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A unified treatment of the mechanics of deformation and acoustic propagation in porous media is 
presented, and some new results and generalizations are derived. The writer’s earlier theory of deformation 
of porous media derived from general principles of nonequilibrium thermodynamics is applied. The fluid-solid 
medium is treated as a complex physical-chemical system with resultant relaxation and viscoelastic 
properties of a very general nature. Specific relaxation models are discussed, and the general applicability 
of a correspondence principle is further emphasized. The theory of acoustic propagation is extended to 
include anisotropic media, solid dissipation, and other relaxation effects. Some typical examples of sources 
of dissipation other than fluid viscosity are considered. 

1. INTRODUCTION 

T HE purpose of the present paper is to reformulate 
in a more systematic manner and in a somewhat 

more general context the linear mechanics of fluid- 
saturated porous media and also to present some new 
results and developments with particular emphasis on 
viscoelastic properties and relaxation effects. 

The theory finds numerous applications in a diversity 
of fields, including geophysics, seismology, civil engi- 
neering, and acoustics. 

A linear theory of deformation of a porous elastic 
solid containing a viscous fluid was developed by this 
writer in 1941 and was applied to problems of consolida- 
tion of a foundation under a given load distribution.1*2 
The medium was assumed to be statistically isotropic. 
In later years, the theory was extended to include the 
most general case of anisotropy for a porous elastic 
solid. 3 

The theory of deformation in a porous viscoelastic 
medium was developed on the basis of the thermo- 
dynamics of irreversible processes4 The results included 
general anisotropy. It was shown that, on the basis of 
Onsager’s relations, it is possible to extend to a visco- 
elastic porous medium the principle of correspondence 
introduced in 1954 by the writer for homogeneous 
solids. The principle states that the equations governing 

* Consultant, Shell Development Company: 
r M. A. Biot, J. Appl. Phys. 12, 155-164 (1941); 12, 42&430 

(1941). 
2M: A. Biot and F. M. Clingan, J, Appl. Phys. 12, 578-581 

(1941); 13,35-40 (1942). 
a M. A. Biot, J. Appl. Phys. 26, 182-185 (1955). 
4 M. A. Biot, J. Appl. Phys. 27,459-467 (1956). 

the mechanics of porous media are formally the same 
for an elastic or viscoelastic system, provided that the 
elastic coefficients are replaced by the corresponding 
operators. 

Equations for acoustic propagation in the elastic 
isotropic porous solid containing a viscous fluid were 
established by adding suitable inertia terms in the 
original theory, and the propagation of three kinds of 
body waves was discussed in detail5 Two other publica- 
tions have dealt with general solutions and stress 
functions in consolidation problems6 and with a discus- 
sion of the physical significance and of methods of 
measurement of the elastic coefficients.’ 

Consolidation theories have also been developed by 
Florins and Barenblatt and Krylov? An acoustic 
propagation theory has been initiated by Frenkel,lO who 
brought out the existence of two dilatational waves. 

The importance of viscoelasticity in consolidation 
problems of clay has been emphasized by Tan Tjong 
Kie” and demonstrated in test results by Geuze and 
Tan Tjong Kie. l2 Special aspects of the consolidation 

5 M. A. Biot, J. Acoust. Sot. Am. 28, 168-178 (1956); 28, 
179-191 (1956). 

“M. A. Biot, J. Appl. Mech. 23,91-96 (1956). 
7 M. A. Biot and D. G. Willis, J. Appl. Mech. 24, 594-601 

119.57). \-- - I. 

* V. A. Florin, Theory of Soil Consolidation, in Russian (Stroy- 
izdat, Moscow, 1948). 

s G. I. Barenblatt and A. P. Krylov, Izvest. Akad. Nauk 
SSSR, Tech. Sci. Div. No. 2, 5-13 (1955). 

lo T. Frenkel. T. Phvs. (U.S.S.R.) 8. 230 (19441. 
l1 Fan Tjong kie, .‘%r&stigatio&on the‘rhe&gical properties 

of clay” (in Dutch wrth English synopsis), dissertation, Technical 
University, Delft, Netherlands. 

la E. C. Geuze and Tan Tjong Kie, The Mechanical Behavior of 
Clays (Academic Press Inc., New York, 1954). 
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problem which do not agree with the elastic theory can 
be explained by the introduction of the more general 
thermodynamic operators of the viscoelastic theory,4 
as further exemplified in the discussion of Sets. 5, 6, 
and 7 of this paper. 

Sections 2 and 3 begin with a general and rigorous 
derivation of the stress-strain relations, which is 
valid for the case of an elastic porous medium with 
nonuniform porosity, i.e., for which the porosity varies 
from point to point. This re-emphasizes the use of the 
particular variables and coefficients introduced in the 
original paper,rv2 and attention is called to the fact that 
some of the papers written in the later sequence are 
formulated in the context of uniform porosity. 

The derivation of Darcy’s law from thermodynamic 
principles, which has previously been briefly outlined,3,4 
is discussed in detail in Sec. 4. 

In Sets. 5 and 6, the writer’s previous thermodynamic 
theory of viscoelastic properties of porous media is 
discussed in more detail and with particular emphasis 
on the physical significance of the operators. 

Section 7 discusses the formulation of the field 
equations and of their general solution in a particular 
case. 

The theory of acoustic propagation developed 
previously for the isotropic elastic medium is extended 
to anisotropic media in Sec. 8, and particular attention 
is given to viscoelasticity and solid dissipation in Sec. 9. 
The term viscoelasticity here encompasses a vast 
range of physical phenomena, involving relaxation, 
which find their origin in physical-chemical, thermo- 
elastic, electrical, mechanical, or other processes of the 
complex fluid-solid medium considered as a single 
system. This generality is provided by the underlying 
thermodynamic theory. It is also pointed out that by 
putting the fluid density equal to zero, we can apply 
all results to thermoelastic propagation in a nonporous 
elastic continuum. This is a consequence of the iso- 
morphism between thermoelasticity and the theory 
of porous media. l3 For similar reasons, the propagation 
equations of Sec. 9 are also applicable to a thermovisco- 
elastic continuum. 

2. STRAIN ENERGY OF A POROUS 
ELASTIC MEDIUM 

The displacement of the solid matrix is designated by 
the components uuz, uy, u,. The components of the 
average fluid-displacement vector are h,, U,, U,. These 
components are defined in such a way that the volume 
of fluid displaced through unit areas normal to the 
x, y, z directions are jU,, jlJ,, jlJZ, respectively, where 
j denotes the porosity. 

We shall use the total stress components of the bulk 
material r+ In earlier papers, we have used components 

iaM. A. Biot, J. Appl. Phys. 27, 24c2.53 (1956). 

aij and u which are related to rij by the equation’* 

Tij=Uij+SijU, 

6ij= 1, i=j, (2.1) 

6ij=O, if j. 

If we consider a unit cube of bulk material, the compo- 
nents aij represent the force applied to the solid part of 
the faces, and u represents the force applied to the fluid 
part of these faces. With pj denoting the fluid pressure, 
we can write 

u=- jpj. (2.2) 

Since we are dealing with a system which is in thermo- 
dynamic equilibrium, the fluid is at rest and pf is 
constant throughout the body.15 

We can define the strain energy of a porous elastic 
medium as the isothermal free energy of the fluid-solid 
system. W denotes the strain energy per unit volume. 
For a volume Q bounded by a surface S, the variation 
of the strain energy is equal to the virtual work of the 
surface forces? : 

0 S 

+FdU,+F,6U,+F,6U,)dS. (2.3) 

In the expression j&S and F&S, the components of the 
forces acting on the solid part and the fluid part of an 
element of surface dS are 

(2.4) 

respectively, where nf denotes the components of the 
outward unit vector normal to the surface. We can 
express these forces in terms of rii and pf by introducing 
relations (2.1) and (2.2). Hence, 

ji=k (Tij+&jjpj)nj, 

F,= 2 6ij jpfnj. 

Introducing these expressions in Eq. ‘(2.3) yields 

-P, ss (nd2e,.+n,6w,+n,Gw,)dS. (2.6) 

s 

r4 See Eq. (2.5) of reference 7. In the original papers,’ we used 
the total stress ~ij and the fluid pressure or represented by the 
notations ~ii and (r. 

r6 Body forces are neglected in the present derivation. 
r8 The boundary S can be thought of not as a physical termina- 

tion of the body but as any closed surface in the body. In this way, 
the surface tension at a physical boundary does not have to be 
introduced. 
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The vector wi is defined as 

wi=f(U+-u$), 

or in vector notation 

(2.7) 

w=f(U-U). (2.8) 

The vector w represents the flow of the fluid relative to 
the solid but measured in terms of volume per unit 
area of the bulk medium. 

We consider now the surface integrals of Eq. (2.6). 
They can be transformed to volume integrals by means 
of Green’s theorem. We write 

2 7,jnjSu&T = 2 ;(+;)dn. (2.9) 
3 

s a 

The coordinates x, y, z are designated by xi. The 
integrand can be transformed as 

Because the total stress field is in equilibrittm, the 
stress must satisfy the condition 

i &rij 
c ---g=o. 

2 

Hence we can write 

(2.11) 

ii d 
C ~(rd&i)= r25csez+ryySey+r,,6e,+r,6y, 

i 
+Tz.&,+~z,6Y,. (2.12) 

We have put 

ez=&Jdx, yZ= (%/a~)+ (du,/dy) 

eff =%A$4 yv= (~4~x)+ (dudaz> (2.13) 

ez=%/az, -rZ = @uday> + (%/ax>. 

The components 

(2.14) 

represent the strain tensor of the porous solid. 
Similarly, the second surface integral of Eq. (2.6) 

can be transformed to a volume integral : 

- s/ (n~wz+n,6w,+n,62er,)dS= s/s 6[dQ, (2.15) 

s a 

where 

!r = - c @w&x> + taw,/ay> + (a%/az)] 
= div[f(u- U)], (2.16) 

or 
p= -divw. 

From Eqs. (2.6), (2.9), (2.12), and (2.15), we derive 

The variable { was introduced by this writer in the 
original paper,’ where it was designated by the symbol 
0. It was defined by the same general Eq. (2.16) as 
valid for nonhomogeneous porosity. The same variable 
was also used in some later work4+ in the context of a 
medium with uniform porosity. For uniform porosity, 
we can write Eq. (2.16) as 

{=fdiv(u-U). (2.19) 

This variable is obviously a measure of the amount of 
fluid which has flowed in and out of a given element 
attached to the solid frame, i.e., it represents the incre- 
ment of fluid content. 

The strain energy W must be a function of { and of 
the six strain components defined by Eq. (2.13). 
Hence, W is a function of seven variables : 

W = W(ez,ey,e,,y2,yy,yz,~). (2.20) 

6W must be an exact differential. Hence, 

7 zz=aW/d~z, 7yz=aw/a~z 
’ 7 yy=aW/aey, r,,=aw/ay, 

TZZ=aW/des, 7zy=aw/ayz 
pj=aw/ay. 

(2.21) 

These relations, obtained earlier by different meth- 
ods,1,3s5,7 lead immediately to the formulation of the 
general stress-strain relations in a porous medium. Since 
W is the isothermal free energy, the stress-strain rela- 
tions (2.21) include phenomena which depend on the 
physical chemistry of the fluid-solid system and others 
which are expressible by means of thermodynamic vari- 
ables such as interfacial and surface tension effects. 

3. LINEAR STRESS-STRAIN RELATIONS 

In an isotropic medium, the strain energy is a function 
of four variables, the three invariants II, Iz, 13 of the 
strain components and the fluid content [ : 

w = w v1,12,J3,r). (3.1) 

We are restricted here to linear relations. Equations 
(2.21) are valid for either linear or nonlinear properties. 
It is readily seen that expansion of W to the third degree 
leads to quadratic expressions for the stresses with 
eleven elastic constants. The case of nonlinear materials 
shall be analyzed in a forthcoming publication. In the 
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present analysis we shall consider only the linear Another useful form of the equations is obtained by 
relations. using the so-called “effective stress,” defined as 

For a linear material, the strain energy is quadratic, 
and we must include only the linear and quadratic 
invariantsll 

II= e,+e,+e,= e, 

Iz=e,e,+e,e,+e,e,-_((y,?+y,?+y:). 
(3.2) 

In this case, it is easier to use the invariant 

Ii= -4I2= y22+yy2SyZ2-4eyes-4e,e,-4e,e,, (3.3) 

instead of 12. We derive the quadratic form for W : 

2W=He2+pIz’-2Ce[+M{2. (3.4) 

The reason for using a negative constant -2C and a 
factor 2 is one of convenience in later equations. 
Substituting this expression in the general Eq. (2.21), 
we obtain the stress-strain relations 

T,,=He-2p(e,+e,)--Cl 

7 YU=He-2~(es+ex)-CS. 

Tag= He-2p(e,Se,)-Cp (3.5) 

TYZ = P-Y z, 7zx=/J-ry 

TZY = PLY@ Pj= -Ce+M{. 
By putting 

Tdj’= Tij+8ijpf a (3.11) 

This represents the portion of the total stress which is 
in excess of the local fluid pressure. 

With these effective stresses, the relations (3.9) 
become 

r2i- (l--)pf=2pe,+Xe 

ryyl- (1-0L)pf = 2pe,+Xe 

r,,‘- (1--(Y)pf=2pez+Xe (3.12) 

7$/S’= P-rz, Tz3’ = PLy2l 

72?/ ‘=Px, P= (lIM)pf+ae. 

For an incompressible fluid and an incompressible 
matrix material, we have shown’*7 that (Y = 1 and M = ~0. 
In that case, the fluid pressure does not appear in 
relations (3.12). 

In abbreviated notation, Eqs. (3.12) are written 

Tij’- (1 --(Y)8ijPf = 2pLe;j+GijXf? 

l= (l/M)pj+ae. 
(3.13) 

H=X,+2/+ C=aM, X,=X+a2M, 

we see that relations (3.5) become 

(3.6) 

The interest in the use of the effective stress compo- 
nents rij’ lies in the experimental fact that slip and 
failure properties of porous and granular media are 
dependent primarily upon the magnitude of these 
components alone. In this connection, a very useful 
viewpoint was introduced by Hubbert and Rubey,18 
who pointed out that the average effective stresses can 
readily be determined by conditions of static equilib- 
rium of these forces with the total weight and the 
“buoyancy” associated with the field pj considered 
continuous. This provides a simple and practical 
procedure for the approximate analysis of failure in 
porous media when the distribution of pore pressure is 
considered. 

rz2= 2pe,+X,e--cYMS_ 

ryy= 2pe,+X,e--cYM[ 

rzz= 2pe,+X,e--aM{ (3.7) 

TY+= Puyx, ~zx=PLyzI, Tzy = PYZ 

pj= -iXMe-t-MS. 

In abbreviated notation, they are also written 

Tij=2CLeij+8ij(X,e-_MT) 

pj= -c&e+M{. 

We can obtain an alternate form of 
substituting the value of f as a function 

rxz+opj= Ge,+Xe 

ryy+@ j= 2pe,+Xe 

78s+apf = Ge,+he 

‘TYZ = wz, ~zz=ruY, 

(3.8) 

Eq. (3.7) by 
ofpjande: 

(3.9) 

TZY = PYa, C= (l/M)pf+ae. 

In abbreviated notation, they are written 

Tij+8+pf = 2j.&j+G~jAf? 

P= (l/M)Pj+cue. 
(3.10) 

I7 A. E. H. Love, A Treatise on the Mathematical Theory of 
Elasticity (Dover Publications, New York, 19441, 4th ed., pp. 
43, 102. 

The above equations and elastic coefficients were 
derived by a different procedure in previous work. 
The stress-strain relations in the form of Eq. (3.9) 
were obtained in 1941, and a discussion of the signif- 
icance of elastic coefficients such as M and a! was 
presented.r In later work, ‘3s the equations were re- 
written in the form of Eqs. (3.7) and (3.12), and 
methods of measurement of the elastic coefficients were 
further discussed. 

For a “closed system,” i.e., a system in which the 
pores are sealed, we must put {=O. Equation (3.7) then 
shows that in this case, 

K,=X,+&=H+ (3.14) 

is the bulk modulus for a closed system. On the other 
hand, by putting pj=O in Eq. (3.12), we see that for 
this “open system,” 

K=X+& (3.15) 

laM. King Hubbert and W. Rubey, Bull. Geol. Sot. Am. 70, 
11.5-166 (1959). 
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represents a bulk modulus which is the inverse of the 
“jacketed compressibility.” This corresponds to a 
test where a fluid pressure is applied to a jacketed 
specimen, while the pore fluid is allowed to escape 
freely through a tube. 

From the analogy between a porous medium and a 
thermoelastic solid,13 we conclude that the coefficients 
X, and X correspond to the adiabatic and isothermal 
Lam6 coefficients for a nonporous medium, respectively. 
It is of interest to examine the restrictions on the coeffi- 
cients imposed by the nonnegative character of the 
strain energy W. We can write expression (3.4) in 
the form 

2W=K,e2-2CeS_+M~2+~~[(e~-e,)2+(e,-e,)2 

+(ez-e,)21+~(r,2+r,2+r,2). (3.16) 

By putting e={= 0, we see that we must have 

PYO. (3.17) 
By putting 

YZ=~y=Yt=O 
and 

ez=ezl=ez, 
we are left with 

2W = K,e2- 2Ce{+Mc2. ‘(3.18) 

This expression is never negittive if 

K,>O, M>O, K,M-CZ>O. (3.19) 

Thus, the four conditions (3.17) and (3.19) are both 
necessary and sufficient. We note that 

K,M-C2= (Kc-a2M)M. (3.20) 

From Eqs. (3.14), (3.15), and (3.4), we derive 

K,--K=X,--X=a2M. (3.21) 
Hence, 

K,M-C2= KM. (3.22) 

Therefore, the necessary and sufficient conditions for 
W to be nonnegative are that 

~20, M>O, K=X+@O. (3.23) 

The significance and methods of measurement of the 
various coefficients have been discussed in detail 
earlier.1*7 

It was shown in reference 7 that (Y can be measured 
in two different ways, and that its value lies within 
the range f<ar< 1. We shall briefly recall some of the 
more important equations relating to the coefficients., 
The jacketed compressibility is 

K= l/K= l/(x+$). (3.24) 

The unjacketed compressibility 6 is 

6= (I-(Y)K. (3.25) 

With a measurable “coefficient of fluid content” y 

TABLE I. Equivalence of symbols. 

Reference 1 (1941) Later publications 

for the unjacketed test, the coefficient M is given by 

M= l/[y+& (a2/K)]. (3.26) 

For some types of materials, the coefficient y can be 
expressed in terms of the porosity j and the fluid 
compressibility c as 

r=f(c-6). (3.27) 

These coefficients for some sandstones have been 
measured by Fatt.lga20 

Different coefficients have been used by this writer 
in the past. As an aid to the reader, Table I shows the 
equivalence of various notations used in the earlier 
work. 

In some of the publications,3a5’6 stress-strain relations 
for uniform porosity were also written in the form 

aij=2Neii+&j(Ae+Qe) 

u=Qe+Re, 
(3.28) 

with 
t=divU=e- (l/f){, fu= -p,. (3.29) 

These equations can be written 

7ij=uij+6ii~=2!Veii+6ii[(A+2Q+R)e 

- (Q+R) k/f>1 (3.30) 

p,=- (Q+R)(e/'f)e+UVf%. 
Comparing these equations with Eq. (3.7), we derive 
relations between the two sets of coefficients: 

N=p, A=X+M(a-j)2, 

Q=j(a-j)M, R= j2M. (3.31) 

The coefficient H of Eq. (3.5) can be written 

H= A+2N+2Q+R=X,+2P, (3.32) 

which is the same as that used in the theory of acoustic 
propagation.5 

For a material which is isotropic about the z axis, i.e., 
transverse isotropic, the stress-strain relations become 

i- xz= 2Ble,+Bz(e,+e,)+Bse,+BsT 

7 ul/=2Ble,+B2(e,+e,)+B,e,+BsT 

72,=B4e,+B3(e,+e,)+B7S (3.33) 

7w=B57z, ~m=B5~r,, rxy=&*l. 

pr=Bs(eZ+ey)+B7e=+BsP. 

IQ I. Fatt, Bull. Am. Assoc. Petrol. Geologists 42, 1924-1957 
(1958). 

2o I. Fatt, J. Appl. Mech. 26, 296-297 (19.59). 
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The eight elastic coefficients are chosen in order to 
constitute a symmetric matrix and satisfy at the same 
time the geometric symmetry. 

For orthotropic symmetry, i.e., when the three 
coordinate planes are planes of elastic symmetry, the 
stress-strain relations become 

proportional to the rate of entropy production. Per 
unit volume of bulk material, this dissipation function is 

T ZZ= A Ile,+A lze,+A l&-tMlf 

ryy= A1ne,fAzze,+il26e,+MzT 

~,~=Al6e,+A26e~+A66e~+tM35 (3.34) 

7w=A447z, 7zz=A55~y, 712/=-‘166Yz 

PI=MI~,-I-Mz~,+M~~,+M~_. 

These equations contain thirteen elastic coefficients. 
Finally, in the most general case of anisotropy, the 
stress-strain relations are written 

D= &T7 (rate of entropy production), (4.2) 

where T,= absolute temperature of the undisturbed 
system. It can be written as a quadratic form with the 
rate of volume flow as variables : 

The viscosity of the fluid is denoted by 7.2’ 
It is important to emphasize here that in applying 

the thermodynamics of irreversible processes, we start 
with a thermodynamic system under conditions of 
equilibrium in the initial state. The initial state in 
this case is chosen to be one in which no pressure 
gradients or gravity forces are acting on the fluid in 
the pores, The system is then perturbed by the applica- 
tion of a disequilibrium force. This force must be 
expressed in a form which is conjugate to thevolume 
flow coordinate w. The components of this force are 

The matrix of twenty-eight coefficients Aij, Mi, and 
M is symmetric about the main diagonal. The stress- 
strain relations (3.35) can be written in abbreviated 
notation by the introduction of quadruple indices for 
the coefficients Aij and double indices for the coefficients 
M,. We put 

A$‘“=A$“=A #vii, Mij= Mji. (3.36) 

With these coefficients, Eq. (3.35) takes the form 

xi= - (dpsldxi)+p/gi, (4.4) 

where pf is the mass density of the fluid, and g; the 
components of the gravity acceleration. In vector form, 
we can write 

X = - gradpf - pf gradG. (4.5) 

The quantity G is the gravitational potential per unit 
mass. Because we are dealing here with a linear theory, 
we have assumed that the application of gravitational 
forces introduces density changes in the fluid which 
are “small of the $rst order.” Therefore, the fluid 
density pf in Eq. (4.4) can be put equal to the mass 
density in the initial state. Under these circumstances, 
the principle of superposition is applicable. Hubbert’s 
analysis22 of Darcy’s law introduces a total fluid 
potential which, under the assumption just stated, can 
be written 

9= WP~)+G. (4.6) 

With this potential, we can write Eq. (4.4) in the form 

X= -pf grad+. (4.7) 

Applying a general procedure used earlier by this 
writer, we find that Onsager’s principle in this case is 
equivalent to the relation 

The various stress-strain relations discussed above for 
anisotropic media were derived earlier in equivalent 
form in the context of uniform porosity.3 

4. DARCY’S LAW AND ITS THERMODYNAMIC 
FOUNDATION 

@D/a&, aD/dti,, aD/atiJ = X= -pf grad& (4.8) 

In matrix form, 

In the preceding sections, we have dealt with equilib- 
rium phenomena or thermostatics. We shall now 
examine an entirely different aspect of the problem-the 
mechanics of flow through porous media. This brings 
into play the thermodynamics of irreversible processes 
and the Onsager relations. The rate of flow of the fluid 
is defined by the time derivative of the volume flow 
vector : 

aw/at= (ti,,tiy,tia). (4.1) 

It is possible to write a dissipation function which is exp’rcLt’y’~ $2 M. Kmg Hubbert, J. Geol. 48, 785-944 (1940). 

-(odd way = [E] [ii; ;;; z] [$I. (4.9) 

21 Attention is called to the general character of the dissipation 
function [Eq. (4.3)]. It is valid for slip flow or other more complex 
interfacial effects and does not require that 7 be introduced ,. . * 
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This form of the generalized Darcy’s law has previously We need two constants ,81 and PZ to define the first- 
been derived4 for the particular case f= const. order change of permeability in an initially isotropic 

The symmetric matrix medium. The above equation need not be restricted to 

r11 r12 731 
the first order if ,f& and & are not considered as constants 

[rij]= r12 '722 723 

[ 1 (4.10) 
but as functions of the volume change e: 

r31 r23 r33 ih=ih(e>, B2=/32(e>. (4.19) 

represents a flow resistivity, whereas its inverse In this way, it seems possible to express a considerable 

~~ij~+=[bij-J=[~~~ ii, ifi], (4.11) 

variety of porosity dependence by a close analysis of 
the change of geometry of the pores. 

An equation such as (4.18) for anisotropic media can 
easily be written, as previously shown.4 In the case of 

also symmetric, represents a “permeability matrix.” transverse isotropy, for instance, such relations involve 

Introducing the latter, we can write Eq. (4.9) as six coefficients. 

[;I= - ~v,v)[;$ a;; ifi] FE]. (4.12) 
5. THERMODYNAMICS OF VISCOELASTIC 

BEHAVIOR-THE CORRESPONDENCE 
PRINCIPLE 

For the particular case of an isotropic medium, 

kll= kzz= ks3= k 

klz=k31=k23=0, 

and Eq. (4.12) becomes 

General stress-strain relations for isotropic and 
anisotropic viscoelastic media have previously been 

(4.13) 
derived by this writer from the thermodynamics of 
irreversible processes .24 They were expressed in a form 
which brings out the complete isomorphism between 
theories of elasticity and viscoelasticity. It follows from 

aw/at= -k ~$f/q) grad& (4.14) 
this property that equations valid for the linear theory 
of elasticity (with linear boundary conditions and time 

which is Darcy’s law in the form expressed by Hubbert. independent constraints) can immediately be extended 

It can also be written to viscoelasticity by the substitution of time operators 

aw/at= (k/v) gradjf- (k/T)Pf gradG. (4.15) 
for the elastic coefficients. In order to emphasize the 
generality of this isomorphism, we have referred to it 

The quantity k is the usual “coefficient of permeability” 
as the c&respondence primiple and developed in more 

of the medium. Clearly, the symmetric matrix [k:J 
detail its applications to various areas, such as the 

represents a generalization of this coefficient. 
theory of plates, wave propagation, and dynamics.25,26 

For the case of isotropy, the dissipation function 
Certain general theorems were also derived by combin- 

is given by 
ing the correspondence principle and variational 

2D= (v/k) (tiz2+ti:+ti2). (4.16) 
methods in operational form. 

The validity of the correspondence principle for 

It is of interest to consider the possible relationship 
between the permeability and the deformation of the 
porous medium. This aspect has been discussed earlier4 
in connection with viscoelastic properties and in the 
less general context of homogeneous porosity. 

The porosity matrix represents a tensor analogous 
to a stress. If we start with a medium initially isotropic, 
the permeability after deformation will be 

kii= kSij+Akij. (4.17) 

viscoelastic porous media is self-evident in this writer’s 
formulation of viscoelasticity for porous media.4 This 
formulation was based on the thermodynamics of 
irreversible processes. 

If the system is initially in thermodynamic equilib- 
rium, we consider that the strain components, the 
stresses, and the change in fluid pressure represent 
small deviations from that state of equilibrium. In a 
great many cases, such deviations will be governed by 
linear laws, and the Onsager reciprocity relations will 

The permeability increments to the first order will be 
be valid. 

related to the strain components by relations analogous 
Several important points should be stressed regarding 

to the stress-strain relations as in an isotropic medium : 
the type of phenomena considered in this departure 
from equilibrium in order to clarifv what is meant h&e 

Ah= 2Ple,+P2e by “vis>oelasticity.” 

A&= 2Plev+P2e 
(4.18) 2rM. A. Biot, J. Appl. Phys. 25, 1385-1391 (1954). 

A&= 2PleZ+P2e 26 M. A. Biot, in Proceedings Fourth Mid-Western Conference 

~23=hz, Ak31=Pl'yy, Akl2=h.' 

on Solid Mechanics, Purdue University, 1955, pp. 94-108. 
2sM. A. Biot, Deformation and Flow of Solids, IUTAM Col- 

83 Equation (80) of Hubbert’s paper in reference 22. 
loquium, Madrid, 1955, edited by R. Grammel (Springer-Verlag, 
Berlin, 1956), pp. 251-263. 
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We are considering only the local effect of the fluid 
pressure. The flow induced by the pressure gradient is 
treated as a different phenomenon. This point was 
discussed in Sec. 4 in connection with the thermo- 
dynamic derivation of Darcy’s law and does not 
require further elaboration at present. 

A second point is that, in formulating the viscoelastic 
properties, we have assumed the hidden inertia forces to 
be negligible. This excludes, for example, the inertia 
effects due to the motion of small particles representing 
hidden coordinates. This assumption, however, is not 
essential, and we shall indicate below what modifica- 
tions must be introduced when such hidden inertia 
forces are taken into account. 

A third point to be stressed refers to the extreme 
generality of the phenomena which are encompassed 
by the term viscoelasticity. Its meaning in the present 
context far exceeds the narrow concepts of the purely 
mechanical models usually associated with the word. 
The derivation of the stress-strain relations from 
thermodynamics is purely phenomenological. The two- 
phase fluid-solid aggregate is considered as a single 
thermodynamic system. This is in contrast with the 
procedure of dealing with the “dry” solid and the 
Auid as two separate entities, each with its own proper- 
ties. Such artificial separation is incorrect because of 
the important role played by the surface forces at the 
fluid-solid interface in the pores. In the case of gels, 
the interfacial surface tension contributes significantly 
to the over-all rigidity, as pointed out many years ago 
by this writer.’ Because of the large area of contact of 
fluid and solid, such interfacial effects should play an 
important role in porous media. In general, they are 
the result of certain equilibrium configurations of ions 
and molecules which involve electrical fields and 
physical-chemical interactions. Such configurations are 
represented by “hidden coordinates.” When disturbed 
from equilibrium, they evolve toward a new state 
with a certain time delay or relaxation time. There may 
be a finite number or a continuous distribution of such 
relaxation times, as represented by a relaxation spec- 
trum. Such effects are included in the thermodynamic 
treatment of viscoelastic behavior developed by the 
writer.4 Other effects involved here are exemplified by 
the behavior of a crystal in equilibrium with its solution. 
Under stress, this equilibrium is disturbed. Some areas 
of the crystal enter into solution, and precipitation 
occurs on others. The rate of deformations will depend 
not only on the stress but also on the rate of diffusion 
in the solvent, giving rise to a relaxation spectrum. 
Another type of phenomenon included here is the 
thermoelastic relaxation. This is due to differential 
temperatures arising in the solid and the fluid in the 
pores when stress is applied. Because of the thermal 
conductivity, such temperature differences tend to 
even out, but with a certain time lag. This gives rise to 
a thermoelastic relaxation spectrum. Attention is 
called to the difference between this type of thermo- 

elastic dissipation and that occurring in a homogeneous 
solid. The latter is also included in the general thermo- 
dynamic theory and depends essentially on the strain 
gradient. The formulation of this case is quite different 
and was developed earlier.13 The viscoelastic effects 
might also result solely from certain physical properties 
of the fluid itself independent of any interaction with the 
solid. Such is the case, for instance, for the propagation 
of sound in water containing solution of certain salts. 
Equilibrium concentrations of the various molecular 
species in solution are sometimes sensitive to fluid 
pressure with an associated time lag and relaxation 
effect. These are but a few examples illustrating the 
enormous range and variety of phenomena included in 
the present theory. 

The viscoelastic and relaxation properties which we 
have just discussed are obtained by replacing the elastic 
coefficients by operators. Applying this correspondence 
principle to Eq. (3.5) for the isotropic medium, we 
derive 

7 zz= H*e-2p*(e,+e,)-CC*% 

7 urr=H*e-2p*(ez+e,)-C*{ 

T#~= H*e-2p*(e,+e,)-C*l (5.1) 
* TTys=p 72, * 7sz=/J Yy, TX!/ = /J”Yz 

pf = -C”efM*{. 

The operators are of the form 

H*=P J m H(r) 
-dr+H+PH’ 

0 p+r 

cl”=P I 
m /J(r) 

-dr+p+PJ 
Jo P+r 

c*=p J * C(r) 
-dr+C+pC’ 

0 p+r 

(5.2) 

M”=p 
/ 

* M(r) 
-dr+M+pM’. 

0 p+r 

The operator p is the time differential 

p= d/dt. (5.3) 

The operational Eq. (5.1) can be considered as relating 
Laplace transforms of stress and strain variable. For 
instance, if these Laplace transforms are 

s * srzo= e-ptTrr(t)dt 
0 

(5.4) 

/ 

x) 

.el= e+c(t)dt, 
0 

etc., the first Eq. (5.1) can be written 

Zrz.= H*Ce- 2~“s (e,+e.)+C*&? (5.5) 
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or tation. We shall consider, for example, the sixth of 
rz2= H*e-2p*(e,+e,)+C*{, (5.6) Eq. (5.1) 

by simply dropping the symbol 2. 
rz_U=EL*yz, (6.1) 

If the variables are harmonic functions of time, we 
can write 75z and rZzeiwt, ex=e,eiwt, etc., where rz2, e,, 

which represents a response to pure shear. This relation 
does not involve the pore pressure. It would govern, 

etc., are complex amplitudes. Equation (5.1) then f or example, the relation betmieen torque and twist in a 
represents the relations between the complex ampli- material such as clay. We assume the operator to be 
tudes, when we put 

p=iw (5.7) lJ*=vP/(P+f% (6.2) 

in the operators. This shows that putting P=O yields 
stress-strain relations for very slow deformations, 
whereas p= w corresponds to very fast deformations. 

It is of interest to point out a difference between 
the case of homogeneous and porous media with 
isotropic symmetry. As we have pointed out,27 the 
use of the correspondence principle for homogeneous 
isotropic media is a consequence of the geometric 
symmetry. On the other hand, for isotropic porous 
media, the symmetry of the operational matrix of 
Eq. (5.1) is a consequence of Onsager’s relatiops. Hence, 
the correspondence principle for isotropic porous media 
invokes the laws of the thermodynamics of irreversible 
processes. The variable 7 in the operators represents the 
relaxation constants of the hidden degrees of freedom. 
We have shown from thermodynamics that they are 
real and positive.lv4 This, however, assumes that inertia 
forces are not significant in the hidden degrees of 
freedom. For extreme ranges of frequency, or in some 
exceptional cases, this assumption may not be justified. 
For example, a fluid may contain small air bubbles, 
and resonance may occur with their natural frequency 
of oscillation in the ultrasonic range. In such a case, 
the hidden degrees of freedom represented by these air 
bubbles give rise to complex conjugate values for 7. 

For anisotropic media, the stress-strain relations are 
formally identical with those discussed in Sec. 3 for the 
elastic case, except for the replacement of the elastic 
coefficients by the operators. This was previously 
discussed in more detail.4 By the correspondence 
principle, the stress-strain relations (3.37) become 

In this case, we can write Eq. (6.1) as 

Ye’ (l/ll7+l/rlP)72z/* (6.3) 

A constant stress of unit value applied at t=O is 
represented by 

By the rules of the operational calculus, the correspond- 
ing strain as a function of time is 

YE= (lll?7+ml(o. (6.5) 

The quantity qr is equivalent to an elastic shear 
modulus, whereas 7 represents a viscosity. The time 
dependence of yz is represented in Fig. 1. The response 
is that of a so-called Maxwell material represented by a 
mechanical model of a spring and dashpot in series 
(Fig. 2). 

Another type of behavior is illustrated by the operator 

p*= up”, (6.6) 

with 0 <s < 1. We derive 

yz= (l/aP*)Tzy, (6.7) 

and for a constant stress (6.3) applied at t=O, 

Ye= [t*/ar(l+s)ll(O. (6.8) 

The typical time dependence is shown in Fig. 3 (curve 
a). It is easily shown that the operator p8 is a particular 
case of the more general expression (5.2). From the 

(5.8) 

The operators Aij*pY, Mij*, and M” are of the same form 
as Eq. (5.2), and they are governed by the same 
symmetry relations (3.36) as the elastic case. 

Y 

6. PHYSICAL SIGNIFICANCE OF THE OPERATORS 

The physical significance of the operators can be 
illustrated by some simple examples which bring out 
the flexibility and generality of the operational represen- 

27 M. A. Biot, Proceedings of the Third U. S. National Congress 
on Applied Mechanics (American Society of Mechanical Engi- 
neers, New York, 1958), pp. 1-18. 

t 

FIG. 1. Creep law represented by Eq. (6.5). 
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FIG. 2. Dashpot and spring in series, representing the operator 
(6.2) (Maxwell element). 

known definite integral*s 

J 

cc 
Ys-’ 

--dy=* 

0 1+y s&r’ 
(6.9) 

we derive 
sins3r 

~*=apS=a--- 
a p 

--r%ldr. (6.10) 
a i 0 p+r 

This corresponds to a spectral distribution2g 

sinsr 
/J(r) = u----+-1. (6.11) 

a 

The sum of the Eqs. (6.5) and (6.8) yields a time- 
dependent creep law of a very general nature which 
covers both the short-range fast primary creep and the 
long-range steady-state secondary flow (Fig. 3, curve b). 

We shall now turn our attention to the creep laws 
which involve the pore pressure. We consider the case 
of isotropic stresses : 

r= 72*= ryy= 7za. (6.12) 

We can then write 

T= (H*-4p*/3)e-C*l 

pf= -C*efM*{. 
(6.13) 

Under these conditions, we can perform a number of 
“thought experiments.” For instance, we assume that a 
stress r= -9, and a fluid pressure pf are applied 
suddenly at time zero, and we evaluate the values of e 
and { as a function of time. This corresponds to the 
so-called unjacketed test previously discussed, when a 
uniform hydrostatic pressure pf is applied throughout 
the solid matrix and the fluid in the pores. In the present 
case of viscoelasticity, it is a thought experiment 
because the fluid pressure is assumed to appear instanta- 

Q Ch. J. de la Valle’e Poussin, COWS d’Analyse Injinitesimele 
(Gauthiers Villars, Paris, 192.5), Vol. II, p. 75. 

29 As pointed out in an earlier paper,27 this is a particular case 
of the problem represented by the integral equation 

Its solution was given by Fuoss and Kirkwood” and further 
discussed by Gross3r The solution is 

f(r)= (l/2&) lii [F(rfie)--F(r--ie)]. 

3o R. M. Fuoss and J. G. Kirkwood, J. Am. Chem. Sot. 63, 
385-394 (1941). 

a’ B. Gross, Mathematical Strzccture of the Theories of Viscoelasti- 
cities (Hermann & Cie, Paris, 19.53). 

neously throughout the body and thereby to eliminate 
the additional time lag arising from the seepage of the 
fluid flowing through the boundary. In principle, the 
fluid must be thought of as being fed directly or 
generated inside the pores. Another possibility is to 
consider a test specimen which is small enough so that 
the time lag due to seepage is negligible relative to the 
time constants of relations (6.13); whereas, on the 
other hand, its size is still sufficient in relation to the 
pores for the statistical behavior to be valid. 

This unjacketed test experiment was discussed 
earlier for the case of an elastic matrix,’ and the 
following relations were considered : 

e= -Spf 

P=rPf, 
(6.14) 

where 6 is the unjacketed compressibility, and y is a 
coefficient of fluid content. For a viscoelastic matrix, 
the coefficients 6 and y must be replaced by operators 
6* and y* : 

e= -6*pf 

i-=r*p,. 
(6.15) 

In some problems, it may be justified to neglect the 
time lags of the operators 6* and y* and to assume that 
the relations (6.14) for the elastic matrix are applicable. 

We have also pointed out that if the matrix material 
is constituted by elements of an elastic isotropic solid, 
the coefficient y can be expressed by relation (3.27), i.e., 

r=f+V, (6.16) 

which introduces the fluid compressibility c and the 
porosity f. In this case, 6 represents the compressibility 
of the matrix material itself. If we desire to take into 
account the time lags in the compressibility of both 
fluid and solid, we write 

r*=f(c*--s*>. (6.17) 

Y 

(b) 

(a) 

FIG. 3. (a) Creep law represented by Eq. (6.8); (b) Creep law 
represented by the sum of Eqs. (6.5) and (6.8). 
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FIG. 4. Spring dashpot model repiesenting the interaction of 
elasticity of the solid and fluid viscosity around areas of grain 
contact. 

As noted above, even in the fluid alone, time lags 
may occur between pressure and volume. A possible 
cause of such effects is the relaxation of equilibrium 
concentrations of various chemical species in solution 
in the fluid. This phenomenon, sometimes referred to as 
bulk viscosity, will be reflected in the time constant 
contained in the operator c*. The effect of air bubbles 
on damping in the fluid can also be included in the 
operator c* (see Sec. 5). We should also point out an 
earlier remark that the resonance of such bubbles at a 
certain frequency can be taken into account by includ- 
ing the inertia forces of the hidden coordinates. In this 
case, the correspondence is still valid, but the form of 
the operators is different. Similar considerations apply 
to the inclusion of bulk viscosity and relaxation in the 
solid matrix material and can be expressed by a suitable 
operator. 

Another thought experiment which can be considered 
corresponds to the jacketed compressibility. In this 
case, the pore pressure is assumed to be zero, and Eq. 
(6.13) is written 

r= (H*-4p*/3)e-C*{ 

0= -C*e+M*P. 
(6.18) 

Eliminating {, we find 
r=K*e, 

with 
K*= H”-4/P/3- (P/M*). 

The jacketed compressibility operator is 

K* = l/K*. 

(6.19) 

(6.20) 

(6.21) 

The stress 7 is applied to a jacketed specimen, while the 
pore pressure is maintained at zero throughout by some 
device which connects the pores directly with an 
outside region of zero pressure. 

By the correspondence principle, it is possible to 
express the operators in terms of the coefficients 
y*, IS*, and K* with the formulas which are valid for 
the elastic case. 

In particular, it will often be justified to approximate 
the operators y* and 6” by elastic coefficients: 

y*=y, 6”=6. (6.22) 

From Eqs. (3.6), (3.25), and (3.26), 

CY*= l--6K” > (6.23) 

M*= l/(-y+&PK*), (6.24) 

C*=a*M*= (1--6K*)/(y+6--62K*). (6.25) 

Also from Eqs. (3.6) and (3.15), 

X*= K”- 2/P/3 

H*=X*+~/A*+~*~M*. (6.26) 
Hence, 

H*=4~*/3+ (~*+y-6)/[~*(~+8)-8~]. (6.27) 

The operators in this case can be expressed in terms 
of only two operators EL* and K*. They can be reduced 
to the spectral form [Eq. (.5.2)] by application of the 
Fuoss-Kirkwood method or by expansion in partial 
fractions. 

We have already pointed out that the viscoelasticity 
operators contain properties which are representative of 
solid viscosity, but which depend also on fluid-solid 
interaction. In such cases, the properties of the solid 
matrix cannot be considered separately from those of 
the fluid. One such type of interaction which is purely 
mechanical in nature is illustrated by Fig. 4. When two 
elastic bodies are in contact and are surrounded by a 
viscous fluid, a force applied in a direction normal to 
the area of contact will tend to squeeze the flow away 
from this area. Because of fluid viscosity, the fluid will 
not move away instantaneously. A time delay, which is 
exemplified by the equivalent spring dashpot model of 
Fig. 4, will be involved. This model corresponds to an 
operator of the form 

K*=Ko+W/($++ (6.28) 

Actually, of course, a more accurate evaluation of the 
interaction of fluid displacement and elasticity would 
yield a somewhat more complex model or a more 
sophisticated operator with a spectral distribution. Such 
effect may be more pronounced for grains containing 
cracks or separated by narrow gaps (Fig. 5). 

We have previously discussed this type of visco- 
elasticity in connection with the effect of wall sponginess 
and micropores. A similar mechanism can also be 
responsible for the viscoelasticity represented by the 
operator p* for pure shear and can be evaluated in 
similar fashion. 

7. FIELD EQUATIONS FOR DEFORMATION AND 
STRESS DISTRIBUTION 

If we include the gravity force pg; b=mass density 
of bulk material), the total stress field must satisfy 
the equilibrium equations 

i dTij 

c --&+pgi= 0, 
I 

(7.1) 
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FIG. 5. Example of general grain geometry with viscoelastic 
behavior of the type idealized in Fig. 4. 

and Darcy’s law for the isotropic medium is written 

CYW/C%= - (K/o) gradpj+p, gradG. (7.2) 

Under the assumption of linearity, as pointed out in 
Sec. 4, the principle of superposition is applicable. 
Hence, the general solution that we are seeking is the 
superposition of a particular solution due to gravity 
forces alone and of another due to other causes. Under 
these restrictive assumptions, we can neglect the 
gravity forces in the present theory and thereby isolate 
that part of the problem dealing with deformations 
resulting from causes other than gravity. 

Equations (7.1) and (7.2) are therefore simplified to 

and 

&ii 
C ,=O (7.3) 

3 

awl&= - (k/v )gradp,. (7.4) 

For an elastic medium with bulk isotropy, the 
stress-strain relations (3.10) are 

rij=2~eij+Gii(X,e--aMI) 

pf= -cuMe+M{. 
(7.5) 

In these equations, we have defined l and e as 

{= - divw and e= divu, (7.6) 

where u is the solid displacement. 
Substituting the values of r<j and Pf [Eq. (7..5)] 

into the Eqs. (7.3) and (7.4), we derive 

2 5 &(peij)+&(h;e-aM[)=O 
3 1 (7.7) 

dw/dt= (k/v) grad(aMe- MC) = 0. 

These are six equations for the six components of the 
unknown vector fields u and w. 

We shall examine the particular case where the 
coefficients p, X,, C-Y, M, and k/q are constants. In this 

case, Eqs. (7.7) become 

pV2u+ b+X,) grade--aM grad{=0 

aw/at= (k/T)Ma grade- (kM/q) grad{. 
(7.8) 

These equations can be written in other equivalent 
forms previously derived’J’ by the application of the 
divergence operator to the second Eq. (7.8). We derive 

pV2ui- (p-l-Xc) grade-cuM grad{=0 

al/at= (kM/q)Vzc- (kMa/v)Fe. 
(7.9) 

Application of the divergence operator to the first 
Eq. (7.9) yields 

(2p+X,)V2e---MV25_=0. (7.10) 

Hence, we can further transform Eqs. (7.9) to 

#u+ (;;;~=g;;;)--Q&gradC = 0 (7. l l) 

C , 

with a constant M, defined as 

or 
M,= M (2p+X,-c+M)/ (2p+Xc) (7.12) 

M,= M(~/J+X)/(~~+X,). (7.12) 

General solutions of these equations were also derived 
and discussed earlier.6 We shall derive them hereafter 
in somewhat simpler form. 

A convenient form of the general solution can be 
obtained with Eq. (7.8). The second equation indicates 
that w must be a gradient. We can write without loss 
of generality 

w=gradp 
and (7.13) 

u= ul-- [aM/ (2p+X,)] grad(p. 

Substituting these expressions into Eq. (7.8), we obtain 

~V2uri- G-l-xc) grader= 0 

( 

a(p KM, kMa 

> 

(7.14) 
grad t--V2~--e1 =O. 

11 11 
We have put 

er= divur. (7.15) 

The first of these equations is the classical form of 
Lame’s equations of the theory of elasticity. The 
general Papkovich-Boussinesq solution of these equa- 
tions is well known: 

ul=grad(~o+r.~1)-[2(2Cl+X,)/~+X,)]~l, (7.16) 

where the scalar tiO and the vector & are general 
solutions of Laplace’s equation 

v2+0= v%lJr= 0. (7.17) 
The vector r is 

r= (x,Y,~. (7.18) 

Note that we can write 

el= - [2~/ GL+X,)] divrlr, Ver=O. (7.19) 
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We consider now the second Eq. (7.14). It implies that 

dp kM, RMa 

dt--v2p= 
-el+C(t), (7.20) 

r 11 

where C(t) is a function of time independent of the 
coordinates. We put 

t kMa 
cp=*+ 

S[ 
-eI+C(t) dt. 1 rl 

(7.21) 

Substituting in Eq. (7.20), we find 

a#/‘&= (k/q)M,V2#. (7.22) 

The general solution for w becomes 

2kaMp t 
w=grad#-- 

nG+xc) s 
grad div#&. ’ (7.23) 

Applying the divergence operator in this expression, 
we derive 

j-= -v2+. (7.24) 

The solution for u is 

CKM kM2a2 rt 
u=u1-- 

&+L 
grad++- 

2pf& I 
grade&. (7.25) 

Because V2er=0, the time integral satisfies Laplace’s 
equation. This term can therefore be absorbed in the 
function& contained in the expression for ur, Eq. (7.16). 
Hence, we can write the general solution 

2/.L+x, OllM 
u=grad(~~+r~~l)-2---_ltl-- 

PcL+XO 2&+x, 
grad+. (7.26) 

In these expressions, $ satisfies the diffusion Eq. (7.22), 
whereas $0 and #r are solutions of Laplace’s equation. 

For anisotropic media, the field equations are 

j d PV 

(7.27) 

For materials with viscoelastic properties, we have 
shown that the field equations are obtained from the 
correspondence principle.4 Equations (7.27) are im- 
mediately extended to viscoelastic media by replacing 
the elastic coefficients by operators. For example, 
Eq. (7.9) for the isotropic medium with uniform 
properties becomes 

p*V2u+ (H*-p*) grade-C* grad{=0 I? ,*, 

Equations for acoustic propagation in a porous 
elastic isotropic solid containing a viscous fluid have 
been developed by this writer.5 They were obtained 
by adding the inertia terms to the consolidation theory. 
A detailed discussion was given of the propagation of 
body waves. These equations in slightly different form 

(q/k) (al/-/at) = M*V2{-C*ve. 
\ 5 ..*“, 32 G. Paria, J. Math. and Phys. 36, 338-346 (1958); G. Paria, 

Bull. Calcutta Math. Sot. 50, 71-76, 169-179 (1958). 

In deriving these equations from relations (7.9), we 
have taken into account the identities 

&*+p*=H*-p* and oc*lM*=C*. (7.29) 

As shown in earlier work,4 the diffusion Eq. (7.22) is 
converted into a generalized operational form 

*(s/k){ = M,*V?-, (7.30) 

where the operator is 

iM,*= (1/H*)(H*M*-C*2). (7.31) 

The general solution corresponding to Eqs. (7.23) and 
(7.26) have also been derived in operational form.4 

In the notation of the present paper, the general 
solutions (7.23) and (7.26) for the viscoelastic case 
assume the operational form 

2k C*u* 1 
w=grad+-A- 

rl H*-#P 
grad div+ 

(7.32) 

u=grad(&+r.clrl)- g$--zgrad#, 
p* 

and { is given by the same Eq. (7.24). 
The functions +O and the vector 41 satisfy Laplace’s 

equation, whereas fi is a solution of the generalized 
diffusion equation 

p(rllk)#= M,*V2+. (7.33) 

Note that $0 and $1 are generally functions not only of 
the coordinates x, y, z, but also of the operator p. This 
will generally be introduced by the boundary conditions 
which are also operational relations. 

The boundary conditions are easily introduced in 
the solution of specific problems. Total stresses or 
pore pressures can be specified at certain boundaries. 
The condition that a boundary be impervious is 
introduced by putting the normal component of w at 
that boundary equal to zero. Also, conditions at the 
interface of solids of different properties are expressed 
by requiring that the total stresses, fluid pressure, and 
solid displacement be continuous at this boundary; 
whereas for w, the condition of continuity applies only 
to the normal component. Consolidation problems 
based on the above results for elastic and viscoelastic 
media have been treated by this writer1r4 and others.32 

8. ACOUSTIC PROPAGATION IN ISOTROPIC 
AND ANISOTROPIC MEDIA 



1495 DEFORMATION AND ACOUSTIC PROPAGATION 

are discussed below and extended to the anisotropic 
medium with an elastic matrix. 

Their further extension to a medium with viscoelastic 
and solid dissipation properties is outlined in the next 
section. 

Attention is called to the immediate applicability 
of the results presented here to acoustic propagation in 
a thermoelastic continuum. When the fluid density pf 
is put equal to zero, the equations become identical to 
those of thermoelasticity, and w plays the role of the 
entropy displacement vector. This follows from the 
analogy between thermoelasticity and the properties of 
porous media derived earlier.13 

The following six equations in vectorial form5 were 
obtained for the six components of the displacements 
uand U: 

NV%+grad[ (R +N)e+@] 

=-$~llu+p,lu)+<(u- U) 

(8.1) 

The density parameters ~11, ~12, and PZZ were discussed 
in the quoted paper.5 The coefficient 6 is 

b = (qlk)f, (8.2) 

where K is the permeability coefficient of Eq. (4.14), 
17 is the fluid viscosity, and j is the porosity. The 
elastic coefficients N, A, Q, R can be expressed in terms 
of CL, X, a,‘M by the relations (3.31). Methods of 
measurement were analyzed in reference 7. 

Expression (8.2) for b is valid for the low-frequency 
range, where the flow in the pores is of the Poiseuille 
type. For higher frequencies, a correction factor is 
applied to the viscosity, replacing it by $J, where F is 
a complex function of the frequency which has been 
evaluated.5 Strictly speaking, a similar correction must 
apply to the density parameters ~11, ~12, and PZZ to take 
into account the departure of the microvelocity field 
from Poiseuille flow as the frequency increases. 

Equations (8.1) have recently been applied to an 
analysis of the effect of a discontinuity surface on the 
propagation.33z34 

Using the variable w instead of U, we shall discuss 
here a system of equations which are equivalent to 
Eq. (8.1) for the case of uniform porosity. 

We shall first consider the low-frequency range. In 
this case, the components of the relative microvelocity 
field in the pores are determined by the vector w: 

v,=all&+a12ti,+a13tiz 

v,= a&,+a22ti,+a232i?o (8.3) 

vs=a31tb,+a32ti,+a33tiz. 

The notation tij designates awj/&. The coefficients aij 
depend on the coordinates in the pores and the pore 
geometry. 

The kinetic energy of a unit volume of bulk material 
is given by 

T=gpl(~,2+11Ly2+~~2)+apf 

sss 

[ (&+vz)z 

cl 

+ (z&+v,)~+ (zi,+vJ2]d~. (8.4) 

In this expression, pf represents the mass density of the 
fluid, and pr the mass of solid in the unit volume of 
bulk material. 

The volume integral is extended to the total volume 
0 of fluid in the pores. We consider the term 

cl 

= 3Pf sss (ti,2+2Q,v,+v,2)dB. (8.5) 

n 

We can write 

3Pf 
J/S 

7_iz%&= ~p&2, (8.6) 

ll 

where 

PZ’fPf (8.7) 

represents the mass of fluid per unit volume. Also, 

Pf 
l/I 

?.i,v,G?~=pfti, 

sss 

vdi~=pfzizti,. (8.8) 

a a 

Hence, / 

3Pf 
SSJ 

(~,+v,)2dB=3p22i.2+pfZizZi), 

n 

+3Pf v,W-L (8.9) 

n 

Expression (8.4) now becomes 

T=4P(2i,2+Ziy2+~i,2)+pf(~~~2+?-il/~i)y+~*~~) 

where 

fiPf 
s//Y 

(v~~+v,~+zJ,~)~~, (8.10) 

n 

P=Pl+Pz (8.11) 33 J. Geertsma and D. C. Smit, Geophysics 26, 169-181 (1961). 
34 H. Deresiewicz, Bull. Seismol. Sot. Am. 50, 599-607 (1960); 

51, 51-59 (1961). is the total mass of bulk material per unit volume. 
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From relations (8.3), we derive 

Pf 
J’ss 

(u,~+v,~+~~“)&=~ m&& (8.12) 

o 
with 

U-l 

k 

mii= of (c ak&kj)d~. (8.13) 
I 

P 

momentum, and the second can be interpreted as 
expressing the dynamics of relative motion of the fluid 
in a frame of reference moving with the solid. As stated 
in Sec. 7, this is a legitimate procedure under the 
assumption that the principle of superposition is 
applicable. Extension of the theory under less restrictive 
assumption will be carried out in a later paper. 

For the isotropic medium, we substitute expressions 
(8.16) and (4.16) for T and D and the stress-strain 
relations (3.7). Equations (8.23) become 

Note the reciprocal property 

rnii= mji. (8.14) 

For a medium with statistical isotropy of the micro- 
velocity field, the coefficients rnij reduce to35 

and 
mij= Wl&ij (8.15) 

T=3p(iL,2+iL,2+iL,2)+~~(iLz~z+iL~Zi)~+iL,Zi),) 

+*m(ti,2+ti,Z+ti>). (8.16) 

In order to compare with the mass parameters PII, 
~12, and pz2 used in previous work,5 we express the 
kinetic energy in terms of the variables u and U. 
Substituting 

wi= j(lJi-ui). (8.17) 

In the value (8.16) of T, we obtain 

T=3pl,(iL,2+Q,2+iL,2)+~1~(iLz~i,+iL,~i,+iL,T;Tp) 

+$p22(Uj,2’+Op+LjL2), (8.18) 
with 

For constant values of the parameters, these equations 
can be written 

a2 
/.LV’U+(/.J+XJ grade--aM grad{=G(pu+pjw) 

(8.25) 
a2 maw 

grad(aMe--M{)=$pp+mw)+i; 

If we multiply the second equation by j and then 
subtract it from the first, we obtain Eq. (8.1), in which 
the coefficients and the mass parameters are given by 
expressions (3.31) and (8.19) derived above. Putting 

p11=p -2pfj+mf, ,022=mf2, Pl2=pfj-mf. (8.19) 

We put 

u=grad+l, w = grad&, (8.26) 

and using the constant H=h,+2p, we obtain the equa- 
tions of propagation of dilatational waves : 

Pl= Cl--.fh*=P-P2, P2=.fPf, (8.20) 

where ps is the density of the solid matrix. The quantities 
PI and p2 are the masses of solid and fluid, respectively, 
per unit volume of bulk material. Also writing 

pa=mj2-p.ff=mj2-p2, (8.21) 

we see that the mass parameters become 

Pll=Pl+Pa, Pzz=Pz+Pa, /x2= -pa. (8.22) 

This coincides with the relations in the quoted paper.5 
If we now look at the forces applied to a unit volume 

of bulk material and consider ui, wi as generalized 
coordinates, we can apply Lagrange’s equations. They 
are written 

vYm~~+~iw~)= (aW2) (P~+P~~I 

v2 wf41+ M42) (8.27) 

= (azlat2) (P.A+w~~)+ (d@ @b2/at>. 

When the Laplacian operator is applied, these equations 
can also be written in the form 

V2(He-aM3_) = (a2/at2) (pe-pj{) 

V2(--orMe+MS_) (8.28) 

= @2/W (--fve+m<)+ h/WS-/at). 

i drii d dT’ 
c 

apj d dT dD 
-=- - , --=- 
dxi ( > dt ati; ( > 

- +z 
dXi dt &hi p 

(8.23) 

They can also be written with the constant C=aM. A 
condition of “dynamic compatibility” for which a 
wave propagation is possible without relative motion 
between fluid and solid has previously been derived.5 
We can readily obtain it in equivalent and simpler 
form by putting &=O in Eq. (8.27) : 

These are the general dynamical equations when the 
gravity forces are neglected. The first of these equations 
could have been derived directly from the linear 

bM/H) = h/p). (8.29) 
By putting 

u = Curl$r, w = Curl&, (8.30) 

36 Equation (8.15) is also valid for cubic symmetry. we derive the equations of propagation of rotational 
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waves 

Pw!l= (az/w hbl+Pf42), 

- (s/k) cadJz/at> = (a2/af2) (pf4lfml42). @.31) 

The propagation of the dilatational and rotational 
waves has also been previously analyzed in detail.6 
Equations of propagation in anisotropic media are 
immediately derived from the results established above. 
From Eqs. (8.3) and (&lo), we write for the kinetic 
energy the more general expression [see Eq. (8.13)] 

T=3p(4,2+Zili?+iLz2)+pf(Q,~,+iL,Zi)y+~~Zi),) 

The dissipation function D in this general case is given 
by Eq. (4.3) : 

D= $q 2 riiti&. (8.33) 

We must also use for the stress components ~ij and p, 
the general stress-strain relations (3.37). Introducing 
expressions (8.32), (8.33), and (3.37) into the dynamical 
Eq. (8.23), we derive 

(8.34) 

at 

These six equations for the unknown vector components 
UC and wi govern the propagation of waves in the general 
case of anisotropy. The various cases of higher sym- 
metry, such as orthotropy and transverse isotropy, are 
easily derived as particular cases by the introduction 
of the various stress-strain relations discussed in Sec. 3. 

We shall now consider the higher frequency range. 
As the frequency increases, a boundary layer develops 

. where the microvelocities are out of phase. At higher 
frequency, this boundary layer becomes very thin. The 
viscous forces are then confined to this layer, and the 
microvelocity field in the major portion of the fluid is 
determined by potential flow. Similar considerations 
apply to the viscous forces, as shown by earlier analysis 
on simple models.5 The friction force of the fluid on the 
solid becomes out of phase with the relative rate of 
flow and exhibits a frequency dependence represented 
by a complex quantity. 

There are several ways of approximating these 
effects. One approximation used by the writer for the 
case of isotropic media is the replacement of the 
viscosity 7 by 

t*=?+(p), (8.35) 

where F is a complex function of the frequency p=iw. 

The function F has been evaluated numerically.6 A 
similar approximation can be introduced for the case 
of anisotropy by the replacement of rij by 

Y+* = Rij (p) . (8.36) 

As a further refinement, the mass coefficient m for the 
case of isotropy can be replaced by a complex quantity 

m*=P@(P), (8.37) 

and for the anisotropic medium the tensor mij can be 
r?placed by 

rn,ij* = pfDij(p). (8.38) 

The nature of the operators rii* and rnii* will be 
discussed in more detail in a forthcoming publication. 

9. WAVE PROPAGATION WITH INTERNAL 
DISSIPATION IN THE SOLID 

The incorporation of internal solid dissipation in the 
theory of wave propagation can be accomplished 
without further development by the replacement of 
the elastic coefficients by suitable operators. 

As shown in an earlier paper4 and in the more detailed 
discussion of Sec. 6, this procedure, because of its 
thermodynamic foundation, actually takes into account 
a wide variety of dissipative effects which are not 
restricted to the solid alone, but which are the result of 
complex interaction between fluid and solid of mechan- 
ical, electrical, chemical, or thermoelastic origin. 

For the case of isotropy, when we introduce operators 
in Eq. (8.24), we find that these equations become 

j a 
2 C -_(p*eij)+~(X,*e-_C*j-)=~(pu,+p~~) 

a3cj ax; at2 

~(~*e-~*T)=~(piuitm*~i)+% t. 

(9.1) 

z 

The operator Xc* is 

X,“=H*-2~“. (9.2) 

In these equations, we have also replaced m by m” and 
q by TI* in order to introduce the frequency dependence 
of these coefficients in the higher frequency range, in 
accordance with the discussion of the previous section. 
Similarly, for anisotropic media, the propagation Eqs. 
(8.34) are written 
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Again, we have introduced the frequency dependent 
tensor rij* as valid for the higher frequency range. 
In a further refinement, rn;j is also replaced by mii*. 

Equations for dilatational waves in the isotropic 
medium of uniform properties are 

The variation of ws with frequency is very slow. 
Therefore, the imaginary part of h* represents a damp- 
ing which varies very little within a relatively large 
range of frequency. 

V2(H*e-CC”<)= (a2/at2)(pe-pf<) 

V2( -C”{fM”.Q (9.4) 

= (az/@) (-p/+m*H+ (7*/k) (%/aQ. 

Another type of operator which exhibits the same 
property was proposed by this writer in an earlier 
paper. 27 We write 

The physical significance of these equations can be 
illustrated by various types of dissipation. Consider, 
for instance, a purely elastic solid. In the discussion 
of Sec. 6, we have shown that, in this case, a dissipation 
can occur because of the presence of the fluid in minute 
cracks or in their regions adjacent to the areas of 
contact between the grains (Figs. 4 and 5). As we have 
seen [Eq. (6.27)], this effect is represented by the use of 
an operator of the type 

/&*= 

J 

* P Pl 

- --dr+p. 

< p+r r 
(9.10) 

This amounts to introducing for p* in the general 
expression (5.2) a relaxation spectrum 

PI/Y 
EL(r)= 0 

i 

for r> E 
for O<r<e. 

(9.11) 

Performing the integration and putting p=iw yields 

K*=Ki)+K#/(p+r), (9.5) 

or more generally 

p’=pl[~/2-tan-‘(,/,)Fr log(l+ 
1 (J $ i 

, > +r (9 12) 
. . 

K*=Ko+K&), (9.6) 

for the jacketed compressibility. The coefficient KO 

represents the elastic compressibility due to the elastic 
grains, and Klf(f) is the dissipative term corresponding 
to the viscoelastic effects associated with the squeezing 
of the fluid in the small, cracklike volumes surrounding 
the areas of contact. This operator K* is introduced in 
the expressions (6.24), (6.25), and (6.26), which in 
turn are used in the propagation Eq. (9.4). 

When 6 is sufficiently small, the imaginary part becomes, 
in effect, frequency-independent over a large range. 

Operators such as (9.7) and (9.10) can therefore be 
used to represent some of the typical features of 
internal friction in solids. Operators other than # 
which may involve solid friction properties can, of 
course, be represented by similar expressions. 

As another example, we shall take the case of internal 
dissipation in the solid itself. Such a case can be 

We should remember that the operational equations 
remain valid if the operators are of a form more general 
than Eq. (5.2) and incorporate terms which involve 
the inertia and resonance effects of hidden degrees of 
freedom, as previously discussed for the particular 
example of air bubbles. 

represented by the operator 

,u*=ap8, 

with 0 <s < 1 (already considered above). 
assume that s is small and put p=&. Then, 

p*= u&[cos(s7r/2)+i sin(s?r/2)]. 

Since s is small, we can write approximately 

/.LL*=aUs[1+ (ir/2)s]. 

(9.7) 

We shall 

(9.8) 

(9.9) 

Attention is also called to the applicability of the 
propagation Eq. (9.3) to the problem of thermovisco- 
elasticity in a continuum, provided that we identify w 
with the entropy displacement and put the fluid 
density of equal to zero. We are referring here to the 
dynamics of a homogeneous solid (without pores) in 
which viscoelastic and thermoelastic dissipation occur 
simultaneously. 
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