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Summary may be used. Some new expressions are also derived 

Boundary-layer heat transfer is analyzed for the case of a sinu- which arc applicable to problems of heat transfer in 
soidal distribution of temperature in the direction of flow, It is boundary layers associated with pressure gradients. 
shown that for both laminar and turbulent flow the spatial dis- The present results justify the development of new 
tribution of heat transfer is generally out of phase with the wall 
temperature by an angle of 30” to 46”. This leads to the con- 

procedures for the analysis of heat flow in systcnis 

elusion that in some areas the heat flow is opposite to the tem- 
combining solid conduction and fluid convection which 

perature difference as used in the definition of the heat-transfer do not require the use of heat-transfer coefficients. 

coefficient, and points to the basic shortcomings of this concept. This has been presented in a separate companion paper. * * 
The physical explanation for this behavior is found to be the Section (2) deals with the case of uniform flow parallel 
temperature-field distortion by the fluid motion. The distortion 
is measured by the Peclet number. Approximate equations 

to a plane boundary. The wall temperature i’s assumed 

representing a “conduction analogy” were used in this analysis to vary sinusoidally along the direction of flow and is 

and the validity of these equations for unsteady flow is examined also a sinusoidal function of time. It is possible to 

with reference to limitations in frequency and wavelength. A show that within the usual range of frequency and wave- 
solution of these equations is given for the case of a velocity pro- length in subsonic air flow, a simplified quasi-steady 
file which is not a straight line. The use of previously developed 
variational principles for the evaluation of convective heat 

equation for convective flow is valid. From this equa- 

transfer including cases of three-dimensional unsteady flow, tion, the local-heat-transfer rate is easily evaluated. 

turbulence, and nonparallel streamlines is also discussed. Its distribution along the space coordinate in the direc- 
tion of flow is found to be out of phase by an angle of 

(1) Introduction 

I T HAS BEEN CUSTOMARY to describe the heat-transfer 
properties between a solid surface and a moving 

fluid by the so-called heat-transfer coefficient. While 
in many engineering problems dealing with simple con- 
figurations and average properties the use of such a 
coefficient is undoubtedly justified, many investigators 
have been aware of the vagueness and inadequacies 
attached to this concept. This is particularly true in 
problems requiring a detailed analysis of the tempera- 
ture field in a solid whose boundary is in contact with 
a moving fluid. 

Our main purpose is to show that the concept of a 
local-heat-transfer coefficient, which is generally used 
in the formulation of such problems, is in many cases 
grossly inadequate. This has been accomplished by 
analyzing the mechanisms of heat transfer to a moving 
fluid for the simplified case of a temperature distribu- 
tion which varies sinusoidally along a streamwise co- 
ordinate. 

The methods used in the course of this analysis also 
suggest some new and simplified procedures i-the cal- 
culation of heat transfer for laminar and turbulent flow. : 

In particular, simple and accurate variational metho&’ 

45 degrees with the temperature. This means that 
over 25 percent of the surface the heat flow is in a 
direction opposite to the temperature difference be- 
tween the solid and the fluid. The physical reason for 
this peculiarity is also analyzed. It is due to a dis- 
tortion of the temperature field by the convective flow. 
The angle of distortion is measured by the Peclet num- 
ber. The importance of this number as a measure of 
the convective properties is thereby emphasized. 

The same problem is analyzed for a laminar bound- 
ary layer in Section (3) and for turbulent flow in Section 
(4). Inadequacies of the same order affecting the con- 
cept of a heat-transfer coefficient are found for these 
cases. 

With reference to the case of laminar flow, .attention 
is called to a remarkable memoir by Leveque published 
in 1928,’ which has received very Iittle attention until 
recently.++ In particular, he derived a solution for the 
heat transfer in a fluid moving with a velocity propor- 
tional to distance from the wall. The same solution 
was derived later by Lighthill, 3 in the context of bound- 
ary-layer theory, ‘using a more elaborate operational 
procedure. 

We have shown that Lcveque’s result is a particular 
&se: of a more general solution for nonlinear velocity 
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layers under conditions of streamwise pressure gradient. Y 

The mathematical derivation is given in Appendix I. I & 
In the last section, variational methods are applied 

to boundary-layer heat transfer by using a “conduction 
analogy. ” By this analogy, the Lagrangian equations 
developed earlier4 are directly applicable to thermal 
convection, including the case of turbulent flow and 
nonparallel streamlines. By suitable use of the stream 
function the analogy extends to three-dimensional 
flow with axial symmetry and nonparallel streamlines. 
A numerical example indicates that the procedure is 
quite accurate. Earlier discussions in Section (2) lead 
to the conclusion that within certain practical limits 
the analogy may be used for a time-dependent velocity 
field. The analogy in conjunction with the writer’s 
variational procedures has also been applied by Agra- 
wa16 in the context of laminar flow and parallel stream- 
lines. The numerical results also show excellent 
accuracy. 

Substituting in Eq. (2.3), the value of @ is found to be 
given by 

f12/i2 = 1 + [i/(Kj)][(W/l) + U,] (2.6) 

Because we wish the solution to vanish for y = a, we 
must choose the root @ which has a positive real part. 
If we call D the half-wavelength of the temperature 
along x, and tl the half-time-period, we may write 

wtl = 1D = T (2.7) 

Hence 
A brief outline of the results obtained in this paper 

was given earlier. ii 
(w/l) + Uo = (D/G + Uo (2-S) 

The time-dependent term w/l = D/t1 will be negligible 
if 

D < uoti (2.9) 

As a numerical example, let us consider an extreme 
case of unfavorable values, 

lJo = 1000 cm/set = 10 m/set 
t1 = 10 set 

1 

(2.10) 
D = 100 cm = lm 

(2) Some Fundamental Aspects of Heat Transfer 
for Uniform Flow 

Consider a two-dimensional incompressible flow field 
of velocity components U,V in the x,y plane. A two- 
dimensional temperature field B in this fluid satisfies 
the equation 

a;) = k(gZ + g) (2.1) 

The thermal conductivity k and the heat capacity c per 
unit volume are assumed constant. For the purpose 
of deriving some of the essential qualitative aspects of 
the heat-transfer problem, along with significant orders 
of magnitude, let us simplify the analysis by putting 

u = lJ0 = const. 
v =o 1 

(2.2) 

The fluid moves with a uniform velocity UO in the x 
direction. We assume that the fluid is located in the 
half-space y > 0 and that it flows along a solid plane 
boundary located at y = 0 (Fig. 1). 

Eq. (2.1) becomes 

K(E + g) (2.3) 

where 

K = k/c (2.4) 

is the thermal diffusivity of the fluid. 
‘In particular, we want to find the influence of a 

streamwise temperature gradient on heat transfer for 
the case where the temperature is either time-dependent 
or not. For this purpose, it is natural to assume a tem- 
perature which is a sinusoidal function of both the 
coordinate x and the time t-viz., 

6 = 00 exp (iwt + dx - By) (2.5) 

Even for such extreme values, the error in neglecting 
the time-dependent term will be only 1 percent. 
Hence, in most aerodynamic applications for which 
Uo tl/D is larger than in the example (2.10), it will be 
justifiable to write 

p2 = I”{ 1 + i[UO/(KZ)] (2.11) 

and to replace Eq. (2.3) by the “quasi-steady” 
equation 

(uO/K)(bo/aX) = (b20/bX2) + (b20/by2) (2.12) 

The latter equation can be further simplified by con- 
sidering numerical values in Eq. (2.11). For air, the 
value of the diffusivity is 

K = 0.187 cm2/sec (2.13) 

Hence, with the numerical values (2.10) for Uo and D, 
we find 

UO/(d) = U~D/(~K) = 168 (2.14) 

We may therefore neglect unity as compared with 
U,J(KZ) and write 

P2 = i[(U&/K] (2.15) 

This amounts to neglecting the term b20/ax2 which 
represents the streamwise conduction in Eq. (2.12). 
The final approximate equation for the temperature 
in the moving fluid is therefore 

( uO/K) @o/&C) = &?/by2 (2.16) 

559 
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The error involved becomes smaller as the streamwise 
temperature gradient and the fluid velocity become 
larger. 

A solution of the simplified Eq. (2.16) is 

e = eoe’lZe-oY 

with 

(2.17) 

p = ~/;U,&/K = eui142/?r lJo/xD (2.18) 

The temperature at the boundary is 

e, = ep (2.19) 

If we attempt to express the heat transfer at the wall 
by means of a quantity similar to the usual concept 
of a “local heat transfer coefficient,” we are led to the 
expression 

K = - (Mu) PVdY), =0 (2.20) 

K=kp=e “i’4kz/rUo/(tcD) (2.21) 

One of the important features of this results in the 
complex character of K. The heat flux at the wall is 
45” out of phase with the streamwise temperature 
distribution. This is illustrated in Fig. 2, which shows 
a plot of wall temperature and heat flux. Between 
points A and B the heat flux is in a direction opposite to 
the difference between the wall temperature and the 
fluid initial “adiabatic” temperature. In this region, 
the “traditional” heat-transfer coefficient is negative 
and at point B it is negative and infinite. 

Furthermore, this coefficient K is inversely propor- 
tional to z/o. Hence, its magnitude also depends on 
the temperature gradient. Such behavior certainly 
does not fit the physical concept of a heat-transfer 
coefficient. The concept breaks down completely at 
points of negative or infinite value. In addition, the 
value of K depends on the distribution of the wall 
temperature-i.e., on the solution of the complete 
heat-flow problem for the combined systems of the 
boundary layer and the conductive solid adjacent to it. 
Since shorter wavelengths are associated with higher 
heat transfer, this also implies a “smoothing out” 
effect on the temperature distribution and a tendency 
for local hot spots to be evened out faster than would 
result from the application of the concept of a heat- 
transfer coefficient. 

It is interesting to examine the physical reason why 
the heat flow reversal occurs in the region AB. We 
therefore consider the fluid temperature field given by 
Eq. (2.17). The value (2.18) of p may be written 

p = (1 + i)2/7rU&KD) 

Hence, the temperature field is 

(2.22) 

e=eoeX~(~~X--~~~~--y~~) (2.23) 

The physical temperature is represented by the real 
part of this expression. The isothermal contours 
(f3 = const.) in the moving fluid are shown schematically 
in Fig. 3. The reason for the flow reversal in the region 
AB is immediately apparent from this figure. Because 
of the convective entrainment by the fluid, the tempera- 
ture field is distorted, producing a reversal of the tem- 
perature gradient near the wall in the region AB. 

The significance of Eq. (2.23) is further clarified if we 
represent it in a skew coordinate system x’,y’ where the 
y’ axis lies at an angle L\I with the x’ axis (Fig. 3). In 
these coordinates, Eq. (2.23) is simplified to 

e = e. exp (~ZX' - ZY~COS a) (2.24) 

The angle of distortion a! is given by 

tan cx = 427r~/(U~D) (2.25) 

For the purpose of clarity, the distortion in Fig. 3 is 
minimized. Actually, with the numerical values (2.10) 
and (2.13), the angle a! will be about 5’. Note that 
the quantity 

A = &D/(dJo) (2.26) 

has the dimension of a length. For air with 

D = 100 cm 
U. = 10,000 cm/set = 100 m/set (2.27) 

we find 

We may write 

A = 0.024 cm (2.28) 

P=e ,i’4/A = [(I + i)/@](l/A) (2.29) 

The solution (2.23) contains a real exponential factor 

exp [-Yl(V’2A) I, so that the temperature decreases 
by a factor l/e in a distance from the boundary equal to 

yb = fiA = 0.034 cm (2.30) 

Note that the coefficient K may also be written 

K = eai14 k/A (2.31) 

The absolute value k/A represents the heat-transfer 
coefficient through a thin layer of fluid at rest and of 
thickness A. We may consider A to represent a 
“thermal-boundary-layer thickness.” 

Although we have been dealing here with a simplified 
velocity field, the analysis presented above leads to a 
clearer understanding of a basic mechanism of heat 
transfer between a solid wall and a moving fluid. It is, 

FIG. 3. Distortion of 
temperature field in the 
fluid due to its motion. 
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Fig. 4. (Left) Laminar boundary layer profile and displace- 
ment thickness 6. FIG. 5. (Right) Linear velocity distribution. 

therefore, of interest to indicate which of the dimension- 
less parameters used in the traditional theories of heat 
transfer is most representative of the physics. In order 
to accomplish this, let us assume the fluid to be at rest. 
The temperature field would then satisfy Laplace’s 
equation 

@%/&X2) + (b%/dy2) = 0 (2.32) 

and the fluid temperature corresponding to a sinusoidal 
distribution is 

0 = (jOetZze-“v (2.33) 

This may be written 

0 = f)oe"2ze-Y/"P (2.34) 

with 

6, = 1/l = D/T (2.35) 

The quantity 6, is the thermal-boundary-layer thick- 
ness for the fluid at rest. We now compare this with 
the thermal-boundary-layer thickness A when the fluid 
is moving. As given by Eq. (2.26), we find 

cS,~/A~ = (l/rr)(U,D/~) (2.36) 

The dimensionless quantity 

Pe = (U~D/K) = (UoDc/k) (2.37) 

is the Peclet number. (In the usual notation of phys- 
ics, c should be replaced by PC, where p is the specific 
mass and c the heat capacity per unit mass.) Hence, 

&/A = dPe/?r (2.38) 

In the case of uniform flow, the ratio of the thermal- 
boundary-layer thickness for a fluid at rest and in mo- 
tion is, therefore, measured by the Peclet number. 

The angle of distortion a! considered above is, of 
course, closely related to the ratio 6,/A and is also 
measured by the Peclet number. From Eq. (2.25), we 
derive 

tan a: = 42r/Pe (2.39) 

We must remember that the Peclet number is defined 
here in terms of the wavelength of the wall temperature 
distribution. Hence, it constitutes a dimensionless 
parameter for the influence of the streamwise tempera- 
ture gradient. It will now be shown that the general 
conclusions obtained above by a simplified analysis are 
also valid for the case of heat transfer in laminar and 
turbulent boundary layers. This more detailed analy- 
sis is carried out in the next two sections. 

(3) Heat Transfer in a Laminar-Boundary Layer 

Let us now examine the more general case when the 
flow is still laminar but the velocity U in the boundary 
layer is a function of the distance from the wall (Fig. 4) 

lJ = U(Y) (3.1) 

We shall retain the assumption that the velocity com- 
ponent normal to the boundary is negligible. With the 
same approximations introduced in the previous sec- 
tion for the case U = const., the temperature in the 
fluid will satisfy the equation 

(l/K) u(Y) (be/ax) = (b2e/bY2) (3.2) 

For the case of a sinusoidal temperature distribution, 
the solution will be qualitatively of the same general 
type as Eq. (2.17). For a flat plate lying parallel 
to a flow of undisturbed velocity UO, the displacement 
thickness 6 at a distance x from the leading edge is6 

6 = 1.73+x/uo (3.3) 

The velocity profile lying within this thickness is al- 
most linear and the velocity at a distance y = 6 from 
the wall is approximately 

u = ‘/zUo (3.4) 

Within this region, we may approximate the velocity 
distribution by the linear law 

U = ay (3.5) 

with 

a = ‘/zU& (3.6) 

It is, therefore, useful to analyze the problem of heat 
transfer for a boundary layer with the linear velocity 
distribution of Eq. (3.5) (Fig. 5). As already shown 
by Leveque,’ it is possible to obtain an exact solution 
in this case. We have shown in Appendix I that it is 
a particular case of a more general solution, for which 
the velocity profile is given by the power law of Eq. 
(3.30). We shall, first, discuss the linear case (y = 1). 

With the velocity profile of Eq. (3.5), Eq. (3.2) be- 
comes 

(a/lc)y(%//bx) = b20/dy2 (3.7) 

An exact solution of this equation is found by putting 

0 = 4(Y/&) (3.3) 

By substitution in Eq. (3.7), we find an ordinary dif- 
ferential equation for the function + which is readily 
integrable. The result is 

9 = Cr + CJ(11) (3.9) 

with 

B = Va/&*Yl& (3.10) 

and 

I(r]) = S ‘e-” dr] (3.11) 
,I 
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FIG. 6. Unit step tem- 
perature applied at the 
wall. 

For convenience, this function is tabulated in Appen- 
dix II. It may also be expressed as* 

I(V) = T(4/3)&(s) (3.12) 

The numerical value of the gamma function is 

l?(4/3) = 0.8929 (3.13) 

The asymptotic values are 

Es(m) = 1 (3.14) 

and 

+l)‘= m S em”’ dq = I’(4/3) (3.15) 
0 

We conclude that the particular solution 

f9 = 1 - 1 K(?7) l/[T(4/3)lf (3.16) 

represents the case where a unit step temperature rise 
is applied at the wall on the positive side of the x axis 
(Fig. 6). The heat flux at any point in the fluid in a 
direction normal to the flow is 

-kc!!= k a a -_q= d 
- 

bY r(4/3) G e 
(3.17) 

At the wall, the rate of heat transfer per unit area into 
the fluid is found by putting y = 0 in Eq. (3.17). We 
find 

F(x) = -k = - (3.18) 

The distribution of heat flux_/(x) due to an arbitrary 
temperature distribution 0,(x) at the wall is given by 
Duhamel’s integral 

f(x) = sX&,%) Rx - Odg (3.19) 
x0 

with e’(x) = de,/dx 

The wall temperature is assumed to be zero for x < x0 
and is arbitrary for x > x0. 

For comparison with the results of the previous sec- 
tion, we must investigate the heat flux due to a sinu- 
soidal distribution of wall temperature 

e, = eoP (3.20) 

Applying Eq. (3.19), the heat flux is 

f(x) = is,ZsI m e”‘$F(x - E)d[ (3.21) 

This integral is evaluated in Appendix III. We find 

* A plot of the function ES(~) is found in Ref. 7, and a table 
of I(v) is also given in Ref. 2. The table in Appendix II was 
calculated independently. 

with 

f(x) = eoPK (3.22) 

K = eid6 _ (3.23) 

This complex coefficient is similar to Eq. (2.21) for the 
case of uniform flow. 

Introducing the numerical values of the gamma func- 
tions 

I’(2/3) = 1.352 (3.24) 

along with the value (3.13) and substituting I = n/D, 
we derive 

with 

K = eir’6 (k/Al) (3.25) 

Ai = 1.375 4&/(7ra> = 1.73 ~KDS/(?~U~) (3.26) 

The factor eirj6 indicates that the heat flux is 30” out 
of phase with the wall temperature. Except for the 
phase factor, the heat transfer is the same as would 
occur through a stationary layer of fluid of thickness 
A,. This quantity Ai may be considered as a thermal- 
boundary-layer thickness in analogy with the quan- 
tity A defined by Eq. (2.26) for the case of uniform 
flow. Comparing Eqs. (2.26) and (3.26), we note that 
the difference between the cases of uniform and linear 
velocity profiles is twofold. The phase shift of the 
heat flux changes from an angle of 45” to one of 30”. 
The magnitude of the heat flux changes from an inverse 
square-root to an inverse cubic-root dependence on the 
wavelength. 

We are now in a position to draw a general conclusion 
regarding the heat transfer in a laminar boundary of 
the more general type, as illustrated in Fig. 4. The 
boundary-layer displacement thickness was denoted 
by 6. For small enough values of the wavelength- 
i.e., small values of D-the thermal boundary layer 
lies within the displacement thickness 

Ai < 6 (3.27) 

In this case, the results of the linear velocity distribu- 
tion will apply. The heat transfer will then be meas- 
ured by the complex coefficient K, as given by Eq. 
(3.25). Hence, for small enough wavelengths, the phase 
shift will be 30’ and the heat flux will be proportional to 
l/$%. For large wavelengths such that 

A, >> 6 (3.28) 

the thermal boundary layer will penetrate deeply into 
the region of uniform velocity. We are then justified 
in applying Eq. (2.31) for the coefficient K, which 
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FIG. 8. Velocity profile 
of turbulent boundary 
layer on a flat plate. 
Thickness of the sublayer 
is 61. 

corresponds to a constant velocity profile. The heat 
flux will tend to become proportional to l/d5 and 
the phase difference will approach 45”. 

In the intermediate range where A, is somewhat 
larger than 6, the heat transfer will be represented by a 
value lying between the two existing cases just con- 
sidered. 

We conclude that the phase shift of the heat flux will 
always be between 30” and 45’, while its magnitude 
will vary as l/D”, where n lies in the interval 

l/3 I n I l/2 (3.29) 

It is of interest to point out that Eq. (3.2) may be 
integrated for the case of the more general velocity 
profile 

U(Y) = UYY (3.30) 

For 0 < y < 1, this type of velocity profile is illustrated 
in Fig. 7. A solution of Eq. (3.2) in this case has been 
derived in Appendix I. This solution is 

0 = 1 - (&(1l)I/{TK~ + WID (3.31) 

with 

7 = y[a/(S%X)]l’s, s = y + 2 

I,= q s exp (--)l”)& 
0 

Eq. (3.31) represents the fluid temperature for the 
case of a unit step temperature at the wall, as illustrated 
in Fig. 6. 

The heat flux at the wall (y = 0) corresponding to 
this solution is 

F(x) = 
k l/S 

= l?[(S + 1)/s] 
(3.32) 

The heat transfer due to an arbitrary wall temperature 
distribution is given by Duhamel’s integral [Eq. 
(3.19)], using Eq. (3.32). Eq. (3.18), obtained above 
for the linear velocity profile, is obtained by putting 
s = y + 2 = 3 in the more general Eq. (3.32). By 
putting a = Uo and y = 0, the velocity profile becomes 

U(y) = a = UO = const. (3.33) 

This corresponds to the case of uniform velocity con- 
sidered in Section (2). The solution of Eq. (3.2) for 
this case is well-known. It may also be obtained here 
as a particular case of the more general solution by sub- 
stituting s = y + 2 = 2. Since 

T(3/2) = &/2 (3.34) 

F(x) = k1/Uo/(mx) (3.35) 

If we compare this expression with Eq. (3.18), obtained 
for the linear velocity profile (y = l), we see that the 
heat-flux distribution is now represented by the factor 
l/G instead of l/q;. For velocity profiles with 
intermediate values of y (0 < y < l), the heat flux is 
proportional to the factor x-l/“(1/2 > l/s > l/3). 

The velocity profile represented by Eq. (3.30) may 
be looked upon as an approximation for a boundary 
layer with a pressure gradient. The general solution 
[Eq. (3.31)] may therefore be used to evaluate the heat 
transfer under such conditions. 

(4) Heat Transfer in a Turbulent Boundary 
Layer 

We now turn our attention to the turbulent bound- 
ary. Let us consider the example of a flat plate lying 
parallel to the stream. Detailed measurements of the 
boundary-layer profile were made by Burgers and van 
der Hegge Zynen8 

The velocity profile of the boundary layer is shown 
schematically in Fig. 8. There is a sublayer of thick- 
ness ijl. In this sublayer, the flow is mainly laminar. 
Outside the sublayer, the flow is fully turbulent. 
Actually, in the sublayer near the boundary of the tur- 
bulent region, there is a transition layer when the flow 
changes gradually from laminar to turbulent. For 
our purpose, since the analysis here is only for the 
purpose of obtaining orders of magnitude, we shall 
neglect this transition and assume that the flow is 
laminar in the sublayer. The stream velocity is Uo. 
At the boundary of the sublayer, the velocity is about 
0.7 UO. The dependence of the sublayer thickness 
a1 ,on the distance x from the leading edge is plotted 
in nondimensional form in Fig. 9. 

Let us now evaluate some orders of magnitude and 
consider a flow of air of lOO-m/see velocity at ordinary 
temperature. We put 

U. = 10,000 cm/set, Y = 0.125 cm2/sec (4.1) 

where v is the kinematic viscosity. For Uox/v = 3 X 
106, the distance x from the leading edge is 

1 

-I 

0 IO6 2X106 J/O6 
u,r/zJ - 

FIG. 9. Sublayer thickness 61 as a function of the distance x to the 
leading edge of a plate (Ref. 8). Eq. (3.32) becomes 
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x = 37.5 cm (4.2) 

From Fig. 9, the value of the laminar sublayer thick- 
ness at that point is 

& = 0.031 cm (4.3) 

This is of the same order as the thermal-boundary-layer 
thickness [Eq. (2.28)] calculated above for the case of 
uniform flow with the same stream velocity U0 and a 
half-wavelength I) = 100 cm. Actually, of course, 
the thermal-boundary-layer thickness should be com- 
puted on the basis of the average velocity within the 
layer. This amounts to replacing V0 approximately 
by ‘jZl_JO in Eq. (2.26). We find the corrected value 

A = 0.034 (4.4) 

which is practically equal to the value [Eq. (3.3)] for 

82. 
As long as the thermal-boundary-layer thickness 

remains within the laminar sublayer, the heat transfer 
will obey the laws established for laminar boundary 
layers in the previous section. This means that the 
heat-flux phase difference will be between 30” and 45”, 
and the dependence of its magnitude on the wave- 
length will be the same as for the case of laminar flow. 

The next step is to analyze the case when the thermal 
boundary layer penetrates into the turbulent region. 
Under the same conditions of flow, this will happen if 
the streamwise thermal gradient becomes smaller than 
assumed in the foregoing analysis. For example, let 
the thermal gradient correspond to a half wavelength. 

D = 1,000 cm (4.5) 

In that case, if we assume that Eq. (2.26) still applies, 
the thermal-boundary-layer thickness is 

A = 0.076 cm (4.6) 

Comparing this result with the value [Eq. (4.3)] for 6& 
indicates that the thermal boundary layer may extend 
appreciably into the turbulent region. 

This analysis is, of course, only approximate, since 
Eq. (2.26) for A assumes the flow to be both laminar 
and uniform. 

A more exact treatment requires the introduction of 
differential equations for the heat transfer in turbulent 
flow. As in the laminar case, we shall neglect the com- 
ponent of the average stream velocity which is normal 
to the wall. The differential equation for two-dimen- 
sional temperature field is now 

The diffusion of heat in turbulent flow is represented 
by the total diffusivity A. It may be written 

A=K+e (4.8) 

where e represents the diffusivity due to turbulent 
eddies and K is the thermal conduction diffusivity al- 
ready considered above. The quantity e is generally 
a function of the coordinates and may also be a function 

of time. For convenience, we shall also define a total 
conductivity coefficient by 

k, = AC 

This may also be written 

(4.9) 

kt = k + EC (4.10) 

Experimental data on the diffusion of heat in turbulent 
and laminar flow leads to the conclusion that A and kr 
are about ten times larger than K and k, respectively- 
i.e., 

A !Z IOK, k, E 10k (4.11) 

A detailed evaluation of the magnitude and dis- 
tribution of E has been made by Rannieg on the basis of 
earlier theories by von K&m&n. The latter were 
further discussed by Turcotte.‘O It is again possible 
to replace Eq. (4.7) by the approximate one 

U(be/bx) = @/by) M (be/by) 1 (4.12) 

The argument leading to the neglection of the term 
dfl/dt in Section (2) does not involve the diffusivity and 
is, therefore, also valid for turbulent flow. Repeating 
the reasoning presented in Section (2) for the laminar 
flow and using the value of Eq. (4.11) for A leads to the 
conclusion that the term b[d(&/bx)]/bx will still re- 
main negligible for air if VO > 10,000 cm/set. This 
condition will generally be verified in practical prob- 
lems with turbulent boundary layers. 

In order to arrive at some estimate of the influence of 
turbulence on heat transfer without having to solve the 
differential Eq. (4.12), we shall introduce a simplified 
model for the boundary layer. Let us assume that 
the average velocity in the turbulent region is uniform 
and equal to the stream velocity Uo. Similarly, we also 
assume that the turbulent diffusivity is constant. If 
the sublayer is sufficiently thin, the heat transfer 
through it may be written as 

Keo = k/sl(eo - eJ (4.13) 

In this expression, eoe”zx represents the streamwise tem- 
perature distribution at the wall, while 8ze”zx represents 
the temperature distribution at the boundary of the 
sublayer and turbulent flow. The factor K is a com- 
plex quantity representing the unknown heat transfer 
at the wall. The heat transfer from the sublayer to 
the turbulent flow may be expressed as in the laminar 
case considered previously, provided K is replaced by 
A and k is replaced by k,. With these substitutions in 
Eq. (2.31), this heat transfer may be written 

KtOz = Bze”i’4 (k,/A,) (4.14) 

where 

A, = dAD/(nUo) (4.15) 

represents the thermal-boundary-layer thickness in the 
turbulent region. The expression 

K, = eTi’4 (k/AL) (4.16) 

is a complex coefficient representing the heat transfer 
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into the turbulent region at the interface of the sub- 
layer and the turbulent region. 

Under the conditions assumed here that the thermal 
boundary layer penetrates appreciably into the turbu- 
lent region, we may write that the heat flow through 
the sublayer equals the heat entering the turbulent 
region. Hence, we may equate Eqs. (4.13) and 
(4.14) and write 

(K/6,)(&, - 19,) = & eri’4 &/A,) (4.17) 

Solving this equation for 13~ and substituting in Eq. 
(4.13), we obtain the value of the coefficient K: 

k 1 

K = iz 1 + (k/k,)(At/6Je-“i’4 
(4.18) 

We see that, again, the concept of a local heat-transfer 
coefficient does not really apply. As before, we find 
that the heat transfer is out of phase with the wall tem- 
perature. Also, because A, depends on the wave- 
length (2D), the coefficient K also depends on the 
streamwise temperature gradient. The magnitude 
of these effects will depend on the numerical value of 
the factor (k/k,)(Ar/Bz). With the approximate values 
of Eq. (4.11), we derive 

Hence, 

(%)(A,/&) = (l/lO)(A,/&) (4.19) 

k 1 

K = it 1 + (1/10)(Ah,/6z)e-“i’4 
(4.20) 

This formula is significant only if the turbulent region 
contributes appreciably to the heat transfer. Assum- 
ing A/61 >lO, we are led to the conclusion that the phase 
angle of K lies between 30” and 45”. However in 
most cases the value of Ae/6e will be smaller than as- 
sumed here leading’to a smaller phase shift. 

(5) A Conduction Analogy Leading to 
Variational Methods 

The Lagrangian and variational methods developed 
earlier by this writer for heat-flow analysis4 may be 
immediately extended to the evaluation of laminar and 
turbulent boundary-layer heat transfer. This can be 
shown as follows. . . 

Let us first consider either a laminar or turbulent 
flow with a mean velocity independent of the stream- 
wise coordinate. For two-dimensional flow, it was 
derived above that the temperature distribution in the 
boundary layer satisfies the equation 

D(Y) (bVax) = (V~Y) [A (Y) (be/+) I (5.1) 

For the laminar case, the equation is simplified by put- 
ting 

A = K = const. (5.2) 

This type of equation is identical in form with the time- 
dependent heat conduction equation 

c(be/bt) = WY) [muby) 3 (5.3) 

This equation represents the one-dimensional heat 

flow in a wall with a thermal conductivity k and a 
specific heat c per unit volume. This analogy provides 
an intuitive picture for the mechanism of boundary- 
layer heat transfer. Furthermore, and more impor- 
tant, it leads immediately to the use of variational 
techniques. This formulation acquires a special im- 
portance in conjunction with the intuitive understand- 
ing of boundary-layer heat transfer provided by the 
conduction analogy. As generally known, the practi- 
cal value of variational procedures depends to a con- 
siderable degree on a physical understanding of the 
problem. Eq. (5.3) becomes identical with Eq. (5.1) 
for the boundary layer if we put 

t = X, c = V(y), k = A(y) (5.4) 

The analogy introduces the problem of heat conduc- 
tion in a nonhomogeneous medium-i.e., for which both 
the heat capacity and thermal conductivity are func- 
tions of the location. By substituting the variables 
x, U, and A into the variational technique according 
to Eq. (5.4), we obtain an analog thermal potential 

V = ‘/z 
s 

ue2 dy (5.5) 

The temperature is related to the analogy heat flow by 
the equation 

ue = -dH/hy (5.6) 

We put 

H = H&z . . . a,,~> (5.7) 

where the q’s are generalized coordinate functions of 
x, and writing 

(5.3) 

This defines an analog dissipation function 

D = l/z S (l/A)iPdy (5.9) 

Finally, a thermal force at the boundary is defined by 
the variational equation 

Q&A = 4&% (5.10) 

where 0, is the temperature at the wall and 6H, a virtual 
heat flow at the wall. 

With these definitions, the following Lagrangian 
equations are written for the unknowns qi 

@v&i) + @D&J = Qt (5.11) 

As an example, we shall consider the laminar flow 
with a uniform velocity 

u = uo (5.12) 

We assume the wall temperature to be a step function 
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8, = eo l(x) = {;O;;oo) (5.13) 

A parabolic approximation is adopted for the tempera- 
ture 

8 = Boll - (Y/!z)12 (5.14) 

with q an unknown function of x. The quantity p 
represents the penetration of the temperature field 
into the boundary layer. In the present case of laminar 
flow, A becomes a constant K = k/c. The problem 
has been solved in the context of conduction in a wall4 
Using the correspondence of Eq. (5.4), the solution for 
q is found to be 

p = 3.36 dKX/& (5.15) 

The heat flux at the wall is obtained by integrating the 
total heat input in a slab of thickness q perpendicular 
to the flow. We write 

f&F(x) = f S a cUof3dy = ; cU&, 2 (5.16) 
0 

For B. = 1, this equation becomes 

F(x) = 0.560 k&o/(m) (5.17) 

This result is very close to the exact solution [Eq. 
(3.35)] where the numerical factor is l/G = 0.564, 
an error less than 1 percent. The parabolic approxi- 
mation [Eq. (5.14)] may be used successfully to evalu- 
ate the heat transfer in the case of nonuniform and tur- 
bulent flow. For nonuniform Poiseuille flow between 
parallel walls, the calculation was carried out by 
Agrawal.6 Excellent accuracy is obtained with very 
little calculation. 

In the above, we have assumed the flow to be parallel 
to the wall. In some cases, it will be necessary to take 
into account the convective term in the direction per- 
pendicular to the wall. In this case, the equation for 
the temperature field becomes 

ug + ZJ 2 = ;[A(x,y) $1 (5.18) 

The total diffusivity A may be a function of the two 
coordinates x and y. The equation may be reduced to 
the same form [Eq. (5.1)] by using a transformation 
introduced by von Mises. This transformation re- 
places the independent variable x and y by x and the 
stream function #. This function satisfies the relations 

u = a*/ay, v = -b#/dx (5.19) 

and is constant along the streamlines. Eq. (5.18) be- 
comes 

@/ax) = @/a#) ]uA @V&Q I (5.20) 

Note that the quantity uA is in general a function of 
both independent variables x and $J. This introduces a 
difference with Eq. (5.1). However, the variational 
method is still applicable, as can be seen by considering 
the conduction analogy. In this analogy, the variable 

x represents the time and tc/ is a space coordinate. Eq. 
(5.20), therefore, may be interpreted as a one-dimen- 
sional equation for transient heat conduction in a 
medium whose thermal conductivity is a function of both 
time and location. The variational methods which 
have been established in Ref. (4) are valid for this case. 
The dissipation function becomes an explicit function 
of time and the same Lagrangian Eq. (5.11) are ap- 
plicable. 

In three-dimensional flow with axial symmetry, a 
stream function also exists. It is easily shown that an 
equation of the type of Eq. (5.20) may be derived from 
the temperature field. In this case, the function uA is 
replaced by uAr2, where r is the distance to the axis of 
symmetry. By this equation, it is possible to calculate 
the heat transfer in a circular duct, taking into account 
the streamwise variation of the velocity field due to the 
entrance conditions. A case where Eq. (5.20) is im- 
mediately reducible to the form of Eq. (5.1) appears 
when the quantity uA is the product of function of x 
and a function of #. 

~4 = fi(4fi(#) (5.21) 

The factor fi(x) may then be brought to the left side 
and absorbed into a new independent variable x’ re- 
lated to x by a quadrature 

S 
x xf = fi(x)dx (5.22) 

Eq. (5.20) becomes 

be/ax’ = (b/d+) [f&4) (ww) 1 (5.23) 

The conduction analogy for this case corresponds to a 
medium of constant specific heat and thermal con- 
ductivity dependent on the one-dimensional coordinate 

#. 

Appendix I 

Consider the equation 

(U/K)yY(bf?/bX) = b20/by2 (I-1) 

Our purpose is to find a solution of the type 

0 = 4(a) (1.2) 

with a dimensionless variable 

r] = Byx’ (1.3) 

Coefficient B and exponent r must be determined by 
substitution in the differential Eq. (1.1). We find 

(ar/BK)y rflx-7-l _ _ - zr (1.4) 

Let us make this equation an exact differential by 
writing the identity 

(ar/BK)yY+l xmyR1 E --q’-* (1.5) 

or 
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(ar/BK)y’+l x-'-1 z _sB’-lys+x’(8-‘) (1.6) 

This will be an identity if 

y + 1 = S - 1, -r - 1 = r(s - 1) 
ar/& = -sBs-’ (1.7) 

We derive 

r= -l/s, B = (a/Ks2)*‘* (1.8) 

with 

s=y+2 (I.9 

Hence 

7 = y[a/(s2KX)]i’* (1.10) 

The exact differential Eq. (1.4) 

-s$-1 = 4”/$’ (1.11) 

has the integral 

9’ = CZ exp (-II*), 9 = Ci + W.(s> (1.12) 

where 

S ‘) L(V) = ew (---ll"Mrl K.13) 
0 

If we choose 

1 
cl=1 c,=----=_ 1 

I*(a) I [(s + o/s1 
(I. 14) 

the temperature is given by 

0 = 1 - (LhwIw~ + WI]) (1.15) 

and corresponds to a unit step boundary condition- 
i.e., @ = 1 for y = 0 and x > 0. 

Appendix II 

Table of 1(v) = 
s 0 

’ e-v%& 

0 

E 
0.3 
0.4 

::: 

:.: 
0:Q 
1.0 

I(v) r) I(v) 

O.CiQQ 
0.1996 
0.2979 
0.3937 
0.4849 
0.5695 
0.6454 
0.7109 
0.7650 
0.8075 

1.1 
1.2 
1.3 

::; 

::; 

::: 
Co 

0.8389 
0.8609 
0.8751 
0.8838 
0.8886 
0.8910 
0.8922 
0.8927 
0.8928 
0.8929 

Appendix II’1 

We must evaluate the integral [Eq. (3.21)] 

f(x) = &Zs; _t+F(x - f)d[ (111.1) 

with 

F(x) = { kl U’(4/3) 11 i%& 

Introduce the change of variable 

(111.2) 

FIG. 10. Path of integration in 
complex s plane for Eq. 111.5. 

Z(x - 4) = 2 (111.3) 

Eq. (IIJ. .) becomes 

f(x) = KOoeaJ” 

with 

k 3 al . 

K = r(4/3) SK z 3 s 

m e-f2 
_ a2 

0 qi 
(111.4) 

The integral in the last expression is evaluated by 
contour integration (Fig. 10). Consider the closed 
contour OABO in the 4th quadrant of the complex 
plane. We may write 

io-lzd, = s,,+ s,,+ JBO$2Z = 0 
OABO q/z 

(111.5) 

On the infinite quarter circle AB the integral &B 
vanishes. Hence 

S 
m w_Lz dz = 

S 
--im ie-fE 

0 42 
-p (111.6) 

0 

Changing the variable z by 

s = _,$ = ,+/as’ 

the integral [Eq. (IIIS)] becomes 

S 
-_ico . 

ze-fe co 

_ dz = 

qi 

eir/6 S 
e--zr 

0 
_ dz’ = ?/‘I’ i (111.7) 

0 lyz' 0 

Hence 

K = eW6 - (111.8) 
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