
A36 
Reprinted from P&ted itt U.S.A. 

THE PHYSICS OF FLUIDS VOLUME 6, NUMBER 5 MAY 1963 

General Fluid-Displacement Equations for Acoustic-Gravity Waves 

M. A. BIOT 

New York, New York 
(Received 20 September 1962; revised manuscript received 14 January 1963) 

General equations are derived for the dynamics of a fluid under initial stress in an arbitrary po- 
tential field and perturbed from equilibrium. The motion is described in terms of the displacements of 
the fluid particles from their equilibrium position. A class of equations is obtained which is applicable 
to large displacements. Complete linearization leads to two types of equations. One type called “un- 
modified” corresponds to the viewpoint of the theory of elasticity. The “modified” equations repre- 
senting the other type are expressed in terms of buoyancy forces. The modified equations lead to a 
conceptually useful analog model for internal gravity waves in a liquid. For a constant gravity field 
the linear equations are also applicable to large displacements. Classical examples for a constant 
gravity field are discussed as illustrations. 

1. INTRODUCTION 

T HE theory of wave propagation in a fluid subject 
to a gravity field has been the object of analytical 

treatment by many authors in the classical literature. 
Qne may distinguish acoustic-gravity waves rep- 

resented by the propagation of large-scale disturb- 
ances in the atmosphere. This represents the more 
general case where the propagation is governed by 
the combined effect of compressibility and gravity. 

The particular case of an incompressible fluid 
corresponds to pure gravity waves occurring in a 
heavy liquid of nonuniform density. They may be 
internal gravity waves if they occur in the body of 
the fluid and are governed by the density gradient 
or density discontinuity. They include surface waves 
as a particular case of density discontinuity. 

The propagation of gravity waves in heterogeneous 
liquids has been treated by Love, Burnside, Rayleigh, 
Lamb. (Classical references will be found in Lamb’s 
treatise, ’ p. 378.) These studies were initiated 
already in the late nineteenth century. 

General equations for small motion of a gas about 
a state of equilibrium in any constant field of force 
have been derived by Lamb (see Lamb’s treatise,’ 
p. 554). Many applications have been discussed by 
Bjerknes2 in the context of meteorology. In a recent 
book Eckart3 has treated extensively the probIems 
of hydrodynamics of the ocean and atmosphere. The 
traditional procedure is founded on Euler’s equations 
of fluid dynamics where the motion is described by 
a velocity field. 

1 H. Lamb, Hydrodynamics (Cambridge University Press, 
New York, 1932). [Reprinted by Dover Publications, New 
York, 1945.1 

* V. Bjerknes et al., Physikalische Hydrodynamik (Springer- 
Verlag, Berlin, 1933). 

1 C. Eckart, Hydrodynamics of Oceans and Atmospheres 
(Pergamon Press, Inc., New York, 1960). 

The present paper is concerned with a funda- 
mental approach of a different nature. The theory is 
developed from the standpoint of the fluid displace- 
ment instead of the velocity field. In this formulation 
the coordinates of a given fluid particle are con- 
sidered as functions of the initial coordinates and 
the time. The equations constitute a special case 
of the theory of elasticity and elastic wave propaga- 
tion under initial stress derived by the writer in 
1940.4 By inserting a zero value for the shear 
modulus the equations reduce to that of a fluid 
under initial stress. This reduction is trivial and 
immediate. 

While the results obtained from the viewpoint of 
the elasticity theory are completely general there is 
need for a more complete treatment and discussion 
in the case of a fluid. 

Our purpose here is to present such a treatment 
in rigorous and systematic form for a fluid in a 
nonuniform body force field. 

General equations for the motion of a fluid 
perturbed from equilibrium are derived in Sec. 2. 
A class of equations is obtained which is applicable 
for large displacements provided the displacement 
gradients remain small. 

By further linearization with respect to the 
displacements it is possible to derive two essentially 
different types of equations as shown in Sec. 3. 
In what we have called the “unmodified form” the 
equations embody the viewpoint of the theory of 
elasticity. Mathematically equivalent “modified 
equations” can be derived which emphasize the 
viewpoint of the mechanics of fluids by introducing 
the buoyancy forces. The modified equations are 
closely related to Euler’s equations. 

* M. A. Biot, J. Appl. Phys. 11, 522 (1940). 
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The case of an incompressible fluid is treated in 
Sec. 4. It includes internal gravity waves in a 
nonhomogeneous liquid. A conceptually very useful 
analog model is derived for this case. It is shown 
that the motion is the same as in a fluid free of 
gravity provided we add elastic forces, proportional 
to the displacement, distributed inside the fluid and 
at the free surface. 

Particular forms of these equations for the case 
of a constant gravity field are discussed in Sec. 5 
leading to classical results. 

Use of the displacement field equations instead of 
the Eulerian description has many advantages. It 
provides a clearer and more general physical descrip- 
tion, and leads immediately to variational principles. 
These principles will be derived in the next paper.’ 

The displacement-field equations also provide a 
link with the theory of elasticity and a unified theory 
applicable to both fluids and solids. This is partic- 
ularly useful in the analysis of composite fluid-solid 
media. The equations considered as a particular case 
of the theory of elasticity will be derived in a 
third paper.’ 

2. DYNAMICS OF A FLUID CONTINUUM UNDER 
INITIAL STRESS 

Consider a fluid in a state of equilibrium under 
a body force field. This state of equilibrium will be 
referred to as the “initial state.” The force field 
acting on the fluid per unit mass is represented by 
its components 

Xi = Xi(~). (2.1) 

They are functions of the coordinates x, y, x des- 
ignated in abbreviated form as x. The initial stress 
in the fluid is an isotropic stress field designated as 

s = S(x) (2.2) 

represented by the initial fluid pressure changed in 
sign. The initial mass density of the fluid is a function 
of the coordinates 

P = P(X). (2.3) 

No relation is assumed a ptiori between p and S with 
the implication that the fluid may be heterogeneous. 
The distribution of heterogeneity may be chosen 
arbitrarily. The only requirement of this initial state 
is that the fluid be in mechanical equilibrium, hence 
that the following equation be satisfied: 

as/ax< + p(~)x(~) = 0. (2.4) 

This equilibrium condition implies a relation between 
the body force field and the density. In vector 

6 M. A. Biot, Phys. Fluids (to be published). 
6 M. A. Biot, Phys. Fluids (to be published). 

notation this relation is written 

curl (pX) = 0. (2.5) 

Let the fluid be disturbed from equilibrium by a 
small perturbation. A mass particle originally at the 
point x, y, x is displaced to a point of coordinates 
& 1, {. We write 

t=x+u, v=y+v, {=z+W. (2.6) 

The components of the displacement vector of the 
particle are u, v, w. We shall designate the co- 
ordinates C;, q, { by & and the components u, v, w 
by Ui. Equations (2.6) then assume the abbreviated 
form 

ei = Xi + Ui. (2.7) 

Consider now the dynamical equations for the 
fluid in this perturbed condition. We shall assume 
here that in this perturbed motion the fluid particle 
behaves as a frictionless fluid. Hence the stress in 
the perturbed fluid remains isotropic. A fluid particle 
originally at point xi has moved to the point fi. 
The isotropic stress on the displaced particle has 
now become u, its density p’, and its acceleration is 
ai. The dynamical equations for the motion of this 
particle are 

aa/ati + &9X&) = p’(%. (2.3) 

These equations are expressed in terms of the coor- 
dinates Ei as independent variables. The problem is 
to transform these equations so that the original 
coordinates xi become the independent variables. 
An equivalent form of Eqs. (2.8) is 

(au/ax,)(axi/a,g + p/Xi = p’ai. (2.9) 

The usual summation rule is assumed in the notation. 
The partial derivatives axj/agi are easily expressed 
‘in terms of the inverse derivatives by the standard 
procedure. We write the total differentials 

& = (aE,/axJ dxi (2.10) 

and solve this system for dxi, 

dXi = (l/J)M,, &; (2.11) 

hence 

dx;/dfi = (l/J)M,,. (2.12) 

The Jacobian of the transformation (2.10) is 

(2.13) 
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The cofactors of this determinant are Mii. They are 
the partial Jacobians with suitable signs. They 
contain terms which are linear and quadratic in the 
displacement gradients dui/dxi. In evaluating Mij 
we shall introduce the assumption that the displace- 
ment gradients are small quantities such that their 
squares and products may be neglected. This is 
equivalent to the condition that the strain and 
rotations are small. However, no such restriction is 
imposed on the magnitude of’ the displacement ui. 
Under these conditions we may write 

Mi, = (1 + e)sii - aui/axi. 

In this expression e is the dilatation 

(2.14) 

,=&!+&+p% 
dY dXi 

(2.15) 

and 6ij is the Kronecker symbol 

(2.16) 

Substituting the partial derivatives (2.12) into, Eqs. 
(2.8) and taking into account the law of conservation 
of mass 

we derive 

P = P’J, (2.17) 

M,, au/ax, + p(x)X&l = p(xh. (2.18) 

The stress u on the particle may be written 

a=S+s, (2.19) 

where --s is the pressure increment. If it depends 
only on the dilatation we write 

s = Xe (2.20) 

with an incremental bulk modulus X. We may choose 
it to be either the isothermal or adiabatic modulus. 

Again by assuming the deformation and rotations 
to be small we retain only the terms which are linear 
in the displacements gradients. With this approxima- 
tion we may write 

When substituting this expression in Eqs. (2.18) 
we take into account the equilibrium condition (2.4) 
for the initial stress field and write 

hS’/c% + p(x)X&) = p(x>AX, (2.22) 

with 

AX, = Xi([) - X,(x). (2.23) 

Equation (2.18) becomes 

g+eg- $$+ pAXi = pai. (2.24) 
I % 1 

The acceleration which appears on 
side is 

the right-hand 

ai = &_ki/dt2. (2.25) 

Hence the dynamical equations are 

#?A, 
P -jj”. (2.26) 

With suitable initial and boundary conditions they 
determine the displacement field ui as a function 
of time. The initial mass density p(z) and the initial 
stress S(x) are given functions of the initial coor- 
dinates xi. 

Note that Eqs. (2.26) are not necessarily linear in 
the unknown displacements since AX, are explicit 
functions Of Ui. 

Coriolis acceleration. When the frame of reference 
is rotating the acceleration ai must include a 
Coriolis term. This is easily included in the above 
equations by introducing the antisymmetric matrix 

0 - % %I 

[n,j] = 0, 0 -s2, ) 

; 1 

(2.27) 

-i-& s2, 0 

where ~&~, are the components of the angular 
velocity of the frame of reference. In this case the 
acceleration in Eq. (2.24) is replaced by 

Ui = d2Ui/dt2 + 2Qii dUf/dt. (2.28) 

3. MODIFIED AND UNMODIFIED EQUATIONS 

The general equations (2.24) may be written in 
a different form by introducing two assumptions. 
We assume that the body force is derived from a 
potential U, i.e., 

Xi = --dU/aX,. (3.1) 

In addition we shall linearize AX, by writing 

AX. = cxLu. = _a u, z axj 7 axi ax, 1. (3.2) 

It is well known that the existence of a body force 
potential implies that in the equilibrium state the 
surfaces of constant density coincide with equi- 
potential surfaces. This is readily established by 
combining Eqs. (2.4) and (3.1). We find 

ap au ap au --= -_. 
axj ax, axi axi (3.3) 
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This equation implies that the body force Xi and 
the density gradient dp/dxi are parallel vectors. 
Under these assumptions it is possible to derive 
dynamical equation of two essentially different types 
as will now be shown. 

With the value (3.2) the dynamical equations 
(2.24) are written 

We shall refer to them as the unmodijied equations. 
In this form the equations are the same as those 
obtained directly for the linearized equations of 
elasticity for an initially stressed continuum4 as will 
be shown in another paper.’ 

Another equivalent form of Eqs. (3.4) is obtained 
as follows. We put 

s = 81 + p~j au/axi. (3.5) 

Substitution in Eqs. (3.4) taking into account Eqs. 
(2.4) and (3.1) yields 

ad + -- 
axi peXi - ujX, z = pui. (3.6) 

1 

We shall refer to these equations as the modi$ed 
equations. By using Eq. (3.1) the variable s’ is also 
written 

s’ = s + pujxj. (3.7) 

The interest of the modified form lies in their 
physical interpretation and intuitive value. 

To show this we rewrite the value (3.7) of s’ by 
taking into account the equilibrium condition (2.4) 

~1 = s - ui aX/axi. (3 8 

This expression shows that s’ is the increment of 
stress at the jixed point xi. 

On the other hand, let us look at the terms 
containing the body force in Eq. (3.6). Taking into 
account relations (3.3) we write 

pexi + uixi 2 = xi $ (puJ. (3.9 
E 1 

These terms represent the buoyancy force on the 
fluid in a fixed volume of space. It is directed 
normally to the equipotential surface. To the first 
order this buoyancy force and the acceleration ai 
may be considered as values at the fixed point xi. 

With this interpretation Eq. (3.6) becomes 
intuitively self-evident as expressing Newton’s law 
for a fluid particle at the fixed point. 

Attention is called to an important property for 
the case of a constant gravity field. In this case 

AXi drops out and linearization is not required. 
Hence for a constant gravity field the modified 
equations (3.6) are equivalent to Eqs. (2.24) and 
are therefore applicable to large displacements. 

Relation to Euler’s equations of fluid dynamics. 
Using relation (3.9) the modified equations (3.6) 
become 

a.9 
- - X~-+(PUJ = Pk. 
axi 1 

(3.10) 

This result is closely related to the equations derived 
from fluid dynamics. Euler’s equations are 

p e!!fVi& ( ax, > = -$+ pxi, (3.11) 
1 

where ui and p denote the fluid velocity and pressure 
at the fixed point xi. Taking the time derivative 
of Eq. (3.11) neglecting higher order terms yields 

a2vi P,T = (3.12) 

The equation of conservation of mass is 

ap/at + a(pv,)/ax, = 0. (3.13) 

Hence, eliminating ap/dt between the last two equa- 
tions we obtain 

a?, 
Pz= a* -- 

( > axi at - xi $ (Pf4>* (3.14) 
, 

This result is identical in form with Eq. (3.10). 
The velocity v, replaces the displacement ui and 
-dp/dt replaces s’. Dividing Eq. (3.10) by an 
infinitesimal time interval At yields Euler’s equations 
(3.14) in the limit. 

4. ANALOG MODEL FOR INTERNAL GRAVITY WAVES 
IN A LIQUID 

In an incompressible liquid we put 

e=O (4.1) 

in the modified equations (3.6). They are simplified to 

asf ap -- 
axi u,x,ax_ = pai. 

1 
(4.2) 

Equations (4.1) and (4.2) are four equations for s’ 
and the three displacement components Ui. 

They are identical with the dynamical equations 
for a liquid initially stress free with distributed body 
forces acting on the fluid particles proportionally to 
their displacement from equilibrium. 

This new physical system may be considered as an 
analog model for the actual fluid under initial stress. 

The stress in the model is s’. It is different from 
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As an illustration we apply Eqs. (5.5) to the classical We have put 

case of two dimensional motion in an ocean of con- 
stant depth h. We put 2 

0, = _&%? 
Ph’ 

;= v. (5.9) 

w 
u=--$ v = 0, w=_e 

ax ’ 
(5.7) The parameter V is the phase velocity along z. 

The boundary condition at the surface is derived 

and from equations (5.5) and (5.6) and is written 

I& = exp (ikx - iwt)f(.z). -+f = 2. (5.10) 

This solution satisfies the condition e = 0 of 
incompressibility. Substitution of the values (5.7) The other boundary condition at the rigid bottom 

into Eqs. (5.5) yields two equations for s’ and f. is f = O. 
By elimination of s’ we are left with a Sturm-Lion- ACKNOWLEDGMENT 
ville equation for f. 

This work was supported by the Air Force Office 

- w2)f = 0. of Scientific Research under contract No. AF- 
(5’8) 49(638)-837. 
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