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Surface instability in finite anisotropic elasticity 
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The writer’s theory of surface instability of au elastic body under initial stress in finite 
strain is extended to anisotropic elasticity. The general characteristic equation for surface 
instability is derived. In addition, the surface deflexion under a normal load is evaluated 
for the subcritical case of initial stress. The analysis includes the case in which gravity is taken 
into account. It is found that for a certain value of the initial stress the surface behaves as if 
the solid were a fluid, and surface loads sink to a depth at which they are supported by 
buoyancy forces only. 

1. INTRODUCTION 

The instability of an elastic half-space under initial stress has been derived and 
discussed in some recent publications (Biot 1958, 1959, rg6ra). The analysis is 
based on the general theory of elasticity of a continuum under initial stress 
developed in another seriesof papers (Biot 1938, 1939, rg4oa, b). The stability 
analysis of the elastic half-space referred to above was restricted to the case 
of a medium which is isotropic for incremental plane strain. In particular it 
was shown that this property applies to rubber-type elasticity, and it was used to 
derive an exact analysis for the surface instability of rubber in finite strain (Biot 
1961 a). 

The more elaborate problem of the instability of a continuously non-homo- 
geneous half-space with exponential distribution of rigidity was treated in a 
detailed analysis including the effect of gravity (Biot 1960). 

The existence of surface instability may also be derived from the exact equation 
for the buckling of a thick slab obtained earlier (Biot 1938) and from the theory 
of surface waves under pre-stress (Buckens 1958). 

The problem of surface indentation of a homogeneous isotropic half-space re- 
stricted to a particular type of elasticity and uniaxial initial strain has also been 
analyzed by using an entirely different approach based on the classical theory of 
tensor invariants (Green, Rivlin & Shield 1952). The method is handicapped by 
an intricate formalism which obscures the interpretation. The authors conclude 
that the result ‘ seems ’ to indicate the possibility of instability. 

The next step in the development of the theory is, of course, to extend the analysis 
to the case of a non-isotropic medium. However, this extension is not immediate 
because a new phenomenon appears which we have referred to as internal 

buckling and which is the object of a separate and detailed analysis presented 
in an accompanying paper (1963). 

Internal buckling is a type of instability which may occur in a homogeneous 
medium of infinite extent under initial stress. Its existence is not conditioned by 
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the presence of discontinuities or free surfaces. Surface instability on the other 

hand cannot exist without the presence of the free surface. The distinction is entirely 

the same as between body waves and Rayleigh waves in acoustic propagation. 

In the present paper the surface instability of the elastic half-space is analyzed 

for the case of a non-isotropic medium. The surface instability is characterized by 

a buckling mode whose amplitude decreases exponentially with the distance from 

the surface. This distinguishes it from internal buckling. The latter may be influenced 

by the free surface but occurs throughout the medium in analogy with the reflexion 

of acoustic body waves at a boundary. Within the range of parameters assumed in 

the present analysis, internal buckling is excluded. 

The incremental elastic properties are assumed to be of orthotropic symmetry, 

one plane of symmetry being parallel with the free surface. The anisotropy con- 

sidered here includes two physically distinct cases. In one case the medium is ortho- 

tropic in the original unstressed state. It is then deformed into a state of finite 

initial strain by applying principal stresses whose directions coincide with the planes 

of elastic symmetry. The property of orthotropic symmetry in this case is retained 

for the incremental deformations. 
In the other case the medium is originally isotropic in finite strain, and the aniso- 

tropy is due to the state of initial deformation. The incremental deformations in this 

case will exhibit orthotropic symmetry along the directions of the initial principal 

stresses. 
In either case the theory deals with the stability of incremental deformation about 

a state of finite homogeneous strain. The principal initial stresses are parallel 

with the free surface, and if the medium is originally orthotropic, it is assumed that 

they also are parallel with the planes of elastic symmetry. 

In the present analysis the medium is assumed incompressible. While this 

assumption provides drastic simplifications of the algebra, it does not restrict the 

general character of the results. 

In $2 we have briefly recalled the basic equations of the stability problem as 

formulated in more detail in the earlier work. 

The analytical solution of the stability problem for the anisotropic half-space 

is carried out in $3, and a numerical discussion of the result is presented in $4. 

The discussion is carried out in the context of a more general problem than mere 

instability by evaluating the deflexion of the surface under a normal load. 

The influence of gravity on the surface instability is discussed in $5. The surface 

deflexion under a given surface load is examined. It is found that for a compression 

which would produce buckling in the absence of gravity, the surface is still stable 

but the load sinks into the surface down to a certain depth as if it were a buoyant 

fluid. In other words, the apparent elastic rigidity of the surfaoe vanishes and its 

carrying capacity is the same asif the load were floating on a fluid of the same density 

as the half space. 

For a compression somewhat higher than this value the surface becomes unstable, 

but only in a range of wavelengths below a certain cut-off value, depending on the 

compression. The smallest wavelengths in this unstable range exhibit the highest 
instability. 
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2. GENERAL FORMULATION 

A solid half-space is subject to a uniform compressive stress P parallel with the 

surface. We shall consider an incompressible elastic medium of orthotropic incre- 

mental properties. The x axis coincides with the surface, and the y axis is directed 

positively outward (figure 1). They are also axes of symmetry for the mechanical 

properties of the medium. The incremental deformation analyzed here is a state of 

surface -,& 

;7 

>X 

FIGURE 1. Half-space and co-ordinate system. 

plane strain where all variables are functions of x and y. The two-dimensional 

equations of equilibrium for the stress field are 

asI1 ah z+__.-p% = 
ay ay 

0,‘ 
i 

asI2 ass2 -z+--P& = 0. 
+f i 

P-1) 

These equations were derived in earlier publications (Biot 1938, 1940a,b, 1959). The 

rotation o is defined by 

P-2) 

where u and v are the displacement components. The stress components gIl, s2s, 

s12 are the incremental stresses referred to rectangular axes rotated locally through 

the angle w. 

The strain components are 

au av 
e ..=jg e,?/=ay, 
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They are related to the incremental stress by the relations 

sIl -s = 2Ne,. 

S 22 -s = 2Nevo, 

s12 = 2&e,. 

(24 

These relations introduce two elastic coefficients N and Q and represent a material 

of orthotropic symmetry. It reduces to the familiar isotropic stress-strain relation 

for an incompressible material if 
N = Q. (2.5) 

The medium being incompressible, we must add the condition 

e,+eyy = 0. (2.6) 

Solutions of the above equations will be sought which are sinusoidal in the x co- 

ordinate. The boundary conditions at the surface will be introduced later. 

In previous work (1961 c, 1963) we have also introduced the elastic coefficients 

M=N+$P, 

L=Q+$P, 
(2.7) 

which are directly measurable and have a simple physical interpretation. The co- 

efficient L was referred to as the slide modulus. 

3. SOLUTION OF THE STABILITY PROBLEM 

The condition (2.6) of incompressibility is satisfied by putting 

(3.1) 

The field equations of the previous section then reduce to two equations with two 

unknowns 

;-$[(2N-Q+&P)g+(Q++P)i$ 

as a 
%+% av av (2NyQ-+P) p+(Q-@‘)s 

I J 
= 0. 

(3.2) 

Elimination of s yields 

(Q+lP)%+2(2N-Q) a4+ 
2 ay4 p+(Q-+P)g=o. ax2ag (3.3) 

Solutions of these equations are of the form 

$I2 = f(Zy) sin Ix, 

s = P(Zy) coszx, I 

Substituting this expression for $ into equation (3.3) we derive 

(Q + +P)f"" - 2(2N - Q)f” + (Q - iP)f = 0. 
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The primes denote differentiation with respect to the argument ly. Substitution 

of s and $ in the first equation (3.2) yields P in terms off 

P(Zy) = (2N- Q++P)f'-(Q++P)f"'. (3.6) 

The function off is the general solution of equation (3*5), i.e. 

where Pi are any of the four roots of the equation 

We have put 
/?-2mpa+ka = 0. (3.3) 

k&A, Q, WV/Q) - 1 

m=l+C-* 
(3.9) 

In terms of the coefficients M and L these expressions are written 

ka =L-P 
L' 

c=P 
2L-P’ 

m=2M--L_ 
L 

(3.10) 

Of considerable importance in this problem is the behaviour of the roots of 

equation (3.8). 

We are interested here in surface instability. Hence we must restrict ourselves to 

solutions which vanish at y = -co. Such solutions will decay exponentially with 

depth. In order to satisfy the boundary condition at the surface (y = 0), there must 

be two independent solutions of this type. Therefore, we must exclude all oases 

where one of the roots is a pure imaginary. 

There are two such cases, 

(1) m > 0 with Ic2 < 0, 

(2) m<O with m2--k2>0. I 
(3.11) 

The first case is equivalent to 
2M>L, P>L, (3.12) 

and the second to 
2M < L, P > (4M/L) (L-M). (3.13) 

The physical significance of these inequalities is evident from the analysis of a pre- 

vious paper (1963). We have shown that they correspond to what we have called 

internal buckling. Hence, exclusion of the two cases (3.11) amounts to the assump- 

tion that the parameters lie outside the range of internal buckling, i.e. we must 

assume that 
(1) m > 0 with Ic2 > 0, 

(2) m<O with m2-k2<0. 

In either case this implies 
k2 > 0 or P c L, 

(3.14) 

and if 2M < L then P < (4M/L) (L-M). 

Under these conditions the roots /3 of equation (3.8) are either real or complex 

conjugate. Their real part is different from zero, and it is always possible to choose 
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hi of them such that their real parts are positive. We shall designate these two 
roots by 

A = 4{m f&m2 - k2)), 

The solution adopted is then 
/32 = &8 - J(m2 - i?)}. 

(3.16) 

_L 

It vanishes at y = -co. 
f = Cle~lr~+C2eM~. (3.17) 

We shall now introduce the boundary forces. These forces were evaluated in 

the earlier papers (1938, 1939). In the present case the force components at the 
boundary are 

f, = s12 + Pew, 
fzJ = 822. 

(3.18) 

These forces act at the deformed surface, represented by y = 0, per unit initial area. 

Substituting the solutions derived above, we find 

f, = 7 sin Ix, 

fa, = qcoslx, 1 
(3.19) 

with T/L = -f(O) --P(O), 
q/L = (2972 + l)f’(O) -f”(O). 1 

(3.20) 

On the other hand, the surface deAexion may be written 

u, = Usinlx, 

v = v’oslx, 

and again using the above solution 

NJ = -f’(O), 

IV = f(0). 1 

By substitution of the solution (3.17) for f, this is written 

(3.21) 

(3.22) 

ax? = --GP1-~2P2, 
IV = Cl +c2. I (3.23) 

Solving these two equations for C, and C,, and substituting in expression (3.17) 

and (3*20), we obtain 

r/IL = WA+ P2)+ W1P2-I), 

q/lL = wJ32-I)+ VPd32(P1+P2). I 

(3.24) 

The product /31/32 and the sum & + p2 can be expressed very simply in terms of Ic 

and m. Equation (3.8) is quadratic in p2, and its roots satisfy the relations 

(3.25) 

Because of assumptions stated above, k2 is positive. Its positive square root is 

denoted by 
(3.26) 
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Furthermore, we have shown that under the same assumptions the roots p1 and 

pz are either real and positive or complex conjugate with a positive real part. It 

follows that without ambiguity in sign we may write 

PlP2 = k- (3.27) 

Combining this result with the second relation (3.25) yields 

(A +PZ = 2@ + k)* (3.28) 

Because of the assumptions (3*14), k > Iml h ence m + k is positive. Since p1 + pz is 

also positive, we derive 
P1+A=2/{2(m+k)1 (3.29) 

where the right-hand side represents the positive square roots. 

With these results, equations (3.24) become 

7/ZL = UJ{2(m + k)} + V(k - l), 

q/ZL = U(k- 1) + VkJ{2(m + k)}. 

The physical implications of this result will now be discussed. 

(3.30) 

4. DISCUSSION OF THE INSTABILITY FOR THE ELASTIC HALF-SPACE 

The case of vanishing initial stress is found by putting P = 0 in equations (3.30). 

In this case we find?, 
, 7= =JlJWQ), 

q = 2VZ,/(NQ). > 
(4.1) 

For isotropic material N = Q, and equations (4.1) become 

r = 2UlQ, 

q = 2VlQ. I 
(4.2) 

’ 

/-p 

his leads to the conclusion that in the absence of initial stress the surface deflexion 

of the anisotropic medium is derived by the same expression as for the isotropic 

medium, except that we must replace the shear modulus by the geometric mean of 

the two moduli N and Q. The tangential and normal deflexions also remain un- 

coupled for the anisotropic case. 

Let us now investigate how these conclusions are modified if an initial compres- 

sion P is present. In that case k is different from unity and the normal and tangential 

deflexions are coupled. Of particular interest is the case where T = 0. The surface 

is then subject only to a normal load q proportional to the normal deflexion V. We 

may write this relation in the form 

(4.3) 

with 
l+c k2-l+fk(m+l) 

‘p = 2m mGzr_’ 
(4.4) 

t A point of interest here is the application of the correspondence principle to these equa- 
tions. For a viscous solid we substitute the operators N* = N’P and Q* = Q’p. It can be 
seen that this medium behaves as an isotropic solid of viscosity 7 = ,/(N’Q’). (The operator 
p represents the time derivative.) 
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It is obtained by putting r = 0 in equations (3.30) and eliminating U between the 

two equations. Comparing with expressions (4-l) we conclude that l/rp represents an 

amplification factor due to the presence of the initial compression P. It is easily 

verified that ‘p = 1 for P = 0. When ‘p = 0 the surface deflexion becomes infinite. 

’ This condition corresponds to surface buckling. It may be written 

IV--1+2k(m+l) = 0. (4.5) 

It is an equation for c and contains N/Q as a parameter. This parameter may be 

considered as a measure of the anisotropy of the medium. For N = Q and after 

rationalization, it degenerates into the equation 

c3+2g3-2 = 0, (4.6) 

where the real root is &. = 0.84. (4.7) 

This checks with the result already established previously for this particular case 

(Biot 1958, 1959, 1960, 1961 a). The more general equation (4.5) may be written 

The variable 5 in the equation represents the critical value cm. at instability. The 

ratio N/Q corresponding to various critical values is given in table 1. 

TABLE 1. CRITICAL VALUE, &:Dp. = P/2&, FOR SURFACE INSTABILITY 
AS A FUNCTION OF N/Q 

N/Q %. N/Q 6. 
0 0 1.00 0.84 
0.20 0.02 1.51 o-90 
0.40 0.10 2.45 o-95 
0.60 0.30 4.37 O-98 
0.70 O-48 6.50 0.99 
O-80 O-80 co 1.00 

There is a range for which the solution is oscillatory with an amplitude decreasing 

with the distance from the surface. This is the region for which the roots pi and 

p2 are complex conjugate. The condition that this be the case is 

m2-k2 < 0. 

Since m + k > 0 this is equivalent to 
m-ck 

(4.9) 

or N/Q < +{1+2/(1-C2)). (4.10) 

The cross-over point occurs when this relation is replaced by an equality. Equating 

this value of N/Q with expression (4.8) at the critical point yields the cross-over 

value Q,. = N/Q = 0.8. Hence, if 

0 < N/Q < O-8, (4-l 1) 

the solution is of the oscillatory type. 

The amplification factor l/cp was computed earlier (Biot 1959, 1961 b) as a 

function of c in the particular case of incremental isotropy, i.e. for N/Q = 1. 

A similar dependence of the amplification on g is found for the case of anisotropy. 
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Evaluation of the finite strain at which surface instability occurs is illustrated 

as follows. Assume a material for which the compressive stress Pin two-dimensional 

strain is given as a function of the extension ratio h, by 

P = -K(h), (4.12) 

for a compression h < 1 and K < 0. If the material is isotropic in finite strain, 

we have shown (1961 b, 1963) that the coefficients N and Q are given by 

Hence, 

dK h4fl 
N=$ha, Q=~K-----. 

h4-1 

N lhdKh4-1 P l--h4 
-= --_ 
Q 2Kdhm’ ‘=2&=l+h4’ 

(4.14) 

We now plot a curve with the abscissa 6 and the ordinate N/Q as a parametric func- 

tion of A. The point at which this curve crosses the plot represented by table 1 

yields the critical finite strain at which surface instability occurs. 

If the material is originally anisotropic, we need an additional measurement 

besides the stress-strain curve in order to determine Q. We have discussed earlier 

(1963) how Q may be determined by measuring the slide modulus L. 

5. THE INFLUENCE OF~AVITYON SUUTACEINSTABILITY 

The author has shown (1960) that for an incompressible material the influence 

of gravity is equivalent to the addition of a surface load proportional to the deflexion. 

The boundary conditions (3.19) must, therefore, be replaced by 

f, = 7sinZx, 

fU = qcoslx-pgvcoslx, I 

where p is the mass density of the medium and g the acceleration of gravity acting 

in the negative y direction. Results obtained above are all applicable to the case 

where gravity is taken into account. All we have to do is to replace q by q-pgV. 
This substitution may be performed in equation (4.3). It becomes 

v = -___4--. 
21~ JWQ) + ps 

This gives the deflexion V cos lx of the surface under a disturbed normal load q cos lx. 
It is assumed that no horizontal force is acting at the surface, i.e. r = 0. Instability 

occurs for 
2&,WQ)+pq = 0. (5.4) 

We note that in this case the instability depends on the wavelength. This is in 

contrast with the weightless case analyzed in the previous section. 

The buckling condition (5.4) can be verified only if ‘p is negative, i.e. if the value 

of c is larger than those of table 1. As expected, the presence of gravity has a stabil- 

izing effect. Another point of interest is the existence of a cut-off wavelength. I?or 
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example, in the case N = Q, the value of ‘p varies from ‘p = 0 to ‘p = - 1 when 

6 varies from < = 0.84 to 5 = 1. Hence, for a value Q,, such that 

0.84 < &. < 1, (5.5) 

the value of ‘p is ‘p = -9 (0 < ‘p’ < 1). 

Substitution in equation (5.4) yields a critical wave number 

(5.6) 

L.= &%'2/WQ). (5.7) 

This defines a cut-off wavelength such that all deformations of smaller wavelengths 

are unstable and the instability increases as the wavelength tends to zero. 

2a 

FICNJRE 2. Deflexion of the surface under a uniform load: curve 1 for P smaller than 
the critical value of table 1 and curve 2 for P given by table 1. 

Another interesting aspect of this problem is brought out by evaluating the 

deflexion under a given surface load. For a compression P corresponding to Q,. 

of table 1 the value of ‘p is zero. Hence, the surface deflexion is 

v = dPS* (5.8) 

This value is independent of the wavelength. The load sinks to a depth where it is 

balanced by the hydrostatic pressure. Hence, in such a case the solid behaves like a 
fluid and supports the load only through a buoyancy effect. 

For example, if a uniform load of magnitude q is applied over a distance 2a (figure 

2), we may calculate the deflexion by the use of equation (5.3) and simple Fourier 

transforms. The reader will easily verify that this involves the well-known tabulated 

functions Si and Ci. 

When the lateral compression in the medium is smaller than the value correspond- 

ing to table 1, the sinking of the surface is represented by a smooth curve represented 

by line 1 in figure 2. When the compression reaches the critical value of table 1, the 

deflexion is represented by curve 2 in the same figure. The surface load sinks in by 

a uniform amount q/pg as if it were floating on a fluid of the same density. Of 

course, we must remember that the vertical slopes in this last case cannot occur 

within the limits of the linearized theory. 
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