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Summary 

The Lagrangian thermodynamic equations of irreversible 
processes are extended to convective heat transfer. This general- 
ization provides equations for the unified analysis of transient 
heat flow in complex systems comprising solid structures and 
moving fluids in either laminar or turbulent flow. The concept 
of a surface-heat-transfer coefficient is eliminated from the formu- 
lation. The theory is developed along two different lines. In 
one approach a new concept referred to as the “trailing function” 
is introduced. It represents the surface-heat-transfer properties 
and may be evaluated by quite simple but remarkably accurate 
variational procedures. The method of “associated fields” is also 
generalized to convective phenomena. The second line of ap- 
proach extends to convective heat transfer the thermodynamic 
concept of entropy production for both laminar and turbulent 
flow. The theory amounts to an extension of the thermody- 
namics of irreversible processes to systems for which Onsager’s 
relations are not valid. 

(1) Introduction 

I N HEAT-FLOW PROBLEMS of solid structures which are 
in contact with moving fluid at the boundaries, it has 

been customary to carry out the analysis by introducing 
the concept of a surface-heat-transfer coefficient. How- 
ever, the general inadequacy of this concept in connec- 
tion with boundary-layer heat transfer has been 
demonstrated.’ The need, therefore, arises for a general 
theory which does not require the use of such a concept. 

It turns out that the Lagrangian methods of heat- 
transfer analysis are very well suited for this purpose. 
They were presented in Refs. 2 to 4 and are based on 
principles of nonequilibrium thermodynamics. 

It is possible to develop the theory along two different 
lines. 

One way is to represent the surface heat transfer by 
means of a new concept referred to here as a trailing 
function. It represents the surface temperature dis- 
tribution due to a unit rate of heat injection in the 
moving fluid at a point PO of the surface while thermal 
insulation is maintained elsewhere. It is essentially in 
the nature of a two-point influence function represent- 
ing the temperature at point P due to a heat injection 
at PO. The trailing function yields a complete descrip- 
tion of the heat-transfer properties if we assume that 
the principles of superposition are valid. It is applica- 
ble to laminar as well as turbulent flow. In the context 
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of linearized perturbation theory we may look upon the 
local heat injection as producing temperature changes 
which result not only from the heat flow but also from 
the variations of the velocity field, the turbulence, and 
other factors, such as viscosity, thermal conductivity, 
and physical chemical equilibrium. 

Transition from laminar to turbulent flow originating 
in the heat transfer itself does not obey the principle of 
superposition. A method for analyzing this case is 
briefly discussed in Section (4). 

The concept of a trailing function is introduced and 
discussed in Section (2). In Section (3) it is shown that 
remarkably accurate variational methqds may be used 
for its evaluation. In Section (4) the general Lagran- 
gian equations are formulated for the transient-heat- 
flow analysis of general systems which include moving 
fluids. The reciprocity properties known as Onsager’s 
relations5 are not verified for these equations. This is a 
reflection of the fact that the present formulation con- 
siders a perturbation from an initial state which is one 
of motion instead of one of static equilibrium. From 
a mathematical viewpoint, this is equivalent to stating 
that the problem is not self-adjoint. 

Section (5) deals with the associated-field method 
which was introduced and developed earlier3 for the 
purpose of simplifying the formulation of two- and 
three-dimensional problems. It is shown that this 
method is applicable to systems including convective 
heat transfer and that the associated field itself satis- 
fies a “reverse flow” theorem. 

A second and quite different line of approach 
is followed by a direct extension of the Lagran- 
gian thermodynamics to convective flow. Along this 
line an important result has recently been obtained by 
Nigam and Agrawal,6 who derived a formal expression 
for the dissipation function in the context of laminar 
flow. On the other hand, it is possible to show that the 
thermodynamic definitions of thermal potential, en- 
tropy production, and thermal force are valid for the 
analysis of heat transfer by convection and lead di- 
rectly to a Lagrangian formulation. These thermody- 
namic considerations yield a dissipation function which 
is different from the one introduced by Nigam and 
Agrawal, but coincides with it in some particular cases. 
These results are discussed in Section (6) and are 
further generalized to include the case of unsteady tur- 
bulent flow. The concept of entropy production and 
dissipati& function is applicable to turbulent diffusion. 
Hence, the same Lagrangian equations govern the 
heat flow in complex systems which include both solids 
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and moving fluids in laminar or turbuIent flow. As a 
consequence, it becomes possible to carry out a unified 
analysis of such systems as a whole without explicit 
reference to any surface-heat-transfer properties. 

The thermodynamic implications of this result are 
also discussed. In particular, it is pointed out that the 
Lagrangian equations are applicable to systems for 
which the Onsager relations are not valid. This leads 
to generalizations which reach far beyond the narrow 
field of heat transfer and will be the subject of later 
publications. 

We have also called attention to a generally mis- 
understood aspect of the theory as regards the heat 
generated by the dissipation itself. 

Results presented here were briefly outlined earlier 
in Ref. 11. 

(2) Introduction of the Concept of 
“Trailing Function” 

Consider a solid boundary in contact with a moving 
fluid. The flow may be laminar or turbulent. In the 
latter case fluctuations of the velocity and temperature 
occur around certain average values. It is these 
average values which we shall refer to hereafter as the 
temperature and velocity fields. For the time being let 
us assume that we are dealing with a steady-state 
condition. This means that the average values of the 
temperature and velocity at any given point are inde- 
pendent of time. If there is no heat transfer from the 
solid to the fluid, the temperature of the fluid at the 
boundary is the so-called adiabatic temperature. The 
adiabatic temperature O,(P) at a point P of the surface 
depends on the location of P and is deter-mined by the 
mechanics and thermodynamic of the flow. This is a 
very general concept which has been used extensively 
and includes a great variety of phenomena such as 
convection, thermal conduction, turbulent diffusion, 
heat generated by laminar and turbulent friction, radia- 
tion, and chemical effects. 

If the temperature distribution at the wall is not O,(P) 
but B(P), a heat transfer occurs. This heat transfer 
may be associated with only a slight variation in the 
flow pattern, in which case it is reasonable to assume a 
linear dependence between the heat transfer and the 
temperature variation. We may write this dependence 
in the form of a linear integral relation, 

B(P) = c&(P) - J I&(P’)r(P, P’)dS,J (2.1) 
s 

The quantity fin(P’) is the heat flowing into the solid 
per unit time and unit area at point P’. The element of 
area at point P’ is d&r. The function r(P, P’) con- 
stitutes a generalization of the heat-transfer resis 
tivity-i.e., of the inverse of the surface-heat-transfer 
coefficient. In order to illustrate its physical sig- 
nificance, let us introduce the surface Dirac function 
6(Po, P’). This function is such that 

FIG. 1. Isothermal contours 
for trailing function with heat 
injection at point 0 (schematic). 

and 

~(Po, P’) = 0 for PO # P’ (2.2) 

S ~(Po, P’)d.S,, = 1 
s 

(2.3) 

If we put 
-&(P’) = 6(Po, P’) (2.4) 

it represents a concentrated injection of a unit’s amounts 
of heat per unit time at point PO into the fluid. Intro- 

ducing this expression into the integral relation (2.1) 
we find 

B(P) - &Z(P) = r(P, PO) (2.5) 

This yields the physical interpretation of the function 
r(P, PO) as the surface temperature increment at P due 
to a unit rate of concentrated heat injection into the 
fluid at PO. An example of a trailing function is shown 
in Fig. 1, where point PO is located at 0 and the iso- 
thermal contours correspond to constant values of r. 
It can be said that the heat injection produces a 
temperature trail downstream from the point of injec- 
tion. Therefore, we shall refer to the function r(P, PO) 
as the “trailing function.” We must remember that 
this definition implies that there is no heat flow through 
the boundary except at point PO. 

Attention is called to the important property that for 

a moving fluid the trailing function is not symmetric- 
i.e., 

r(P, P’) # r(P’, P) (2.6) 

Until now we have assumed the temperature to be 
stationary. In the case of unsteady heat flow the 
trailing function should, strictly speaking, contain the 
time explicitly even for steady fluid motion. This de- 
pendence on time would then represent a time lag be- 
cause of the finite velocity of convection. However, 
the numerical discussion which was given in Ref. 1 in- 
dicates that the time-dependent term in the heat-flow 
equations may generally be discarded. Therefore, in 
most practical problems the time scale of heat conduc- 
tion and of fluid velocities is such that the time lag may 
be neglected. The trailing function r(P, P’) may then 
be considered to represent an instantaneous steady 
state. The same considerations may be applied to the 
case where the fluid motion is unsteady. In this case 
the trailing function which again results from a succes- 
sion of instantaneous steady states is a function of the 
time t and Eq. (2.5) is replaced by 

B(P) - f?,(P) = r(P, P’, t) (2.7) 
The dependence of the trailing function on time is de- 
termined by the time-dependent velocity pattern of the 
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fluid or, more precisely, by the linear perturbation of 
the combined fluid dynamics and thermodynamics of 
the unsteady flow. 

Attention is called to the extreme generality of the 
concept of a trailing function within the framework of 
linear perturbation. The unperturbed adiabatic tem- 
perature field includes the effect of heat generation in 
the fluid by the motion itself because of the viscosity. 
The perturbation in the temperature field produced 
by a heat injection at the wall is theoretically the result 
of very complex interaction between a number of 
variables, which include the change in velocity field, 
viscosity, and diffusivity. From the analytical view- 
point this involves the solution of the linearized per- 
turbation problem for the coupled Navier-Stokes and 
thermal-chemical field problems. 

The analytical difficulties are enormously simplified 
if the variations of velocity field, viscosity, and dif- 
fusivity are neglected. This procedure is justified in a 
large category of problems, since-in the case there is 
no variation of the heat generation in the fluid-the 
perturbation of the temperature field is governed by 
equations of the type considered in Ref. 1, which do not 
involve heat sources in the field. 

Problems where the heat transfer causes a transition 
from laminar to turbulent flow are, of course, not open 
to treatment by perturbation techniques. A possible 
procedure for this case will be discussed in Section (4). 

(3) Evaluation of the Trailing Function by 
Variational Methods 

We shall derive some simple examples of the trailing 
function for a homogeneous incompressible fluid. Let 
us take first the case of two-dimensional flow. The x 
axis is on the solid surface, and the two-dimensional field 
is in the x, y plane and independent of the z coordinate. 
Heat is injected into the fluid at a unit rate per unit 
length of the z coordinate. 

This is equivalent to stating that the boundary con- 
dition for the temperature field at the wall is 

- K@e/~Y) lpo = w (3.1) 

where k is the thermal conductivity of the fluid and 
S(x) a Dirac function. According to the conduction 
analogy, l* 6l l1 Eq. (3.1) is replaced by 

- [k’(bB’/dy)]ll=o = 6(t) (3.2) 

where k’ = K = k/c is the thermal conductivity of the 
analog model. In addition, we introduce an analog 
heat capacity c’, and an analog temperature 8’ = 60. 

Eq. (3.2) may be interpreted as stating that a unit 
amount of heat per unit area is injected into a wall at 
the time t = 0 and allowed to diffuse freely in the y 
direction normal to the surface. In the particular case 
of constant value of the thermal conductivity k’ and 
heat capacity c’ per unit volume, the exact solution of 
this problem is well known. The temperature obeys 
a Gaussian distribution 

0’ = (l/c’)mexp [-c’yz/(4k’t)] (3.3) 

Note the property that 

S 
m 

cWdy = 1 (3.4) 
0 

which corresponds to the condition that a unit amount 
of heat has been injected. The wall temperature is 

0 20 ‘ = 2/ l/(&k’t) (3.5) 

Replacing the variables corresponding to the analogy- 
viz., replacing k’ by K, c’ by U, 0’ by ctJ, and t by x, we 
find 

0, = l/&lJkcx (3.6) 

This represents the trailing function for injection of 
heat at the origin x = 0. If points P and P’ are located 
at the coordinates x and E, the trailing function for this 
case is 

r(P, P’) = l/&r Ukc(x - s$) (3.7) 

The solution for the trailing function may be obtained 
by a variational procedure in the conduction analogy. 
Let us assume that the temperature due to a unit heat 
injection is approximated by 

8’ = e,' [i - (y/g) 1 (3.3) 

The condition that the total heat content is unity is 

PQ 

J- c'e'dy = 1 
0 (3.9) 

or 8 u) ’ = 3/(2c’q) 

There is only one unknown p. The thermal potential is 

v = (3/5) [l/(c’a) 1 (3.10) 

The heat flow is 

H = 1 - (3/2)(~/q) 

The dissipation function is 

D=& S 
Q 

if2 dy 
0 

+ i/2(y3/q3) (3.11) 

3 1 42 =__- 
35k’ q 

(3.12) 

The thermal force is zero, since the wall is assumed to be 
insulated. Hence, the Lagrangian equation is 

(aIrlap) + @D/@) = 0 (3.13) 

or 

2@ = 7k’/c’ (3.14) 

By integration 

p = l/7(k’/c’)t (3.15) 

Substituting in Eq. (3.9), we find the wall temperature 

1 

em’ = 1/(28/9)c’k’t 

Comparing with the exact value [Eq. (3.5)] we see that 

the constant & = 1.772 is replaced by 2/2s/9 = 
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1.765. Hence, the error of the variational method is of 
the order of slide-rule accuracy. With the trailing func- 
tion (3.7) the integral (2.1) giving the wall temperature 
due to an arbitrary distribution of heat injection be- 
comes 

If the field is approximately two-dimensional, the wall 
temperature 8(x, z) varies slowly in the direction z per- 
pendicular to the flow. We may use the same one- 
dimensional trailing function and write the approxima- 
tion 

S 
5 

B(x, 2) = e(x,z) - 
iL(F,z)dE - 

drUck(x - [) 
(3.17) 

If the temperature variations in directions perpendicu- 
lar to the flow are very rapid, we must consider a two- 
dimensional trailing function. 

Thus function could be measured or evaluated by 
analytical methods. Under the particular assumption 
that no change occurs on the velocity field or in the in- 
ternal heat generation, the temperature field is governed 
by the equation 

This equation follows immediately from results dis- 
cussed previously.’ The parameter A is the sum of the 
thermal diffusivity K = k/c and the turbulent diffusiv- 
ity -i.e., 

A = K + r = (k/c) + e (3.19) 

The flow is assumed to be in the x direction with a 
velocity distribution V(y). The total diffusivity A 
may be a function of y and z. 

The injection of-a unit rate of heat flow at the origin 
is expressed by the condition 

- [k(b~/~y) ly=o = GM4 (3.20) 

The corresponding conduction analogy is expressed by 
the equation 

c’ g = ; (6’:) + ; (k’$) (3.21) 

This expresses the transient heat conduction in the half 
plane y, z (y > 0). The correspondence of variables in 
the analogy is 

t = x, c’ = U(y), k’ = A (y, z), 0’ = co (3.22) 

In the analogy the boundary condition (3.20) becomes 

- [k’(bB’/by) Iv=,, = 6(@(z) (3.23) 

This expresses the instantaneous injection of a unit 
amount of heat at the origin, and when t = 0, in the half 
plane. If we assume a uniform laminar flow of constant 
velocity U, we must solve the time-dependent analogy 
for c’ and k’ constant. The solution of this problem is 
known.7 The temperature is 

FIG. 2. Isothermal contours 
for trailing function with lam- 
inar to turbulent transition 
(schematic). 

0’ = [1/(2?rk’t)] exp {-(yz + z2)d/(4k’t)j (3.24) 

Replacing the variables t, k’, 0’, and c’ according to 
Eqs. (3.22) and putting y = 0 yields the trailing func- 
tion 

r(x, z) = [1/(2?rkx)] exp [ - (z2U)/(4Kx)] (3.25) 

The isothermal contours of this trailing function are 
shown in a qualitative way in Fig. 1. If there is a region 
of turbulent transition, the trailing function will be 
represented by contours which exhibit an important 
modification characterized by a faster lateral spread of 
the diffusion process and a more rapid drop of tem- 
perature along the direction of flow. This is illustrated 
in Fig. 2. 

Similar methods are applicable for nonparallel stream- 
lines as pointed out earlier.‘, l1 

(4) Trailing Functions and the Lagrangian 
Formulation 

We shall now write the general equations for the 
transient heat flow of a body in the presence of a moving 
fluid by introducing the trailing function. The un- 
known heat-flow field H (Ref. 2) is represented by the 
generalized coordinates qr and is written 

H = 5 Hip, 

The vector fields Hi are suitably chosen configurations. 
The temperature 13 is derived from Eq. (4.1) by the re- 
lation 

ce = -divH = - kqrdivHj (4.2) 

writing 

c& = -div H, (4.3) 

we have 

e = 2 Oiqi (4.4) 

For purpose of clarity we shall assume that c and k are 
only functions of the location. However, the method is 
applicable to more general cases. The thermal po- 
tentia12 is the volume integral* 

S Ce2dT = 5 2 afjqiqj (4.5) 
7 

The dissipation function D (Ref. 2) is here evaluated 

* We shall use throughout the symbol $ dr for a volume in- 

tegral and s dS for a surface integral. 
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for the solid alone without including any surface-heat- 
transfer dissipation. We write 

The thermal force2 is defined by the temperature dis- 
tribution at the solid boundary. If we denote by 19(p) 
the unknown temperature at point P of the solid 
boundary, the generalized force corresponding to qi is 
the surface integral 

Qi’ = s, W) 

where H,(P) indicates the 

@L(P) dS 

b¶c p 
(4.7) 

normal component of H 
taken positively inward at point P. The integral is 
extended to the boundary S of the solid, and dSp is 
the element of area at point P of this boundary. Con- 
sider Eq. (2.1) 

B(P) = t&(P) - 
s 

&(P’)r(P,P’)d& (4.8) 
s 

where dS,p is the element of area at point P’. Sub- 
stituting in Eq. (4.7) yields the expression of the gen- 
eralized thermal force 

Qt’ = - j-L? &(P’)r(P,P’)dSpdSpr + 
a 

S 0 (P) dHn(p) dS ~ a P (4.9) 

S &li 

From Eq. (4.1) we may write 

H,(P) = ii Hin(P)qi 

X&(P) = 2 Hila(P)4c 

(4.10) 

with Hi, (P) equal to the normal component of HI at 
point P taken positively inward. Substituting Eq. 
(4.10) in Eq. (4.9) we find 

with 

Qi’ = - i ci& + Qi (4.11) 

cij = ss H,,(P)H,,(P’)r(P,P’)dSpdSp~ (4.12) 
s s 

Qi = S, ea(P)H,n(P)dSp (4.13) 

We now apply the general Lagrangian equations2 to the 
thermal system. These equations are 

(bV/%a) + (a)/@3 = Qi’ (4.14) 

Substituting expressions (4.5)) (4.6)) and (4.11) in these 
equation yields 

2 aijqj + k (baj + ct,)aj = Qi (4.15) 

The coefficients al5 and bar in these equations are sym- 
metric- i.e., 

% = aji, b,, = bjl (4.16) 

However, in general, for the case of a moving fluid 

cy # Gr (4.17) 

As seen from Eq. (4.12) the nonsymmetry of cij is due 
to the nonsymmetry of the trailing function (2.6). The 
inequality (4.17) indicates that if we consider the ther- 
mal system from the thermodynamic viewpoint, On- 
sager’s relations do not apply. This is, of course, due to 
the fact that we are dealing with the thermal perturba- 
tion of a system which is not in equilibrium in its initial 
state but is already in motion. In other words, we are 
dealing with the perturbation of a thermodynamic sys- 
tem in the vicinity of a nonequilibrium state. 

The fluid motion at the boundary may be a function 
of time, in which case the trailing function is of the 
form of Eq. (2.7). It is a function of time as well as of 
the coefficients cij. We write 

c%,(t) = 
ss 

H,,(P)H,,(P’)r(P,P’,t)dSpdSpt (4.18) 
s s 

We must then solve the differential Eqs. (4.15) with 
coefficients which are functions of time. These equa- 
tions generalize to a moving fluid the case of time- 
dependent boundary heat transfer already considered 
previously. 

We have mentioned the possibility of using the pres- 
ent equations to analyze problems where the heat trans- 
fer induces a laminar-to-turbulent transition or strongly 
influences the transition point. One possible method 
which suggests itself naturally is the trial-and-error 
procedure. We may assume a tentative position for the 
transition line of the trailing function illustrated in 
Fig. 2. The temperatures are then computed, and a 
new transition point is derived from the result. The 
procedure is repeated until the calculated temperatures 
correspond approximately to the location of the transi- 
tion point. 

(5) Associated Flow Fields Generalized to 
Convective Heat Transfer 

The equations of Section (4) contain unknowns 
which we have referred to as ignorable.” 3 They cor- 
respond to flow fields which are divergence-free and, 
therefore, do not affect the temperature field. If we 
are not interested in the heat flow but only in the tem- 
perature distribution, it is of considerable interest to 
eliminate these ignorable coordinates from the problem 
right at the start. Methods to accomplish this were 
briefly indicated in Ref. 2 and developed in considerably 
more detail in Ref. 3. The method introduces the con- 
cept of the associated field by which a temperature 
field, depending on a certain number of generalized co- 
ordinates, is associated with a corresponding vector 
flow field. This associated field is derived from the 
corresponding temperature configuration by methods 
developed in Ref. 3, including variational techniques. 

We will show here that this associated field method 
may be extended to problems of heat flow in the presence 
of a moving fluid. Let us represent the heat flow field 
as 
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H=Hg+F 

where F is the divergence-free part 

div F = 0 

Let us represent the temperature field by 

(5.1) 

(5.2) 

e = 2 ecqa (5.3) 

and the flow field by 

H = 2 &pi + 2 Fjpi 

in which the two terms of Eq. (5.1) are 

(5.4) 

F = 2 Fifj (5.5) 

The temperature is related to the flow field by relation 
(4.2), and F represents the divergence-free part. Hence, 
the equations 

div oi = --cBc (5.6) 

div Fj = 0 (5.7) 

The coordinates fj represent the ignorable coordinates. 
Eq. (5.6) is, of course, not sufficient to determine the 
vector field Oa once the temperature configuration 0% 
has been chosen. However, this may be done if we im- 
pose the extra condition that the coordinates qr and fj 
be uncoupled in the final equations. 

Since 0 is independent of fj, these coordinates do not 
appear in the thermal potential [Eq. (4.5)]. The 
coupling can only occur through the dissipation func- 
tion and the term Qt'. 

The dissipation function in the solid is written 

(58 

The thermal force Qt’, as derived from Eq. (4.9), is 

Qi' = - 5 ciz4z - i cij_!i + ~s~.(P)@i,(PW~ 

(5.9) 

with 

ciz = ss ean(P>ezn(P’>r(P,p’>dSpds,, 
s s 

(5.10) 

The subscript n, as above, indicates the normal com- 
ponents of the vectors OS and F, with a positive inward 
direction. There is a similar expression Qj’ correspond- 

ing to the ignorable coordinates fi. The differential 
equations separate into two groups: 

@V/d& + (bD/bqi) = Qi’; dD/bfj = Qj’ (5.11) 

The first group of Eqs. (5.11) may be written 

(5.12) 

The coefficients are given by Eqs. (5.10) and by 

UfZ = 
S 7 

ceiez dr, 

bij = S 7 

@@z dr 

(5.13) 

We also define a thermal force Qj associated with the 
adiabatic wall temperature e=(P), 

Qi = ~B,oB,,(P)dS, (5.14) 
s 

The coordinates f, are coupled to the coordinates p1 in 
equations through the coefficients bti and I+. The 
question is to chose the fields Of in such a way that 
these coupling terms vanish-i.e., such that 

bi, + ccj = 0 (5.15) 

To this effect we put 

O( = -k grad #( (5.16) 

This involves a flow potential tic which was introduced 
in Refs. 2 and 3. By Eq. (5.6) we find a relation be- 
tween the flow potential IJ$ and the temperature field 
8 0 

div k grad 9% = c& (5.17) 

The physical significance of this equation is obtained by 
considering tii to represent a steady-state temperature 
produced in the thermal system by a heat-sink dis- 
tribution c&. 

The sink distribution cei does not define the temper- 
ature uniquely unless we add a boundary condition. 
We will now show that this missing boundary condition 
is furnished by the condition [Eq. (5.15)] that the co- 
ordinates pc and ft be uncoupled. Let us substitute in 
expression (5.10) and (5.13) for bij and cij the flow po- 
tential, using relation (5.16). We find 

(P)Fi,(P’)r(P,P’)dSpdSp, (5.18) 

In this equation grad, indicates the normal component 
of the gradient chosen positively outward. We may in- 
tegrate the volume integral by parts. Because the 
divergence of the field Fj is assumed to be zero, we find 

Eq. (5.18) then becomes a surface integral 



574 JOURNAL OF THE AEROSPACE SCIENCES-MAY 1962 

bi, + cij = s A ,(P’) Fj,(P’)dSP (5.20) 
S 

with 

A,(P) = S K grad, vW'bG'J"Wp + VW"> 
S 

(5.21) 

For condition (5.15) to be verified for any divergence- 
free field Fjn we must have 

A,(P) = 0 (5.22) 

This furnishes the boundary condition required to de- 
termine the flow potential $c corresponding to the tem- 
perature Bc. The associated flow fields are defined from 
Eq. (5.16). Under these conditions the ignorable co- 
ordinates fj do not appear in Eqs. (5.12). The boundary 
condition (5.22) may be written in a different form 
which brings out its physical significance. We may in- 
terchange P and P’, since this is simply a change of 
notation. Condition (5.22) then becomes 

#,(P) = - Jsk grad, $,(P’)r(P’,P)dS,/ (5.23) 

Furthermore, 

K grad, #,(P’) = &(P’> (5.24) 

represents the rate of heat inflow at point P’ where a 
temperature field $( exists in the solid. Hence, the 
boundary condition 

up> = - S I?,(P’)r(P’,P)d.s,t (5.25) 
S 

Comparing with Eq. (2.1), we see that #( is a tempera- 
ture field satisfying Eq. (5.17) in the solid, and a 
boundary condition such that the adiabatic temperature 
is zero and the trailing function is r(P’,P). Note that 
this is not the trailing function of the actual fluid but 
that obtained by interchanging points P and P’. 

Reverse-Flow Theorem 

It is possible to state a reverse-flow theorem for the 
trailing function in the case of incompressible flow with 
constant heat capacity. The proof of this theorem is 
given in Appendix I. It states that if r(P,P’) is the 
trailing function associated with a given fluid velocity 
field and r(P,P’) the trailing function associated with 
the field obtained by reversing the sign of the velocities, 
we have the property 

r(P,P’) = r(P’,P) (5.26) 

The total diffusivity field A is assumed to be the same in 
both cases. 

By applying relation (5.26) it is possible to write the 
boundary condition (5.25) as 

#g(P) = - s, &(P’)ii(P,P’)dS,~ (5.27) 

Hence, when the reverse-flow theorem is applicable, the 
associated field is the steady-state flow produced by a 

distribution of sinks cer in the solid, while the velocity 
field of the fluid at the boundaries is reversed. 

Variational Principle for the Associated Field 

The associated field O1 may be evaluated directly for 
a given distribution et by a variational principle stated 
as follows 

S e,,(P’)r(P’,P)dS,~ = 0 (5.28) 
S 

This expression is made to vanish under the constraint 
(5.6). The principle is a generalization of a similar one 
developed in Section 4 of Ref. 3 for the case of a surface- 
heat-transfer coefficient. It is immediately derived by 
the same method. 

(6) The Generalized Lagrangian 
Thermodynamics of Convective Heat Transfer 

Consider the temperature field in an incompressible 
fluid. The temperature 8 satisfies the equation 

div (k grad 0) = c(be/bt) + cuograd 8 (6.1) 

The fluid velocity is denoted by U. This equation is 
applicable to both solid and fluid. In the solid the 
thermal conductivity k(x, y, z, 0) and the heat capacity 
c(x, y, z, 0) per unit volume may be functions of the 
location and the temperature, while in the fluid k(8) 
and c(0) are functions only of the temperature. 

We have shown that the Lagrangian equations 

@IrlW + (do/%&) = Q1 (6.2) 

govern the conductive heat transfer, and by introduc- 
tion of the trailing function are also applicable to sys- 
tems including a moving fluid. 

Let us move one step further and examine the 
possibility of deriving the same Lagrangian Eqs. (6.2) 
for convective heat transfer governed by Eqs. (6.1). 
The question has already been considered by Nigam 
and Agrawal,6 who introduced a formal definition of the 
dissipation function. We will show that it is possible 
to use a different definition of the dissipation function 
based on the thermodynamic concept of entropy produc- 
tion. Furthermore, the result may be extended to sys- 
tems which are less restricted than Eqs. (6.1), such as 
those including unsteady turbulent flow. 

Let us first consider the more restricted case gov- 
erned by Eqs. (6.1). The heat-flow vector H is related 
to the temperature by the constraint equation L9 

h= S cd0 = - div H (6.3) 

and the thermal potential is 

s s 9 

V= dr cede 
7 

(6.5) 

These equations are the same as those introduced pre- 
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viously by this writer.2 The dissipation function, how- 
ever, is different and is defined by the relation 

D=f 
s 

.; (B - hU)2& (6.5) 

The volume integrals over 7 are extended to the com- 
plete system composed of the solid components and the 
moving fluids. The thermal force Qi is also defined as 
previously by the virtual work of the temperature ap- 
plied at the fluid or solid boundaries. 

The proof of Eq. (6.2), using the above definition, is 
developed in Appendix II for the more general case of 
turbulent flow. This result leads immediately to some 
very illuminating and fundamental considerations with 
respect to the thermodynamics of irreversible processes. 
The link with thermodynamics is brought out by using 
the law of heat conduction in the form 

-kgradB = l!t - hu (6.6) 

Substituting this expression into the dissipation func- 
tion (6.5), we derive 

L&i S k (grad e)2 d7 (6.7) 
7 

Let us assume that the absolute fluid temperature is 
8 + T,, where T, is a reference temperature and 0 repre- 
sents a temperature deviation which is small relative to 
T,. As shown by Meixner,s the rate of entropy produc- 
tion per unit volume is 

R = (k/TT2)(grad e)2 (6.3) 

Hence, the expression 2Tr2D represents the rate of en- 
tropy production in the volume of fluid. Eq. (6.8) was 
also discussed by this writer in the more general context 
of thermodynamics and thermoelasticity [Ref. 9, Eq. 
(7.19) 1. Attention is called to the omission of the com- 
mon factor l/T, in the definition of the quantities V, D, 
and Q for problems concerned exclusively with heat 
flow. 

The important fact emerging from these remarks is 
the generality of the Lagrangian Eqs. (6.2). We are 
dealing here with a system whose initial unperturbed 
state is not a state of thermodynamic equilibrium but a 
state of motion. The Lagrangian equations are valid 
for the perturbation of this nonequilibrium process 
provided the function D is defined as proportional to the 
increment of entropy production due to the perturba- 
tion. 

The reader will note that this example involves 
principles which are more general than those of the 
thermodynamics of irreversible processes as they stand 
at this time, since the latter concerns systems which are 
perturbed in the vicinity of an equilibrium state. 

Moreover, it can be seen that the Onsager reciprocity 
relations will not be verified when the dissipation func- 
tion is defined by,the more general Eq. (6.5). For ex- 
ample, if the field is expressed linearly in terms of 
generalized coordinates, the dissipation function will be 
of the form 

with 

bij’ # b,r’ (6.10) 

Hence, the matrices in the differential Eqs. (6.2) will 
not be symmetric. The nonapplicability of the Onsager 
reciprocity relations for systems including convection 
has already been studied in Section (4) by an entirely 
different, more general procedure, using the concept of 
a trailing function. 

Another point of considerable interest lies in the 
possibility of generalizing the Lagrangian approach to 
the case of turbulent heat transfer. The differential 
equations for the temperature field become 

div [CA grad f?] = c(be/dt) + cuagrad e (6.11) 

The parameter A@, y, z, t, 0) is the total diffusivity as 
defined above [Eq. (3.19)]. It may be a function of the 
location, the time, and the temperature. The mean 
velocity field is denoted by u. The Lagrangian Eqs. 
(6.2) are then applicable to heat-transfer problems 
governed by Eqs. (6.11)) provided the dissipation func- 
tion is defined as 

DE; S 7; (H - hu)2 dr (6.12) 

This expression is proportional to a quantity which in- 
cludes the entropy production associated with turbu- 
lent diffusion. The analytical derivation of this result 
is given in Appendix II along with its generalization to 
anisotropic conductivity and nonisotropic turbulence. 

An important consequence of these results is the 
possibility of applying the Lagrangian Eqs. (6.2) to 
composite systems made up of solids in the presence of 
unsteady fluid flow under conditions of either laminar 
or turbulent flow. The solid part is then represented 
by putting u = 0 in the equations in the solid region. 

By this token a unified analysis can be made of 
transient heat flow in the combined fluid-solid system. 
We should also draw attention to a sometimes mis- 
understood point regarding the additional term due to 
the heat generated by the fluid friction and, more 
generally, by the dissipation itself. The particular 
nature of this effect was discussed by the writer in con- 
nection with thermoelasticity.rO When introduced in 
the equations, it must be considered as a given source 
external to the system and, therefore, independent of 
the coordinates subject to the variational process. 

As pointed out in Ref. 3, inclusion of a given source 
is readily accomplished by writing the constraint Eq. 
(6.3) as 

h = -divH+ S 
t 

wdt 

where w is the rate of heat generation per unit volume 
considered as a given function of time and location. In 
the more general thermodynamics w is a term of the 
second order relative to the unknown variables. It 
may, therefore, be neglected without loss of generality 
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in linear theories such as those for viscoelasticity and 
thermoelasticity summarized in Ref. 10. 

Appendix I 

Reverse Flow Theorem 

Consider a homogeneous and incompressible fluid 
in steady laminar or turbulent flow. The temperature 
field satisfies the equation 

div(ca grad 0) = cu * grad 0 (1.1) 

The total diffusivity may be a function of the coordi- 
nates, and c is a constant. The temperature 6 in the 
same fluid where we reverse the velocity field without 
changing the diffusivity is governed by 

div (CA grad 4) = -cu. grad 8 (1.2) 

From these equations we derive 

0 div (CA grad 0) - 0 div (CA grad 0) = 

cu. (0 grad 0 + e grad 4) (1.3) 

Using the condition of incompressibility this may be 
written 

div(ctltI grad e - CAB grad 8 + ce&) = 0 (1.4) 

The volume integral of this expression may be trans- 
formed into a surface integral over the boundary S, 
leading to the equation 

S (CAB grad, e - cA0 grad, 4 - c&,)dS = 0 (1.5) 
S 

where grad, e and un designate the normal components 
of the gradient and the velocity, chosen positive out- 
ward. If we consider part of the boundary S to be 
made of the interface of solid and fluid, while the re- 
maining part is far enough removed so that 0 vanishes, 
then either e or u, vanishes at the boundary, and Eq. 
(1.5) is written 

S (CAB grad, 0 - c&3 grad, J)dX = 0 (1.6) 
W 

where the integral extends over the fluid-solid interface 
W. 

Assume now that the field 8 is produced by a unit 
rate of concentrated heat injection at the point P’. In 
this case we may write 

CA grad,, 0 = 6(P,P’) (1.7) 

where 6 is a Dirac function, and the value of 8 at the sur- 
face represents the corresponding trailing function 

e = Q,P’> (1.3) 

Similarly, 0 may be chosen to represent the field due to 
concentrated injection at point P is the reverse flow. 
Then 

CA grad, 8 = 6(P,P”); Jj = f(P,P”) (1.9) 

where v is the trailing function in the reverse flow. 
With these functions, Eq. (1.6) becomes 

S s [r(P,P”)G(P,P’) - ,(P,P’)b(P,P”)]dS, = 0 (1.10) 

or 

v(P’,PK) = T(PK,P’) (1.11) 

This establishes that the trailing function for reverse 
flow is obtained by interchanging the points in the 
trailing function for direct flow. 

Appendix II 

We shall establish the validity of the Lagrangian 
Eqs. (6.2) for a system including unsteady turbulent 
flow. Consider the average heat-flow field 

H = H(qlqz . . . qn 2 y z t) (11.1) 

as a parametric function of generalized coordinates qf. 
The field is subject to variations which are virtual and 
expressed by 

(11.2) 

The average temperature 0 is related to H by the rela- 
tion 

s 

9 
h= cde = -div H (11.3) 

0 

In this expression c is the heat capacity per unit volume. 
In the solid it may be a function c(z, y, z, 0) of the loca- 
tion and the temperature, while in the fluid it is a func- 
tion c(e) of the temperature alone. It is important to 
note that this equation which physically expresses 
conservation of energy is intended here as a constraint,. 
It is to be verified not only by the final solution of the 
problem but also by the variations themselves. Hence, 
we also write 

sh = cse = -div 6H (11.4) 

Introduce the variational invariants 

6V = 
S 

de dr 7 
6A = S $ (ti - hu)GH dr 

(11.5) 

In these expressions the total time derivative of the heat 
flow is 

(11.6) 

The total diffusivity due to thermal and turbulent dif- 
fusion may be a function of the coordinates, the time 
and the temperature 

A = A (2, Y, 2, t, 0) (11.7) 

Using the first of Eqs. (11.5) and integrating by parts 
yields 

6V = S 6H. grad t?d r + S Bn.6H dX (11.8) 
* s 
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The law of heat conduction and diffusion is expressed by 

CA grad 0 + $I - hu = 0 (11.9) 

Hence, adding Eqs. (11.5), we derive 

6V + 6A = S on.6H dS (11.10) 
s 

The unit normal (positive inward) at the boundary S 
of the volume r is denoted by n. 

The variational principle [Eq. (ILlO)] may be writ- 
ten in an alternate way by introducing the variations 
6q instead of 6H. We write 

6H = kFaq, 
t 

(II.11) 

Also, from Eq. (IT.6), 

&i/b& = aH/dq, (11.12) 

Hence, we derive the alternate expressions 

with 

s s 8 
V= dr 

7 0 
&de; D=; S .& (iI - hQ d7 

(II. 14) 

In addition, we may write 

S On*6H dS = 2 Q&t (11.15) 
s 

with 

(11.16) 

The surface integrals are extended to the boundary S 
of r. Substituting Eqs. (11.13) and (II.15) into the 
variational principle [Eq. (II.lO)] leads to the La- 
grangian equation 

@V/W + WI&k) = Qi (11.17) 

We have thus extended the validity of these equa- 
tions to unsteady turbulent heat transfer. Extension 

of these results to systems with anisotropic conduction 
and nonisotropic turbulence is immediate by applying 
Eq. (3.15) of Ref. 2 for the dissipation function. In 
this case it becomes 

. . 
D=& S Aij (I?i - hui)(fij - huj) d7 (11.18) 

7 

In this expression AU are the elements of the inverse 
matrix of CAu = kij + Clij where k,, represent thermal 
conduction and lij is the nonisotropic turbulent diffus- 
ivity tensor. 

The above derivation is also valid if the heat gen- 
erated by the fluid friction is included. Both generaliza- 
tions are discussed in Section (6). 
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