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It is shown that two homogeneous elastic media of different rigidities adhering at a plane 
interface will become unstable at the surface of discontinuity when a certain critical magni- 
tude of initial stress is attained. The general characteristic equation for the interfacial insta- 
bility is derived for a general case of elastic anisotropy. The critical stress is evaluated as a 
function of the rigidity ratio of the two media in the particular case of isotropy. 

1. INTRODUCTION 

In a previous paper (1963b) the author has investigated the surface instability of 

an elastic anisotropic half-space under initial stress in finite strain. Our purpose 

here is to extend the analysis to the stability at the plane interface of two adhering 

anisotropic half-spaces. Each half-space is homogeneous, and its elastic properties 

are discontinuous at the interface. The two media are orthotropic with parallel 

axes of symmetry, and one of the planes of symmetry lies parallel with the interface. 

We consider a state of finite initial strain with its principal directions along the 

axes of elastic symmetry. Hence, the principal initial stresses are also directed 

along the same axes. 
The case of isotropy for one or both of the two media is, of course, included as 

a particular case, since any anisotropy induced by the initial stress will not disturb 

the axes of symmetry. 

The author has pointed out in several earlier papers that the dynamic analogue 

of surface instability is the Rayleigh wave. In the same way the analogue of the 

interfacial instability is the Stoneley wave. 
We are interested here in finding spontaneous deformation at the interface due 

to instability which causes the disturbance to vanish exponentially with the 

distance from the discontinuity. From the previous analysis (1963 b) of the free 

surface the exponential may or may not contain an oscillatory factor. 
For the instability to be confined to the interface, the initial stress and the 

elastic parameters must be such that internal buclcling does not occur. We shall 

assume that this is the case. The criteria for this requirement have been discussed 

in a previous paper (1963 a). 

2. GENERAL EQUATIONS 

Two half-space incompressible elastic media of orthotropic or isotropic properties 

are adhering at a plane interface. The interface and the directions of elastic sym- 

metry are parallel with the co-ordinate axes. The x axis is located at the interface 

(figure l), and the y axis is perpendicular to it. The medium is assumed to be in an 
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initial state of finite strain with principal directions along the axes of elastic sym- 

metry. In the x direction, initial compressions P and P’ are assumed to be produced. 

We shall consider the stability of the interface for an incremental plane stra,in 

parallel with the x, y plane. The equations are independent of any component of 

FIUURE 1. Two semi-infinite elastic media with adhering interface at y = 0. 

Q N 

FIGURE 2. Forces and displacements at the interface. 

initial stress perpendicular to the x, y plane. Moreover, the results of the present 

analysis are also valid for the case of a triaxial state of initial stress, provided 

P and P’ are replaced by the stress differences in the x, y plane. Hence it is sufficient 

to analyze the case of uni-axial initial compression. 

Let us separate the top and bottom media as indicated in figure 2. A sinusoidal 

deformation of the interface produces forces of componentsf, andfV on the surface 

of the bottom medium (figure 2b): 

f, = rsin lx, 

far = q cos lx. 1 
(2.1) 
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These components represent the force acting on an element of the surface of unit 

area before the incremental deformation is applied. The surface displacements are 

u = Usinlx, 

v = Vcoslx. 1 
P-2) 

The relation between the 

a previous paper (I 963 b) . 

The coefficients are 

with 

In these expressions 

the bottom medium 

strain relations 

surface forces and displacements has been evaluated in 

The relation is 

r/IL = aI1 U +a,, V, 

1 q/lL = aI U + as2 V. 

a11 = mm f k)), 

a 12 = k- 1, 

I a 22 = W2(m+W, 

(2.3) 

(2.4) 

(2.5) 
C=P/2&, L=Q++P.j 

the quantities N and Q are the incremental elastic moduli of 

for plane incremental strain. They correspond to the stress- 

sll-s = 2Ne 
22) 

si2 -s = 2Ne,,, 

S 12 = 2&e,,, I 
which were explained in detail earlier (I963 a, b). 

Similarly, we may consider forces acting on the 

(figure 2a). The components of these forces along 

axes are written f j: = r/sin lx, 

f; = qt cos lx. > 

The corresponding displacements are 

21’ = U’sin lx, 

2)’ = v’ cos lx. > 

P-6) 

surface of the upper medium 

the negative directions of the 

(2.7) 

(2+9 

Relations between forces and deformation may be derived from equations (2.3) for 

the bottom medium after appropriate changes in sign. We find 

f/IL = -a;, U’ + ai2 V’, 

q’/lL’ = a&U'-a;,V'. 1 
w9 

The coefficients are defined by expressions similar to (2.4) and (2.5) with primes to 

indicate that they refer to the parameters of the upper medium. 

a; = 2/(2(m’ + k’)} 

ai = E’- 1, (2.10) 

aL2 = k’2/{2(m’ + k’)) 
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with 
(2.11) 

At the interface the stresses and displacements must be the same. Therefore, we 

must write 
7 = r’, q = q’, u = U’, v = V’. (2.12) 

3. DISCUSSION OF INTERFACIAL STABILITY 

Substituting the values (2.3) and (2.9) into equations (2.12), we derive 

(La,, + flu;,) u + (La,, - L’u;,) v = 0, 

(La,, - L’a;,) u + (La,, + L’c&) v = 0. > 
(3.1) 

The condition of compatibility of these equations is the characteristic equation 

for instability 
(La,, + L’a;,) (Lo,, + _&‘a;,) - (La,, - L’a;,)a = 0. (3.2) 

This equation horresponds to the spontaneous appearance of sinusoidal deformation 

of the interface. Since the equation is independent of the parameter 1, all wavelengths 

are equally unstable. The result is mathematically analogous to the existence of 

Stoneley waves which propagate at the interface of two elastic solids with a phase 

velocity independent of the wavelength. 

We shall discuss this equation numerically in a particular case of two media of 

rubber-like elasticity. Consider a uniform finite plane strain defined by an extension 

ratio h smaller than unity and in the x direction. The initial compressions are 

P=& $4 ) ( 1 P'=& &A2 . ( 1 (3.3) 

As shown in earlier papers (1961,1963 b), the materials remain isotropic under initial 

stress and the elastic coefficients are 

The value oft; is the same for both media, 

c+s, 

and 

Hence, UJ 11 = a; = &2(m+k)), 

ur2 = u;s = k-l, 

u2g = u;z = k~{2(m+k)}. 

The characteristic equation is 

(3.4) \ 

(3.5) 

(3.6) 

(3.7) 

(34) 

(3.9) 
2k(m + Ic) _ PO--& 2 

(l-k)2 [ 1. rU0+rU; 
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If we express m as a function of k, this equation is written 

344 

(3.10) 

The case where the material is allowed to expand freely in a direction perpendicular 
to the x, y plane leads to the same equation. The incremental coefficients for this 
case were discussed in earlier work ( I 961) . The only difference lies in the value of Q 
which must now be replaced by 

y= (l-P)/(l+P). (3.11) 

Equation (3.10) is a functional relationship between 6 and the rigidity ratio ,&/~a. 
The numerical solution is given in table 1. 

TABLE 1. CRITICAL VALUE OF 6 FOR SURFACE INSTABILITY AS A 
FUNCTION OF THE RIGIDITY RATIO 

P:ll% 5 
0 0*83929 
0.2 o-92407 
0.4 0.97368 
0.6 0.99482 
0.8 o-99972 
1-o 1.0 

The case p,, = ,uA is that of the homogeneous material. The corresponding value 
5 = 1 cannot be attained, since it requires h = 0, i.e. an infinite compression. 

The case p; = 0 is that of a half-space with a free surface analyzed earlier. 
The characteristic equation (3.10) in this case becomes 

k3+k2+3k-l = 0. (3.12) 

Multiplying this equation by 1 - k, we have 

4k- (k2+ 1)2 = 0, (3.13) 

or (1 +g)aL?- 1 = 0. (3.14) 

In terms of 5, the rational form of this equation is 

[3+2[2--2 = 0, (3.15) 

whose real root is C = O-83929. Equations (3.14) and (3.15) were derived by the 
writer in the earlier papers. 
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