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ON THE FOLDING OF A VISCOELASTIC MEDIUM WITH ADHERING 
LAYER UNDER COMPRESSIVE INITIAL STRESS* 

BY M. A. BIOT AND H. ODfi (Shell Development Co.) 

Abstract. The exact solution is given for the folding by compression of a visco- 
elastic layer embedded in a viscoelastic medium, under the assumption that there is 
perfect adherence between layer and medium. This solution agrees closely with the 
earlier result obtained by Biot which was based on the assumption that layer and medium 
could slip over each other. 

In a previous publication, Biot [l] has discussed the case of folding a layered visco- 
elastic medium under initial stress. An exact solution was presented for the folding, 
due to instability, of a viscoelastic layer of thickness h embedded in a viscoelastic medium 
extending infinitely far in both directions perpendicular to the layer; the assumption 
was made that layer and medium did not adhere and could slip over one another as if 
perfectly lubricated. An approximate solution for the case of perfect adherence was 
developed in a second publication of the same year by Biot [2]. The influence of the 
adherence was found to be small. The purpose of this note is to check this conclusion 
by an exact solution for the case when perfect adherence exists between layer and medium. 

The method is the same as that in Ref. [l] and it combines two distinct developments 
contained in earlier work by the same author. One of these developments is the theory 
of elasticity of a medium under initial stress (1934-1941). The other was introduced as 
a correspondence principle (1954-56) by which elastic moduli are replaced by corre- 
sponding operators [3, 4, 51. Results are therefore applicable to either elastic or visco- 
elastic media of a very general nature. It was shown at the same time that the corre- 
spondence extends to problems which involve anisotropy, dynamics, wave propagation, 
and variational procedures. The mathematical restrictions on the operators were also 
derived from thermodynamics [3]. 

The horizontal and vertical displacements u and v, in the layer representing the 
departure of the displacement from an initial steady state, satisfy the equations 

(1) 

which are a consequence of Eq. (3.7) of Ref. [I]. 
& is a time operator, defined in [l], which reduces in case of Newtonian viscosity to 

I.L d/dt, where cc is the viscosity coefficient. P is the initial compressive stress. An equa- 
tion similar to Eqs. (1) holds for the embedding medium, with the difference that now 
indexed symbols &I and P, are used. 

The forces per unit initial area exerted on the medium by the layer are F, and F, 
(Fig. 1); those per unit initial area exerted on the layer are FL and FL . Equilibrium 
requires that 

F, = -FL 
and (2) 

F, = -F: 

*Received May 18, 1961. 
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FIG. 1. Diagram of the forces acting between layer and embedding medium. 

Solutions of Eqs. (I), which are pertinent, are 

u = C AieKizysin lx 

v = c BieKizsl cos lx, 

where 

(3) 

Ki = &l, f w 1/z. G > 
Because these solutions must also satisfy Eqs. (3.7) of Ref. [l], there are only four 
independent constants. 

For the infinite medium only negative exponents apply, whereas for the layer, hyper- 
bolic sines and cosines must be taken. By expressing the boundary conditions in terms 
.of the strain components, we find that 

F, = r,, sin lx FL = 7: sin lx 
(4) 

F, = qo cos lx F: = q; cos lx 

in which r. , q. , 7: , and qi are given in terms of P, &, P, , g1 , and the integration con- 
stants of Eqs. (3). Because of symmetry, it is sufficient to consider only the conditions 
on one of the interfaces. At this interface, we write the layer displacement as 

u = U, sin lx 
(5) 

v = VIJcoslx. 

Thus, by Eqs. (3), the integration constants can be expressed in terms of U. and V. . 
Introducing these in Eqs. (4), the resulting equations are 

.and 
70 = ClIUO + ClJO 

qo = Cz1Uo + C22Vo , 

where Cji is a function of &, l?, and P. I? is an operator related to the compressibility 
.of the layer. 

Because of the assumption of perfect adherence, the same equations (5) holds for 
the medium at the interface. Hence, an equation similar to (6) can be written for n: 
and q; . 
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The coefficients Cii in Eqs. (6) are not necessarily symmetric. The reason for this 
is that we have used a stress-strain relation involving a symmetric matrix, whereas 
the actual incremental stresses and strains as a consequence of thermodynamic principles 
cannot, in general, be expressed by means of symmetric elastic moduli or operators 121. 
This difficulty disappears however, if we are dealing with an isotropic incompressible 
material. In this case, the matrix in Eqs. (6) is symmetric. 

The two sets of equations of the type of Eq. (6)-one for the layer and one for the 
medium-reduce by Eqs. (2) to two linear homogeneous equations in the unknowns 
U0 and V, . The condition that these equations are compatible then leads to the stability 
equation. For the particular case where both layer and medium are perfectly incom- 
pressible and the prestress in the medium is assumed to be zero-that is, the compression 
is wholly supported by the stiff layer-the stability equation becomes 

(1 - n2) tanh y = [(l + 1)” - n2]k tanh Icy -I- n{(l + k tanh yetanh k-y), 

in which 

(7) 

A diagram of Eq. (7) is shown in Fig. 2 for the case of purely viscous solids, i.e., for 
n = pl/p/ (ratio of viscosities). 
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FIG. 2. Graph of Eq. (7) for purely viscous solids. 

An infinite number of branches result. The only branch that is significant is curve A 
of Fig. 2, which is shown here for the particular value n = l/144 of the viscosity ratio. 
It shows a dominant wavelength corresponding to Yd , where 1 reaches a minimum value. 
Some of the other branches are also shown in the diagram-curves B and C for n = l/15. 
They have the vertical asymptotes y = ?r, 27r, etc. For a Newtonian fluid, they are 
physically spurious in the region I < - 1 or 1 > 1, because where 1 1 1 is close to or 
larger than unity, the solutions lose their physical significance. On the other hand, for 
a strongly non-linear solid which exhibits plastic flow, the solutions may be physically 
significant in a larger range of p. But the question arises whether the incremental proper- 
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ties remain isotropic. These remarks should also be kept in mind in connection with the 
physical significance of some of the results of Ref. 1 in their application to Newtonian 
fluids. 

The solution we have obtained is also directly applicable to the stability of purely 
elastic media when the operators are replaced by elastic moduli. In this case, for a 
material which is isotropic in the unstressed state, the only accessible values of 1 j- 1 are 
smaller than unity. These points will be discussed more extensively in a forthcoming 
publication. 

For values 0.618 < n < 1, branch A moves into the region c > 1 (as shown by curve 
A’) and has no minimum. Hence, for the reason stated previously, the branch A’ be- 

comes physically spurious. 
For materials of more general viscoelastic properties, a set of curves A, each com- 

puted for a different viscosity ratio n, can serve as a master pIot in determining the 
dominant wavelength at a given strain rate. 

Comparison of the results of the solutions for perfect slip and perfect adherence 
shows very little difference. Most of the difference is in the region of dominant wave- 
length, but even here the value of S varies by less than 2 percent, and the shift in domi- 
nant wavelength is of the same order of magnitude. For practical purposes, it therefore 
seems sufficient to use the theory without adherence; this agrees with the conclusions 
of Ref. [2]. It is interesting that outside the region of dominant wavelength, the solu- 
tions (for incompressible media) with or without slip become indistinguishable to a high 
order of accuracy. 

The influence of compressibility under conditions probably prevailing in the earth’s 
crust is negligible. The general form of Eq. (7), as we take into account the compressi- 
bility of layer and medium, contains a number of additional terms, each containing one 
of the factors 

or both. For elastic compressibility [3], 

R = K - $0, (9) 

where K is the bulk modulus of the material, which is here a constant. We have 

3 
a!= 

1+6${’ 
(IO) 

which shows that the effect of compressibility depends on the magnitude of the com- 
pressive load. For loads P much smaller than K, a! and CX’ will be small quantities; then 
compressibility will not be important. For large values of P, however, the changes in 
dominant wavelength and strain rate may become appreciable. 
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