
Reprinted without change of pagi?zation from the 

Proceedings of the Royal Society, A, volume 273, pp. 306-328, 1963 

Internal buckling under initial stress in finite elasticity 

BY M. A. BIOT 



Internal buckling under initial stress in finite elasticity 

BY M. A. BIOT 

Shell Development Company (A Division of Shell Oil Company), 

Exploration and Production Research Division, Houston, Texas 

(Communicated by Sir Edward Bullard l?R.S.-Received 12 September 1962) 

It is shown that elastic instability may occur in the interior of a medium which is of i&mite 
extent or confined by rigid boundaries. This type of buckling is the mathematical analogue 
of body waves in dynamics. The analysis is based on the writer’s theory of elasticity under 
initial stress. Significant incremental coefficients are derived for a medium in an initial state 
of finite strain. The existence of internal buckling is shown to be a consequence of the mixed 
hyperbolic-elliptic nature of the equations. Additional insight is provided by a variational 
analysis. The phenomenon may also be derived from earlier results of the writer for acoustic 
propagation under initial stress. In general, internal buckling requires the material to be 
anisotropic. However, it mrty occur in a medium of finite isotropy under exceptional con- 
ditions which recall the appearance of slip line in plasticity. 

1. INTRODUCTION 

A general theory of elasticity under initial stress was developed by the writer 

in a series of earlier publications (Biot 1939, 1940). The theory was applied to 

problems of instability and wave propagation. More recently it was applied to an 

exact analysis of the buckling of a plate embedded in an infinite medium (Biot 

‘959). 
The problems of elastic instability or buckling which have been considered 

thus far require the presence of either free surfaces, or discontinuities, or inhomo- 

geneities. In the present paper the theory is applied to a stability problem of an 

entirely different type. We shallsee that elastic instability may occur under initial 

stress in a homogeneous medium of in$nite extent or con$ned by rigid boundaries. 

In contrast with the usual case of buckling, the dimensions and the geometry of the 

system are not essential in the determination of the critical stress. Hence, we have 

referred to this phenomenon as an internal buckling. 

The distinction is entirely similar to two types of waves which may propagate 

in elastic media. One type, which is exemplified by bending waves in a plate, is 

analogous to the usual type of buckling instability. The other type-body waves- 

is analogous to what we call here internal buckling. 

Sections 2 and 3 constitute a brief introduction to the general theory in the con- 

text of plane strain. Certain elastic coefficients which play an important role in 

internal buckling are introduced, and their physical significance is discussed in 

detail. A coefficient of particular importance which is introduced here is a ‘slide 

modulus’. 

In $4, some important results are derived with respect to the incremental 

coefficients of a medium which is isotropic in finite strain. It is shown that for 

plane strain such a medium may retain its isotropy for incremental deformations. 

The particular finite stress-strain law which is required for this to be the case is also 
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derived.* Elastic coetbcients for an anisotropio laminated medium are derived in 

§5* 
It is shown that internal buckling is associated with hyperbolic equations and 

the existence of characteristics. In $6, the existence of such solutions is discussed, 

and the value of the critical stress is derived. 

Section 7 discusses the occurrence of internal buckling in a medium of finite 

extent confined by rigid boundaries. 

Results obtained previously for the theory of elastic waves under initial stress 

(Biot 1940) are recalled in $8. Attention is called to an important relation verified 

by transversal waves which is independent of the elastic properties and involves 

only the initial stress and the density. The appearance of internal buckling is asso- 

ciated with the vanishing of the velocity of propagation of certain types of elastic 

waves. 
In some of the discussion, it was assumed that a certain inequality is verified by 

the incremental elastic coefficients. The inequality is usually verified for ordinary 

materials, and if this is the case, internal buckling is not possible for a material which 

is isotropic in$nite strain. For exceptional materials, however, the inequality may 

not be verified and in that case internal instability is possible for a material which is 

isotropic in finite strain. This exceptional behaviour is discussed in the appendix 

and is illustrated by an example. The medium considered, although elastic, is as- 

sumed to become softer as the deformation increases in a way analogous to plastic 

yielding. The internal buckling in this case is a phenomenon closely related to the 

appearance of slip lines in plasticity.? 

2. INCREMENTAL STRESSES IN PLANE STRAIN 

A brief outline will first be presented of certain basic equations and properties 

of the incremental stress field for a continuum under initial stress. The problem was 

the object of detailed treatment some twenty years ago by this writer (1939,1940). 

The derivation was also briefly reproduced in a more recent publication (1959) 

for the case of plane strain. 

We shall discuss here the particular case of an elastic continuum under an initial 

state of stress represented by three constant principal stresses Srl, Sz2, S,, parallel 

with the co-ordinate axes z, y, x (figure 1). 

The incremental strain is restricted to a two-dimensional field represented in the 

x, y plane by the components 

au av i av aU 
e =- zz ax7 %/ =&’ %v=~ &+zy . 

[ I 
(2*1) 

The co-ordinates of a material point in the initial state of stress are denoted by 

x and y. The incremental deformation produces a displacement field such that the 

co-ordinates become x + u and y + v. Since we are dealing with a two-dimensional 

* A more elaborate discussion of this result and of incremental elastic coefficients is pre- 

sented in another paper (1961). 

7 These two types of internal buckling are also analyzed in a forthcoming book by the 

writer where they are referred to as internal instability of the first and second kind. 
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state of incremental strain, the z component of the displacement is put equal to 

zero. 

Consider now the incremental stress field generated by the strain components 

(2-l). The incremental stress components in the x, y plane are denoted by srr, ss2, 

f-912. They are referred to axes 1,2, which rotate locally with the continuum. The local 

angle of rotation is given by 

These stresses are defined as the incremental forces acting per unit area after 

deformation on the faces of a unit cube whose sides are parallel with the locally 

rotated axes 1,2. 

%z 

t 

iL_- “’ 
FIGURE 1. State of initial stress in the m, y plane. 

The author has shown (1939, 1940, 1959) that for the case of initial stress con- 

sidered here, the incremental stress field satisfies the equilibrium equations 

ak asI2 
T& +7&j + (S,, - Sz2) 2 = 0,) I 
asI2 as,, az:+-+(s&& = 0. 

34 ! 
(2.3) 

As should be, these equations are independent of the initial stress component 

S,, perpendicular to the x, y plane. This is, of course, a consequence of the fact that 

we are considering the incremental deformation to be two-dimensional in the x, y 

plane. 

In the present analysis, the physical significance of the equations appear more 

clearly if the initial stress is represented as 

&I = 
82, = 

-pf-R I (2.4) 
-Pf* 

The initial stress field is then considered as the superposition of a hydrostatic 

pressure pf and a compressive stress P acting horizontally in the medium (figure 2). 

We may also write 
P = x2,-s,,. (275) 
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With this definition, equations (2.3) are written 

309 

asI aSI aw ~+--P-=o’; ay a9 
asI2 ah ~+--P~=o. ay 1 

Pf 

tSutti_ t - 
--c - 

- 4-d-- 
- -pf 
--t - 

ttttttt 
pf 

FIamE 2. State of initial stress represented as EL superposition of hydrostatio 
pf and an additional horizontal compressive stress P. 

Pf4 

pressure 

FIUURE 3. Forces acting on a deformed boundary C’. 

In the following discussion, we shall also make use of expressions for boundary 

forces. Consider the material enclosed initially in a contour C. After deformation, 

the contour becomes 0’ (figure 3). Before deformation, an element of arc ds is acted 

upon by forces due to the initial stresses. After deformation, the element of arc 

becomes ds’. The x and y components of the forces acting on this element ds’ after 

deformation are denoted by 
dfz =fzds, 

df, =f,ds. > 
(2.7) 
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The eomponents f,, fy therefore represent the boundary force per unit initial area. 

These force components were found (1939) t0 be 

f, = (Sll + sll + fLevz/) ~0s (n, 4 + (s12 - x22 6~ - fJllezy) 03s h y), 1 

fi/ = (812 + 41 w - X2, e,,) ~0s (n, 4 + (f12, + s22 + x2, e,) cm (n, y). I P8) 

The directional cosines of the outward normal direction to the initial contour C 

are designated by cos (n, x) and cos (n, y). The quantities IS’,, cos (n, x) and X2, 

cos (n, y) represents the forces acting initially on the contour C in the prestressecl 

state. Hence, the incremental forces acting on the deformed boundary per unit 

initial area are 

with 

Afz = A, cos (n, 4 + A, cos (n, Y), 

Af, = A,, ~0s (n, 4 + &, ~0s h Y), > 

Am = al1 + S1leyy, ’ 

A, = S12 + 41 w - S22Sw 
I 

A,, = S12 -S22 0 - fkw 

I A,, = S22+fJ22Sm. 

VW 

(2.10) 

These last expressions have a definite physical significance. For instance, Azz 

and A, are the x and y components of the incremental force acting per unit initial 

area on a surface initially perpendicular to the x direction. 

We shall find that expressions such as (2.9) for the boundary forces play an 

important role in the physical interpretation of certain coefficients. 

3. ANISOTROPIC STRESS-STRAIN RELATIONS FOR 

ELASTIC STRESS INCREMENTS 

The problem is the choice of the relations between the incremental stresses and 

the strain. Since we are dealing with a linear theory of prestressecl continua, the 

strain components (2.1) are the same as in the classical theory of infinitesimal 

strain. Consider the case of an elastic body such that the co-ordinate axes are in 

planes of symmetry for the elastic properties of the material. Such a material is 

called orthotropic. We shall assume that the state of initial stress is one in which 

the principal stresses SX1, Sz2, S,, are oriented along the three co-ordinate axes. 

Such an initial state of stress does not disturb the symmetry of the medium. There- 

fore, the incremental stress-strain relations will also retain the same orthotropic 

symmetry. 

We are interested in the plane strain increments in the x, y plane. Since orthotropic 

symmetry is retained, the incremental stress-strain relations in two dimensions are 

S 11 = &Sm + &2%/t/3 

S 22 = B2, e, + B22Syy, (3.1) 

s12 = 2&e,,. i 

In the classical theory of elasticity, where there are no initial stresses, the exis- 

tence of an elastic potential energy requires that the coefficients satisfy the relation 

B,, = B,. (3.2) 
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As shown in an earlier publication (19391, this is not so if there is an initial stress. 
Under the presently assumed state of initial stress, condition (3.2) is replaced by 

B,, + S11 = & + Saz, (3.3) 

or B,, = B,, + J’, (3.4) 

where P is defined by equation (2.5). 

When the theory is applied to specific problems, it is advantageous to assume 

the material to be incompressible. This introduces considerable simplifications in 

the algebra without restricting the general character of the physical results. For 

this purpose, we shall now investigate how the stress-strain relations (3.1) are to 

be modified for an orthotropic material which is incompressible. In this case, as we 

shall see, conditions (3.4) required for the existence of an elastic strain-energy does not 
enter into consideration. We may write 

all-522 = 4Ne,,, 

522-811 = 4Ne,,. t 

If we introduce the average two-dimensional stress 

(3.5) 

s = S(s11+s22), 

relations (3.5) are equivalent to 

sll -s = 2Ne,, 

s22 -s = 2Ne,. I 

(3.6) 

(3.7) 

It should benotedhere that sis defined by equation (3.6). For an anisotropic medium, 

this two-dimensional definition of s is not equal to the average of the three normal 

stress components. 

We can also use these relations without specifying that s is defined by equation 

(3*6), provided we impose the condition of incompressibility 

e,+e,, = 0. (33) 

The value (3.6) of s is then a consequence of the three equations (3.7) and (3.8). 

The complete stress-strain relations in two dimensions for the orthotropic 

incompressible medium are 
sll-s = 2Ne ZZZY 

s22 -s = 2Neyy, 

1 

(3.9) 

812 = 2QeZY. 

These relations contain two elastic coefficients N and Q. For an isotropic medium, 

if the initial stress is zero or if Xl1 = Sz2, the incremental properties remain isotropic 

in the plane of deformation. In this case the coefficients N and Q become identical, 

and the incremental properties in two dimensions are characterized by a single 

shear modulus 
,u=N=Q. (3.10) 

We should remember that when an isotropic medium is under an initial stress 

for which Xl1 + Sz2, the incremental properties do not generally remain isotropic. 
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They may, however, remain isotropic in some special cases discussed in 0 4. Further- 

more, the incremental coefficients N and Q themselves become functions of the initial 

stress. 

A point of considerable importance in the present theory lies in the possibility 

of expressing the elastic coefficients in terms of measurable quantities. 

Let us first turn our attention to the coefficient Q, which appears in the stress- 

strain relations (3-l) and (3.9) for either the compressible or the incompressible 

material. We shall assume that the state of initial stress is reduced to a horizontal 

compressive stress P; hence, 
x1, = -P, 

x,, = 0. 1 
(3.11) 

Consider a strip of material cut in a direction parallel with the x direction (figure ha). 

The strip is maintained in its initial state of stress. This condition of pre-stress is 

-A,- 

t 
_AYY 

FIGURE 4. Measurements and physical signifxenoe of the elastic coefficients L and M. 

maintained by applying a compressive stress P at both ends. In order to prevent 

buckling, the strip is sandwiched between two rigid blocks. We now produce a 

horizontal shear displacement 

u = Y(Y -Yo) (3.12) 

by applying a tangential force A,, per unit area to the upper face of the strip. The 

lower face, located at y = y,,, remains fixed. This can be accomplished by providing 

adherence between the strip and the blocks and applying horizontal forces to the 

blocks. The relation between the force AZy and the shear deformation y introduces 

a measurable elastic coefficient L defined as 

A, = J%* .(3*13) 

The tangential force A, is also given by the third equation of (2*10), in which we 

introduce the values (3.11) of the initial stress and put 

e Lzy = -iY, 
s 12 = 2&e, = QY. 

(3.14) 



Internal buckling under initial stress in ,finite elasticity 

Hence, A,, = (&+W)Y. 

Comparing with equation (3*13), we derive 

313 

(3.15) 

L=Q+$P. (3-16) 

This relation defines the elastic coefficient Q in terms of a measurable L which will 

be referred to as the slide modulus. Note that equation (3-15) is valid for either the 
incompressible or the compressible medium. 

According to equations (2.lo), there is also a vertical force Azlz which must be 

applied at both ends of the strip. This force is 

or 

A,, = s12+~Py, 

km. = &,. I 
(3.17) 

This turns out to be the force required to balance the couple due to the tangential 

force AZ2/. 

We shall now consider the coefficient N, which appears in the stress-strain rela- 

tions (3.9) for the incompressible material. Again let us assume that the initial stress 

is a compression P acting in the horizontal direction. As in the previous oase, a strip 

of the material under this compressive stress is sandwiched between two blocks 

(figure 4b). Lubrication is applied between the blocks and the strip. The total 

compressive force in the x direction can then be increased. This increase per unit 

initial area is - AZ*. A compressive force of value - A,, per unit area may be ap- 

plied across the thickness. These incremental forces are given by equations (2.10). 

Substituting in these equations the initial stresses (3.11) and using the condition 

of incompressibility (3.8) and the stress-strain relations (3*5), we derive 

(3.18) 

with M = N+$P. (3.19) 

/ 
e can evaluate the coefficient M by applying an increment of compressive force 

- A, with no forces applied normally to the strip (AUU = 0) and measuring the exten- 

sional strain, or we can apply a compressive force - AU2/ across the thickness while 

maintaining the horizontal stress constant (A,. = 0). We remember that the strain 

considered here is two-dimensional. Therefore, when measuring the coefhcient N, 

we must apply a normal stress in the direction perpendicular to the x, y plane in 

order to maintain zero strain in that direction. An initial stress X,, can also be applied 

simultaneously in that direction. 

The same measurements can be carried out in a closed vessel containing a fluid 

at the pressurepf. The initial stresses AS’,, and S,, are then given by expression (2.4); 

i.e. 
&I = -Pf-p, 

x22 = _Pff, 
(3.20) 

and P = s,, - s,,. 
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Measurements with superimposed fluid pressures yield elastic coefficients in a state 

of triaxial stress. In this case we consider the forces 

L = f&Z - Pf %x, 

4iti = 4i,-Pf%J~ > 
(3.22) 

These quantities represent the forces in excess of those due to hydrostatic pressure. 

With the definition (3.19) for M, where P is now given by expression (3*21), the 

following relations are derived 
a,, - &, = 4Me,,, 

SVyy-8Zacz = 4Me,,. 1 
(3.23) 

Measurement of the coefficient M under the initial stress (3.20) can then be carried 

out as described above for the case of zero fluid pressure. 

Equation (3*16), defining the slide modulus L, is also valid for this case with the 

value (3.21) for P. Measurement of the slide modulus is not modified by the pre- 

sence of the fluid pressure. 

4. INCREMENTAL coEF~1crE~Ts FOR AN ISOTROPIC ELASTICMEDIUM 

IN FINITE INITIAL STRAIN 

In the preceding analysis, we have considered the stress-strain relations in an 

elastic medium under initial stress and have assumed the elastic symmetry to be 

orthotropic. In particular, the elastic medium may be isotropic in the original 

unstressed state. In a state of finite initial stress, the incremental elastic properties 

of such a material will generally not remain isotropic but will acquire an orthotropic 

symmetry defined by the principal directions of stress. In the case of original 

isotropy, however, it is possible to evaluate the elastic coeficient Q directly in terms 
of the initial stress alone and the corresponding Jinite strain. 

In order to show this, let us call (a) the original unstressed state, (b) the initial 

stressed state, and (c) the state obtained after incremental strains. In order to 

simplify the writing, we shall consider a deformation which is two-dimensional in 

both the finite and the incremental strain. We shall see that this does not restrict 

the generality of the results. * The original co-ordinates in the representative plane 

are denoted by X, Yin state (a). The co-ordinates in state (b) are 

x = a,,X, 

y = as2 Y. > 
(4.1) 

The principal directions are along the co-ordinate axes. In this initial state, there 

are principal stresses Xii, X,, along x and y and a normal stress 8,s perpendicular 

to the plane of deformation. 

We now superpose upon state (b) a pure shear strain e,,. This shear strain is 

assumed to be small of the first order. The new co-ordinates become 

t = x+exzly, 

7 = c+r+y. I 
* A more elaborate analysis of the incremental coefficients was developed in another 

paper (1961). 
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The total transformation from (a) to (c) is 

< = a,,X + ezVaz2 Y, 

7 = e,a,,X + u22 Y. 
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(4.3) 

This may be identified with the following transformation 

k] =E:: L:]E:“s -Z][“y]. 
(4.4) 

This transformation is obtained by applying to the material a solid rotation through 

an angle 0 followed by a pure deformation corresponding to the symmetric matrix 

b,. By identifying the coefficients in the two transformations (4.3) and (4+4), we 

find, by neglecting second- and higher-order terms, 

&I = %7 'I 
I 

b22 = a223 

a% f ai2 b,, = e,,-. 
%,+-a22 J 

(4.5) 

This pure deformation is equivalent to a principal elongation b, in a direction I 

which makes an angle a with the x axis. This angle is given by 

2b,, tan201 = -b. 
b 

(4.6) 
11 22 

Neglecting second-order quantities, we can write 

a=e a& + G2 
XY$F---T- * 

11 -a22 
(4.7) 

There is also an elongation b,, in the other principal direction II perpendicular to 

I. Calculating the values of b, and b,, from the matrix b, by a standard procedure, 

we find that if we again neglect second-order quantities, we can write 

b, = b,, = all, 

\ b,, = b,, = a22., 
(4.8) 

This shows that, except for second order in the magnitude of the principal strains, 

states (b) and (c) diff er only by a rotation of the directions of principal strains through 

an angle a. 

Here the property of isotropy enters into play. Because of this isotropy, the prinoi- 

pal stresses in states (b) and (c) must be of the same magnitude, except for second- 

order errors. In other words, the magnitude of the principal stresses in state (c) 

to this approximation is the same as that of the initial stresses S,, and S,,. The stress 

A’,, now acts in a direction which makes an angle a with the x axis. 

If we resolve these principal stresses along the x and y directions, we obtain a 

shear stress component which to the first order is 

S 12 = (41-~22b. (4.9) 
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If we substitute the value (4.7) for a, 

a41 + 42 
s12 = eL-S,2)~%l/* 

11 22 

Hence, the coefficient Q in the stress-strain relations (3.1) is equal to 

Q = W11-s,2@-3. 

(4.10) 

(4.11) 

By going through the derivation, we see that this result is also valid if the initial 

strain is three-dimensional. Expression (4.11) is therefore completely general 

and is valid in each of the three planes of symmetry of the initial strain. The 

three corresponding values of Q are obtained by cyclic permutation of indices in 

expression (4-l 1). The result was also derived in another paper (Biot rg6r), in which 

it is the object of a more elaborate discussion. 

In the same paper (Biot 1961) an additional and alternate derivation of expres- 

sion (4.11) is also given by the method of tensor invariants, showing that the 

latter procedure is by comparison obscure and considerably more involved. 

Let us now examine the particular ca,se of an incompressible medium. In this case 

the medium is characterized by only one other elastic parameter, i.e. the coefficient 

N appearing in the stress-strain relations (3.9). We shall consider the case of two- 

dimensional finite strain. Because of incompressibility, this finite strain is character- 

ized by a single strain variable A. We can write 

a - 4 11 - 

a 22 = l/h. } 
(4.12) 

If this strain is produced by a stress difference S,, - S22, the finite stress-strain law 

can be written s,, - s,, = K(h) = -P. (4.13) 

The incremental stresses are 

all--822 = (d/c/dh) dh. (4.14) 

Putting ess = dh/h and comparing with the stress-strain relation (3.5), we derive 

the value of the incremental elastic coefticient 

iv = $h(dlc/dh). (4.15) 

This coefficient depends on the slope of the stress-strain curve. The value of Q 

given by expression (4.11) can be written 

Q = ;tK(h)z. 

For a vanishing initial stress, i.e. for h = 1, the limiting value of Q is 

Q = &(d/c/dh). (4.17) 

Hence, in this case N = Q =A_,, (4.18) 

where p. represents the shear modulus in the unstressed state. The condition (4.18) 

is, of course, an expression of the isotropy of the medium in that state. 
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It is most interesting to determine whether there exists a particular stress- 

strain relation K(A) such that the material remains isotropic in the x, y plane for 

incremental stresses in the vicinity of a state of finite initial strain. This will be 

the case for all values of h if we have 

N = Q, (4.19) 

or 
Id/c 2h4+l 

/cdh hn- 

This is a differential equation for K(A). Its solution is 

K = &h2 - (l/G)}. (4.20) 

It is remarkable that this finite deformation law is identical with that derived from 

the statistical thermodynamic model of polymer chains (Treloar 1955). It may be 

considered typical of rubber-like materials. The incremental properties in the 2, y 

plane are characterized by a single shear modulus 

p(h) = N = Q = &(h2 + ( l/h2)). (4.21) 

It is a function of the strain and increases with the initial deformation. 

Let us finally evaluate the slide modulus L defined by equation (3.16). For the 

case of a material which is isotropic in the unstrained state, this coefficient is 

44 p 
L=m=l-A4- (4.22) 

For rubber obeying the stress-strain relation (4.20), it becomes 

L = /Lop. (4.23) 

This coefficient increases with the magnitude of the compression and decreases when 

the material is stretched. This behaviour is in contrast with that of the shear 

modulus ,B as given by expression (4.21). 

The M coefficient is obtained by substituting expressions (4.20) and (4.21) 

into equation (3.19). We find 
M = &{n2 + (3/h2)). (4.24) 

This is the coefficient which appears in equations (3.23). 

5. A THINLY LAMINATED MEDIUM AS AN EXAMPLE OF ANISOTROPY 

Anisotropy can be created or increased artificially by stacking alternately soft 

and hard layers of materials. The layers are assumed to be thin. Our problem is 

to evaluate the relation between average stresses and deformation in this medium. 

This is equivalent to replacing the inhomogeneous solid by an equivalent homo- 

geneous anisotropic continuum. 

It is obvious that there is a limit to this equivalence. This limitation is related to 

the exact meaning of the requirement that the layers be sufficiently thin. For in- 

stance, in the analysis of internal buckling presented below, sinusoidal deformations 

will be considered. In such deformations, however, the laminated medium will be- 

have as a continuum only if the wavelength is ‘sufficiently ’ large relative to the 



318 M. A. Biot 

lamination thickness. This point will be examined in more detail in a forthcoming 
publication. 

For simplicity, we shall assume the material to be incompressible. The stress- 

strain relations for the composite laminated medium in the form (3.9) are most 

easily obtained by first considering the coefficients M and L as defined in $3. 

The properties of the hard layer are characterized by the coefficients Ml and L,, 

and those of the soft layer are characterized by M2 and L,. The hard and soft layers 

occupy, respectively, fractions CZ~ and a2 of the unit thickness. Hence, 

a,+a, = 1. 

The initial stress differences in the layers are 

PI = &-X#, 

P2 = &&J 

The x direction is chosen parallel with the lamination. 

The total stress in the x direction is 

x,, = a, I$’ + (X2 xi:,. 

The total stress difference is 

(5-l) 

(5.2) 

(5.3) 

P = l&,-x,, = cxlP,+cx,P,. (5.4) 

We now apply equations (3.23) to each type of material separately and write 

S&z - S,, = 4Mle,, 

Si$ - S,, = 4M,e,,. 1 
(5.5) 

The quantities S&2 and Sh?j are the incremental forces acting in the x direction in 

each material per unit initial area as defined in $3. Multipling these equations by 

a, and (x2 and adding, we obtain 
&, - &, = 4Me,, (5.6) 

with 6 ZZ = LXrS~~ + CL&$ (5.7) 

Hence, M = Mlq+M,a, (5.8) 

is the coefficient for the composite material. 

Similarly, the slide modulus can be evaluated by applying a tangential force 

A,, as described above and as illustrated in figure 4. This force will produce a shear 

displacement parallel with the layers. The slide moduli of each layer have been 

denoted by Ll and L,. Hence, the total shear angle y is 

Comparing this equation with relation (3.13), we derive the slide modulus of the 

composite medium 

(5.10) 
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Expressions (5.8) and (5.9) for the composite ooeflloients are valid when the 

materials of the individual layers are either isotropic or not isotropic. If the in- 

dividual layers are isotropic in finite strain, their incremental properties may still 

be anisotropic, but in that case the slide coefficients are derived from equation 

(4.22); i.e. 

(5.11) 

where h denotes the extension ratio in the direction of the layers in the state of 

initial stress. When equation (5.10) is applied, the slide modulus of the composite 

material becomes 

L = 1 __T.!&-_ 
l-h4a,P2+a,P2' 

(5.12) 

As shown in $4, it is possible for a, material to retain plane isotropy under initial 
stress, provided it obeys the finite stress-strain law (4.20) characteristic of rubber- 

like materials. If the laminations are made of such material, their individual finite 

stress-strain relations are 

4 = P,,{(l/~2) - A% pz = P02{(I/h2) -ha], 

and expressions (4.23) for the corresponding slide moduli yield 

LJfuo1 L PO2 
1 h2' 2=-p. 

In this case, the slide modulus (5.10) for the composite material becomes 

Applying relation (4.24) to each layer, we write 

Mi = &)i{A2 + (3/P)}, Ma = &&2 + (3/P)}. 

Substituting these values in equation (5.8) yields 

M = H”,POl + “zP0z) {A2 + (3/h2)) 

for the other coefficient of the composite material. 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

The coefficients Q and I? are obtained immediately, once L and M are known, 

by applying equations (3.16) and (3.19). 

6. INTERNALBUCRLINGAND ITSRELATIONTO 

HYPERBOLIC SOLWTIONS 

We shall now consider the displacement and incremental stress fields and shall 

investigate the general solutions of the equations which govern these fields. 

Assuming incompressibility, we write the displacement components as 

u = - a$jay, v = agax. (6-l) 



320 M. A. Biot 

Introducing this expression in the stress-strain relations (3.9) and using the equi- 

librium equations (2.6) of the stress field, we obtain, after the required eliminations, 

[&+iP]3 +2(2N-Q)* +[&-ll']3 = 0 w axv2p 2 ax4 * VW 

For the case of an isotropic medium initially unstressed, i.e. for 

N= Q, P=O, (6.3) 

the equation reduces to the well-known biharmonic equation 

v%$ = 0, (6.4) 

whose solutions are of the elliptic type. This same elliptic character is retained in 

the absence of initial stress for the anisotropic case. 

A radical change occurs in the nature of the solution in the presence of initial 

stress beyond a critical value. To show this, let us assume a solution of the form 

9 = dX-~Y)* (6.5) 

Substitution of this solution into the general equation (6.2) yields a characteristic 

equation 
a4+2mcr2+k2 = 0, (6.6) 

with 
2N-Q 2M-L s 

m=GP=L’ 

,,_Q-+P L-P 
------=-----. 
Q+QP P 

(6.7) 

The roots of equation (6.6) are 

a2, = -m+ d(m2--k2), 

f7$ = -m- 2/(m2--P). 

For the purpose of restricting the complexity of the present discussion, we shall 

introduce the assumption 
m > 0. (6.9) 

Since, for physical reason, the coefficient L is positive, this is equivalent to the 

condition 
2N > Q, (6.10) 

or, 2M>L. (6.11) 

Obviously, a materia.1 for which this condition is not fulfilled must be of a special 

nature, since it is considerably softer for elongation than it is for shear, whereas on 

the other hand it must be capable of sustaining an initial stress P. For the sake of 

generality, the case in which the inequality (6.11) is not verified is discussed in the 

appendix. 

Under the assumption of m > 0, there can be real roots only if 

lea < 0. (6.12) 

Let us denote the real roots as VI= +<. (6.13) 
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Choosing the positive determination of the radical, we can write 

t = 1/{-m+&ns-IC2)). (6.14) 

There exists, therefore, a real solution of equation (6.2) which can be written 

4 = %(x-&)+cp2(x+&YL (6.15) 

where ‘pl and ‘p2 are arbitrary functions of the argument. This solution is of the 

hyperbolic type, and the roots + 6 represent the slopes of the characteristics relative 

to the y axis. The inequality (6.12) can be written 

P > 2Q, (6.16) 

or, equivalently P > L. (6.17) 

This inequality represents the condition for the existence of real characteristics. 

The appearance of such hyperbolic type solutions corresponds to the phenomenon 

of internal bzlclcling. The nature of this phenomenon will be discussed in more detail 

in the next section. 

Note that a more general solution is obtained by including the imaginary roots 

+ g2. This is written 

4 = ‘P&-EY)+‘p2@+5Y)+=%J*(“-~2Y)+~%(~+~2Y), (6.18) 

where ~%(ps and &?vd are the real parts of arbitrary analytic functions of the argu- 

ment. The general solution is of a mixed elliptic-hyperbolic type. 

An obvious question immediately arises here; that is, whether internal buckling 

is possible for a material which is originally isotropic under finite deformations. 

The answer is that internal buckling cannot occur in this case if 2M > L. This is 

readily shown by substituting expression (4.22) for the slide molulus into the 

inequality (6.17). The inequality becomes 

P > P/(1 --Ad). (6.19) 

Since h < 1 and P > 0 this inequality cannot be verified. In the exceptional case 

in which 2&l < L, however, finite isotropy does not exclude internal buckling. This 

is briefly discussed in the appendix. 

7. INTERNALBUCKLING o~~im~IuMO0~mivm BYRIGID BOUNDARIES 

It is possible to find a particular case of the general hyperbolic solution (6.15) 

which corresponds to a rectangular region under initial stress but confined between 

rigid boundaries. Such a solution is written 

#I = - (l/21) cos 1(x - ty[y) - (l/21) cos I@ f Cy), (7-l) 

or $5 = - (l/S) cos lx co9 Icy. (7.2) 
The displacements are 

u = - a#jatj = - 5 cos IX sin ICY, 

v = a+lax = sin IX cos I&. 1 
(7.3) 

This solution may, of course, be multiplied by a constant of arbitrary magnitude. 
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The displacement field (7.3) results from an interference pattern of sinusoidal 

solutions along the two characteristic directions. It is formally analogous to a 

pattern of standing acoustic waves in a rectangular domain. 

The physical significance of this field is further clarified by considering the 

pattern in the x and y directions. There is a wavelength associated with each of these 

directions. They are 
(7.4) 

This yields an additional physical interpretation of the variable 5 as the ratio 

of these two wavelengths; i.e. 

- 
/- / 
/ / 

///////////////// 
FIGURE 5. Instability diagram for internel FIGURE 6. M&a&able configuration corre- 

buckling (case L < 2M). sponding to nz = 1, TQ = 1. 

On the other hand, this parameter is a root of equation (6.6) and is therefore related 

to the initial stress P and the elastic coefficients L and M by the relation 

P = Lg4 + 2(2M - L) g2 + L, (7.6) 

or P = L( 1 - ‘$2)2 + 4Mc2. (7.7) 

This equation provides the condition under which a solution of the type (7.3) 

is possible. Since, in the general case, the coefficients L and M are functions of the 

initial stress P, equation (7.7) is really an implicit equation for P. In order to discuss 

this equation, let us assume for the time being that L and M vary only insignificantly 

with the initial stress so that they may be considered as constant. Let us also 

assume, as above, that 2M > L. In that case the functional relation between P 

and 6 is represented schematically by the curve in figure 5. Consider now a medium 

confined by a rigid rectangular boundary of sides hs and h, (figure 6). The solution 

(7.3) fits these boundary conditions, provided 

9% = 2h,ln,, -Z2 = 2h&,, (7.3) 

where n, and ny are integers. In this solution the normal displacements vanish at 

the boundaries. It is readily verified that the tangential stresses also vanish at 

these boundaries, but the tangential displacements do not. The boundaries are 



Internal buckling under initial stress in finite elasticity 323 

therefore rigid and perfectly lubricated. The value of the parameter t for any of these 

solutions is 
t = QO+&,. (7.3) 

Let us assume that the initial compression is 

P = PO > L. 

Figure 5 shows that a value [,, oft is associated with PO. 

If it is possible to find two integers n, and n, such that 

(7.10) 

&, = n,%&&,, (7.11) 

the particular solution corresponding to these integers represents an internal buckling 

I_$ a rigidly con$ned medium. Although it is an equilibrium configuration under the 

compression P,, it is a metastable configuration. This can be shown by considering 

other solutions such that 
++A&, < CO. (7.12) 

There are an infinite number of solutions satisfying this inequality. All these solu- 

tions correspond to buckling loads which are smaller than PO. Hence, the whole 

range of values 
O<~~‘S (7.13) 

corresponds to an infinite set of buckling modes which are all hypercritically un- 

stable under the compression P,. Three of the possible buckling configurations are 

illustrated in figures 6, 7, and 8. They correspond to 

n,=l, nV=l; 

n,=5, n2/= 1; 

I 

(7.14) 

n, = 5, n, = 2. 

We may well ask which one in this infinite set of internal buckling modes is the 

most unstable. The answer is immediately furnished by the diagram in figure 5. 

It is the buckling mode for which t becomes vanishingly small, since this is the one 

for which the difference between the critical load P = L and the actual compression 

PO is maximized. This mode is represented by the values. 

n, = co, nU= 1. (7.15) 

In other words, it exhibits a vanishing wavelength in the direction of the initial 

compression. 

Hence, theoretically, this buckling with vanishing wavelength appears as soon 

as the.compression P becomes greater than L. 

We are dealing here with a state of microscopic internal collapse of the medium. 

This result may seem paradoxical, but it leads to important conclusions regarding 

the actual behaviour of the medium if we consider that in an actual case other 

factors not taken into account in the present theory will enter into play. In a lami- 

nated medium, for example, the wavelength of internal buckling will be restricted 

by the lamination thickness. This aspect of the problem will be discussed in a forth- 

coming publication. 
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The peculiar behaviour exhibited by internal buckling also points to the physical 

impossibility of measuring the elastic coefficients beyond the critical point. 

The physical significance of the present result is further brought into light by a 
consideration of the stability problem from the energy viewpoint. 

It was shown by this writer in an early paper (1939) that the theory of elasticity 

under initial stress can be formulated completely by introducing an ‘incremental 

strain energy’. In the particular case of two-dimensional strain and with the initial 

FIGURE 7. Metastable configuration corresponding to n, = 5, nny = 1. 

FIGURE 8. Metastable configuration corresponding to n, = 5, ny = 2. 

compression Pin thex direction, the incremental strain energy per unit initial volume 

becomes 
A V = &t,, ezz + +a, eU2/ + t,, ezy - P(e,, w + 8~“). (7.16) 

In this expression, an alternate stress system tzi is used. It represents the inore- 

mental forces per unit initial area. The components of these forces are projected on 

locally rotated &xes. It was shown (Biot 1939) that these stress components are 

related to sis by relations which, in the present case, take the form 

tll = sll - Pe,,, 

t22 = $229 

1 t12 = s12+-m,. 

(7.17) 
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We substitute these expressions in AV, taking into account the stress-strain 

relations (3.9) and the condition of incompressibility (3.8). This yields 

AV = (~N+~P)~~+(~&+P)~$,-~P(&J/&)~. (7.18) 

With the coefficients M and L, as defined by equations (3.16) and (3.19), it is written 

AV = 2Me& + 2Le$ - +P(&$3x)2. (7.19) 

The incremental strain energy over the rectangular region confining the material 

under the unit stress is derived by integrating AV over this area. If we substitute 

the solution (7.3) for u and v, the integration amounts to averaging the squares 

of sines and cosines. The average energy per unit area is found to be 

Al& = $Z”[L( 1 - t2)2 + 4Mc2 - P]. (7.20) 

We see that the condition Al&. = 0 coincides with equation (7.7). The potential 

energy is negative for 
P > L(1-,52)2+4M52. (7.21) 

This illustrates the physical significance of the instability. 

When the inequality (7.21) is satisfied, more energy is available in the initial 

compression than is required to initiate a mode of buckling characterized by the 

parameter c. As the material buckles, the elastic strain energy associated with the 

uniform compression is released and is transferred into the buckling mode. 

We have assumed in the discussion that L and M are constant. We can easily 

verify that the qualitative features of the results are not affected if we assume L 
and M to depend on P, provided 2M > L. The case 2M < L is briefly discussed in 

the appendix. 

8. THEINFLTJENCE OFINTERNALBUCKLIN~ONACOUSTICPROPAGIATION 

In a previous paper (1940), the writer analyzed the influence of initial stress 

on the propagation of elastic waves. The general theory was applied to the two- 

dimensional problem of an anisotropic medium satisfying the stress-strain relations 

(3-l) and under initial stresses Xi, and X2,. In this case we must add the acceleration 

terms to equations (2.3). They are replaced by 

asll asI z+- -p a0 = $$, 
a9 34 

asl2 asz2 ~+--P~=pg' ay i 
@*l) 

where P = X2, - if&, p is the mass density, and u and v are the displacements in the 

x, y plane. The propagation equations were solved for the case of transversal waves 

propagating in the x and y directions with velocities V, and V,. These velocities were 

found to be 

An immediate consequence of these equations is the result 

v;- v; = P/p; (3.3) 



326 M. A. Biot 

i.e. the difference of the squares of these two velocities is independent of the elastic 

properties. As pointed out in the earlier paper (1940), this result shows that the 

effect of initial stress on acoustic propagation cannot be accounted for by simply 

modifying the elastic coefficients. 

As P increases, the velocity V, will usually decrease and will become zero for 

Q-+P=L-P=O. (84 

Comparing with equation (7*7), we see that the vanishing of the velocity V, corre- 

sponds to internal buckling. Physically, this means that when the initial compres- 

sion in the x direction is high enough to satisfy equation (8.4), the transversal 

rigidity disappears, and the wave velocity tends to zero. 

For a medium which is initially isotropic in the unstressed state, we replace 

the value of Q by the expression (4.11). We find the velocities 

In these expressions a,, and aZ2 are the principal extension ratios in the state of 

initial stress. In this case the velocities V, and V, cannot be made to vanish. 

Note the property 
K&r = K/a22 (3.6) 

which means that the transit time remains the same between two pairs of points 

attached to the medium equidistant in the unstressed state and located on the X, y 

axes. 

APPENDIX. THE CASE 2M < L 

The case m < 0 will be briefly discussed. This is done most conveniently by con- 

sidering equation (7.6) ; i.e. 

P = L+2(2M-L)[2+LE4. (Al) 

In this case, 22M-L < 0. (A2) 

Let us assume the coefficients L and M to be constant. The plot of P against E 

exhibits a minimum at the abscissa (figure A 1): 

t = %/{J((L - 2JoPl. (A3) 

The minimum value of P is Pmin. = 4M(L - M)/L. (Ad) 

If 

there are two real roots <r and t2 ‘of equation (Al), and instability occurs when t 

is looated in the range 
& < 5 < ,529 (A61 

as shown in figure A 1. 

For the present case, internal buckling occurs when P > Pmin., and the slope 

of the characteristics at which this instability appears is given by expression 

(A3). In contrast with the case analyzed in $7, the slope at incipient buckling 

is not zero. 
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A discussion of the case in which L and M are functions of P must take into 

account the specific finite deformation properties of the material under considera- 

tion, as illustrated by the example below. 

Another fundamental difference between this case and that considered in the 

text is that internal buckling may occur for a material which is isotropic under 

P 

FIQURE A 1. Instability diagram for the case L > 2M. 

FICWRE A2. Finite stress-strain law represented by equation (A7). 

finite deformation. To show this, let us consider an isotropic medium whose 

finite deformation for plane strain obeys the equation 

s,,-Ls,, = K = 2&@4- l)/(Pf 1). (A7) 

The type of stress-strain law represented by this equation is illustrated in figure A2. 

Applying equations (4.15) and (4*16), we find 

4h4 
-- 

Iv = @4+ 1)21uO, 

Q = ~0. 

WI 
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This material becomes ‘softer’ as the deformation increases. Evaluating the co- 

efficients L and M, we can write the condition (7.7) for internal buckling in the form 

c* - (2 - 8/z) A262 + h4 = 0, (A9) 

where 2 = ha + l/P. (A 19) 

Equation (A 9) has a real positive double root for E2 when x = 4. One root, 

h = ,/(2 +,/3) = 1.93, (A 11) 

corresponds to an extension. There is another root corresponding to a compression : 

____ h = JC2:J3) = o-517. (A121 

The material becomes internally unstable for deformations corresponding to 

this extension. At this critical point the slope of the characteristios is given by 

[ = + h. Hence, they make an angle of about 27 degrees with the direction of the 

extension. 

The behaviour of such material which is considered here in the context of 

elasticity is obviously related to problems of stability and the generation of slip 

lines in plasticity. 
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