing, and a@ $- bk tends to zero for 4 
tending to infinity. Thus, 

k 

x X 
COS /&+I - - COS Ak - ’ 

h h 

For small values of x, this expression has to be 
expanded into powers of x. The method used 
here for the computation of integrals of the 
type (A.2) was first proposed by Filon (1928). 
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