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Variational principles are developed for the dynamics of a fluid under initial stress in an arbitrary 
potential field and disturbed from equilibrium. They are formulated in terms of the fluid displace- 
ment. Two distinct principles are obtained which are mathematically equivalent but differ funda- 
mentally from the physical viewpoint. The difference results from expressing the potential energy 
in terms of buoyancy forces or strain energy. A very general stability criterion is obtained. An im- 
portant new feature is the inclusion of surface integrals in the potential energy. The simplified princi- 
ple for the case of a liquid is interpret.ed by means of an analog model. Lagrangian equations and 
methods of normal coordinates for the evaluation of transient propagation are applicable along 
with general theorems on the equivalence of group velocity and energy flux. As an illustration the 
case of a constant gravity fichd is discussed. 

I. INTRODUCTION 

I N a previous paper fluid displacement equations 
were derived for the dynamics of a fluid per- 

in terms of the potential energy of the analog model 
which was discussed in the previous paper.’ 

turbed from equilibrium.’ The body force acting 
on the fluid is represented by a completely general 
potential field. 

The existence of a variational principle for these 
equations is inferred from the variational principle 
derived by the writer for the theory of elasticity 
under initial stress.2 The derivation from this more 
general viewpoint is the object of the paper imme- 
diately following this one. 

In the present paper variational principles are 
derived directly from the dynamical equations 
governing the fluid displacements. It was found’ 
that these equations are of two fundamentally dif- 
ferent types which we have called the modified and 
the unmodified equations. Correspondingly there 
are two different types of variational principles 
which we refer to as the modified and the unmodi- 
fied principle. 

The unmodified principle is derived in Sec. III. 
In this principle the potential energy is expressed 
in terms of the product of the stress by the volume 
change of the fluid. Because of the state of initial 
stress we must include the second-order terms in 
the volume change. The form of this variational 
principle is essentially the same as derived from the 
theory of elasticity in terms of the strain energy. 
An interesting feature of this principle is that in 
addition to a volume integral extended to the fluid 
the potential energy must include a surface integral 
extended to the rigid boundary of the fluid and 
depending essentially on the curvature of this 
boundary. 

The modified principle is derived in Sec. II. The 
potential energy is expressed in terms of the work 
done against the bouyancy forces. It is the sum of a 
volume integral extended to the fluid and a surface 
integral at the free surface. A condition of static 
stability is readily derived from this principle. It 
yields a generalization of the well-known stability 
criterion of a gas in a constant gravity field. A 
surface stability condition is found to be related to 
the “Taylor instability.” A simplified principle for 
a liquid is also derived. It is found to be expressed 

That the modified and unmodified principles are 
equivalent is demonstrated in Sec. IV. 

The total potential energy may be expressed in 
alternate forms corresponding to these two principles. 
In any case, the general variational formulation leads 
to Hamilton’s principle and opens the way to the 
use of generalized coordinates and Lagrangian equa- 
tions as in the classical problem of oscillations of a 
conservative system with potential and kinetic 
energies. 

1 M. A. Biot, Phys. Fluids 6, 621 (1963). Multiple forms 
of the equations and the corresponding variational principles 
were originally derived by the writer in an Air Force Office 
of Scientific Research Report “Generalized Theory of In- 
ternal Gravity Waves” (1962). 

As a consequence the method of normal co- 
ordinates3 developed for the treatment of propaga- 
tion of pulses and transients becomes readily ap- 
plicable to acoustic-gravity waves. 

It is also pointed out as another consequence of 
the same results that in waveguide propagation there 
is equivalence between group velocity and energy 
flux as already shown by the writer for the more 
general case of an elastic solid under initial stress.4 

3 M. A. Biot and I. Tolstoy, J. Acoust. Sot. Am. 29, 381 
(1957). 

2 M. A. Biot, Phil. Mag. 27, 468, 1939. 4 M. A. Biot, Phys. Rev. 105, 1129 (1957). 
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._ 
-The variational principles for the particular case We recognize the left-hand side of Eqs. (2.1) to be 

of a constant gravity field are discussed in Sec. 5. the same as the integrand in the volume integral 

II. MODIFIED VARIATIONAL 
(2.6). As a consequence if the dynamical 

., (2.1) are verified throughout the volume T, 

A “‘modified form” of the dynamical equations fo variational equation is also 

,_. 6’ fluid under initial stress were derived as’ 

as’ 
- - peX, - u,X, $ = pai, 
axi I 

(2.1) 

with 

s’ = s + f&xi, (2.2) 

where p is the initial density distribution; Xi = 
- dU/axi is the body force field derived from a 
potential U; ui is the fluid displacement; s is the 
incremental stress of a fluid particle; ai is the ac- 
celeration of a fluid particle; and e = aui/dxi is 
the volume dilatation. It is easy to obtain directly 
a variational principle for these equations. The in- 
variant to be considered is 

&e + p~~ixj + 3X, $, ZW) dT, (2.3) 
* 

where the integral is extended to a volume T of the 
fluid. In accordance with the definition of s,l we 
must insert s = .Xe.’ 

That expression (2.3) leads to the correct vari- 
ational principle may be guessed from inspection of 
the integrand. W8’notice that it contains a term 
$xe” representing the elastic energy while the re- 
maining terms represent the work done by the 
buoyancy forces. 

This is readily verified by evaluating the variation 
of expression (2.3) due to virtual displacements 6~~. 
In this evaluation we take into account the following 
important pro$&ty: 

Because the fluid is initially in equilibrium in a body 
force field derived from a potential we may write’ 

xi ap/axi = xi ap/axi. (2.5) 

With this result and after integration by parts the 
variation of 151, becomes 

ap - peXi - UjXj G 
> 

AU; d7. (2.6) 

displacement U< and its variation 6ui are tangent 
to the boundary surface at the initial point. This is 
because ni is the normal direction of the boundary 
at the point xi and not at the displaced point 
ti = xi + Ui. It is important to note this exact 
meaning since for a curved surface it violates the 
actual physical boundary condition with a second- 
order discrepancy. Of course, conditions (2.9) are 
also verified at boundaries when the displacement is 
required to vanish. We denote by B the solid bound- 

The surface integral extends to the boundary A of 
the volume r, and ni denotes the components of 
the outward unit vector normal to the boundary. ary where conditions (2.9) are imposed and denote 

6W, + I...- pa, 6ui dr 
I 

= 
ss 

A (S + puiXj)ni 6ui dA. (2.7) 

This is a variational principle which must be verified 
for virtual displacements 6ui arbitrary in the volume 
and at the boundary. Because it is a direct conse- 
quence of Eqs. (2.1), we shall refer to it as the 
modified variational principle. The value of W7 may 
be written in a simpler form which brings out more 
cIearly its physical significance. The vectors Xi 
and ap/dxi are perpendicular to the equipotential 
surfaces. Their algebraic projections on this normal 
direction are denoted by X and aplan. The normal 
component of ui is denoted by u,. With these defi- 
nitions we write expression (2.3) as 

In this form the physical significance of the terms 
in the integrand is self evident. 

Potential Energy of the Free Surface 

The variational principle (2.7) may be given a 
simpler form by transforming the surface integral 
on the right-hand side. We show that by introducing 
a constraint for the displacement at the solid bound- 
ary it reduces to a surface integral over the free 
surface which may then be incorporated in the total 
potential energy of the system. 

We shall assume that on a solid boundary the 
displacements satisfy the following constraint: 

niu, = 0, ni 6Ui = 0. (2.9) 

These equations express the condition that the 
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by F the free boundary where both the initial stress 
X and the incremental stress s must vanish, i.e., 

s=s=o. : (2.10) 

Because of conditions (2.9) and (2.10), the surface 
integral in the variational principle (2.7) becomes 

= puiXini 8ui dA. (2.11) 

The domain of integration in this expression extends 
only to the free surface F. A further simplification 
arises from the condition of initial equilibrium of 
the fluid which implies that the free surface is an 
equipotential surface. Introducing X, the normal 
component of the body force, and u,, the normal 
component of the surface displacement into Eq. 
(2.11) we obtain 

ss (s + puiXj)ni 6uj dA = - 6W,, (2.12) 
a 

with 

wvl?p = -; pXu: d A. (2.13) 

Note that the value of X is positive along the out- 
ward normal. 

By inserting expression (2.12) into the variational 
principle (2.7) it becomes 

S(W, + W,) + /I[ PU, 6Ui d7 = 0. (2.14) 
.T 

The total potential energy 6 in this case is repre- 
sented as the sum of two terms 

ClJ = w, + wp. (2.15) 

One term W, corresponds to the potential energy 
stored in the volume r. The other term Wp is con- 
tributed only by the deformation of the free surface. 

Stability 

Static stability requires that the potential energy 
(2.15) be positive definite. Hence WF and W, must 
be also positive definite. According to expression 
(2.13) Wp will be positive definite if 

the integrand is a quadratic form in the two variables 
e and u,. It will be positive definite if 

AX(ap/&z) - (pX)” > 0. (2.17) 

If we choose the normal to be oriented in the di- 
rection of the body force (X > 0) condition (2.17) 
becomes 

(a/an)(log p) > pX/h. (2.18) 

This criterion generalizes to the case of an arbitrary 
body force potential the well-known stability 
condition for a gas in a constant gravity field. 

Analog Model and the Variational Principle for 
Internal Gravity Waves in a Liquid 

For an incompressible fluid we put e = 0 in the 
value (2.8) of W,. It is simplified to 

w, = ; X%.?d an n 7. (2.19) 

This result could also be derived immediately by 
considering the analog model introduced and dis- 
cussion in the previous paper.’ The value (2.19) of 
W7 is obviously the potential energy stored in the 
elastic restoring forces of the analog model inside 
the fluid. Similarly Wp is the potential energy of the 
surface restoring forces of the analog model. The 
stability of the equilibrium clearly depends on the 
sign of X aplan in the fluid. If the body force and 
the density gradient are oriented everywhere in 
the same direction, W, is positive definite. The same 
is true for Wp if the body force acts inward at the 
free surface In this case the fluid is in stable equilib- 
rium. It is possible to find examples where this con- 
dition is not fulfilled if the body force is produced 
by an acceleration jield. In particular this is seen 
to be the explanation of the so-called “Taylor 
instability.” 

If the fluid is composed of a number of homo- 
geneous layers with density discontinuities the po- 
tential energy is replaced by a sum of surface in- 
tegrals. The normal gradient aplan is replaced by 
the density discontinuity and the surface integral 
represents the potential energy of the restoring forces 
applied to the discontinuity surfaces in the analog 
model. 

III. UNMODIFIED VARIATIONAL PRINCIPLE 

x<o (2.16) Another form of dynamical equations for a fluid 

at the free surface. This inequality means that the 
under initial stress derived in the previous paper1 

body force must be directed inward at the free 
is written 

surface. 
AT + e$ - za$ - p&ui = pai. 

Referring to the value (2.8) for W, we note that axi (3.1) , , , , , 
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They were referred to as the unmodified equations. 
The initial stress field in the fluid is denoted by X. 
A variational principle for these equations is derived 
as follows. We put 

with 

@se -l- (R + pAU) dr, (3.2) 

(R = Ls e2 
2 ( 

AU = i=u.u. 
2ax, axi 1 1. 

(3.3) 

It is seen that if Eqs. (3.1) are verified the following 
variational relation is also valid: 

pai 6Ui dT 

= b+ Se)% - s$$ni hidA. 1 
(3.4) 

I 

The surface A denotes the boundary of the volume r 
of fluid and ni is the outward unit normal to this 
boundary. 

The variational equation (3.4) corresponds to the 
dynamical equations (3.1). We shall therefore refer 
to it as the unmodi$ed variational principle. It will 
be shown’ that in this form it is a particular case of 
a more general variational principle of the theory 
of elasticity of an initially stressed continuum. 

We note an interesting physical interpretation of 
the quantity 6~. It is the product of the initial stress 
S by a factor which represents the second-order 
volume increment as can be shown by expanding 
the Jacobian. 

The surface integral on the right-hand side of 
Eq. (3.4) may be simplified by assuming displace- 
ments ui tangent to the solid boundary at the initial 
point. Hence at the solid boundary we must satisfy 
the constraints (2.9). On the other hand, at the free 
surface s = S = 0. Under these conditions the 
surface integral in the variational principle (3.4) 
becomes 

(S + Se)ni - S 2 ii 1 au, dA 
I 

=- /-II s auj cni #ZG dA. (3.5) Ll i 

The surface integral is now restricted to the rigid 
boundary B. 

differential, i.e., 

#F 
G uiui > 

6 M. A. Biot, Phys. Fluids 6, 778 (1963). and the surface integral (3.5) becomes 

Potential Energy of a Curved Rigid Boundary 

As in the previous case, it is possible to incorpo- 
rate the surface integral into an over-all potential 
energy of the fluid. We will show that the surface 
integral (3.5) may be expressed as an exact dif- 
ferential by taking into account the boundary con- 
straints (2.9). Consider a function F(x1x2x3) such 
that the rigid boundary is defined by the equation 

F(x1x*x3) = 0. (3.6) 

Putting 

the unit normal vector is written 

ni = 6 aF/ax,. (3.8) 

The f sign is chosen to correspond to the outward 
direction of ni. Inserting this expression of ni into 
the constraints (2.9) we find that the relation 

cp(aF/axj)ui = 0 (3.9) 

must be verified on the rigid boundary. Equation 
(3.9) also implies 

(aF/axi)ui = 0 

on the same boundary. 

(3.10) 

If we consider qb(aF/azi)ui as a function of the 
coordinates, Eq. (3.9) further implies t.hat its 
gradient is normal to the rigid boundary. In view of 
the second condition (2.9), this is expressed by the 
relation 

or 

(3.12) 

By Eqs. (3.8) and (3.10), this simplifies to 

uj 6UJ. (3.13) 

‘The right-hand side of this equation is now an exact 

, (3.14) 
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- Sa”‘n. 6u. dA 
axi ’ * (4.1) 

ZL~ZQ dA. (3.15) 
In this identity S is an arbitrary function of the 
coordinates and 6ui an arbitrary variation. If we 

We may now introduce a surface potential energy 
identify S with the initial stress in the fluid we may 

of the rigid boundary. 
use the initial equilibrium conditions, i.e., 

/I tPF s,=-$ s+r---- 
as -= 

dXi aXj 
uiui dA. (3.16) dX< 

-d-i, 

B (4.2) 

By using relations (3.5) and (3.15) the variational 
a2s a?7 ~=~ 

principle (3.4) is written in the form 
ax, axj p axi a2+ -x$. z 

6(6, + s,) + //I poi 6Ui dr = 0. 
By introducing these expressions into the identity 

(3.17) (4.1) it becomes 
I 

Hence we have again represented the total potential 
energy 6 as the sum of two terms 

2 (pXiui sth,j - 6Y = -$ (Se hi) 
I 1 

6 = 6, + 6e, (3.18) 

where 6, is the potential energy stored in the volume 
while 68 is the surface energy stored at the curved 
boundary. The reason for the contribution (PB to 
the total potential energy is due to the fact’ that 
the boundary displacement is assumed to be tangent 
to the boundary. As already mentioned above, this 
will violate the actual boundary constraint except 
if it is a plane surface. The discrepancy is of the 
second order and the initial normal stress con- 
tributes a second-order energy term represented by 
(Pi. It is seen from Eq. (3.16) that pe = 0 if F 
is a linear function of the coordinates, i.e., if the 
rigid boundary is a plane surface. 

It can be verified that the surface integral in the 
variational equation (3.4) can also be made to vanish 
if the displaced point is forced to remain on the 
rigid boundary. However, this would introduce a 
nonlinear boundary condition. 

IV. EQUIVALENCE OF THE TWO VARIATIONAL 
PRINCIPLES 

In the preceding sections we have derived two 
essentially different forms of the variational prin- 
ciple. The modified form (2.7) corresponds to the 
dynamical equations (2.1). The unmodified form 
(3.4) corresponds to the dynamical equations (3.1). 

That these two principles are rigorously equi- 
valent may be shown as follows. 

Consider the identity 

- -& (Sz bui) - 6(@ + p AU). (4.3) 

We have put 

Y = pXiuie + $Xi(ap/diTJU,Uj, (4.4) 

while R and AU are expressions (3.3). If we add 

(a/axJ(s 6~~) - 6 S(se) - pui 6ui (4.5) 

to both sides of Eq. (4.3) and integrate throughout 
the volume r of the fluid, it becomes 

(S + pXiUj)TZi &U< dA 

- S 2 nj 1 hi dA - 66, - 
I sss pui hi. (4.6) 

7 

Putting one side or the other of this equation 
equal to zero yields one of the two variational prin- 
ciples (2.7) or (3.4). Hence they are equivalent. 

Note a fundamental difference in the potential 
energy for these two principles. In the modified 
form as shown by the expression of W, the state 
of initial stress is taken into account through the 
body force Xi alone. On the other hand, in the un- 
modified form the potential energy contains the 
initial stress S itself and a term AU which depends 
on the variation of the body force field. The latter 
term does not appear in the modified equations. 

V. LAGRANGIAN EQUATIONS AND HAMILTON’S 
PRINCIPLE 

The variational principles are written as a single 
equation 
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pai 6u, d7 = 0. (5.1) 
ing the transient propagation in the medium under 
pulse excitation. The method becomes readily ap- 

When the potential energy 6~ is expressed by Eq. 
plicable for acoustic-gravity and internal gravity 

(2.15) this yields the modified variational principle 
waves by inserting in the Lagrangian equations the 

(2.14). When the value (3.18) is used for 6 we ob- 
value of the potential energy 6 derived above. The 

tain the unmodified variational principle (3.17). 
important point here is the fact that this potential 

In any case, 8 is a homogeneous quadratic func- 
energy must include the surface integral represented 

tion of the displacements expressed in various ways. 
by the terms lSIF or pB. 

When there is no Coriolis term we may introduce 
the invariant 

Equivalence of Group Velocity and Energy 
Transport 

T = i sss puiui dr. (5.2) The variational principle for the theory of elas- 
r 

The variational principle (5.1) then becomes 
ticity under initial stress was used by the writer 
to derive general theorems on the equivalence of 

where 

6(6 + p2T) = 

p = a/at 

is a time differential operator 

0, (5.3) 
group velocity and energy flux for any type of wave- 
guide system.4 The theorem was also derived for 
electromagnetic waveguides. The theorem is valid 

(5.4) 
of course for a fluid under initial stress by con- 
sidering that it is the limiting case of a solid when 

treated as an alge- we assume that all elastic moduli vanish except _ . . . 
braic quantity. By introducing the kmetic energy the bulk modulus. It may also be derived directly 

in the present case. The proof depends essentially 
on the possibility of expressing the dynamical equa- 
tions in the variational-Lagrangian form (5.3) and 
follows exactly the procedure of reference 4. 

p&i& dr (5.5) 

and writing 

s 

1 
6 dt(3 - s) = 0, (5.6) 

II 

the variational equation becomes a particular case 
of Hamilton’s principle. 

Lagrange’s equations with generalized coordinates 
pi are obtained from these principles by expressing 
the displacements as linear combinations of fixed 
configuration fields Uii(zlz223), i.e., 

ui = uijqj. (5.7) 

Substituting in the expression for 6’ and T we find 

6 = $CLiiQiqj, T = $miiqiqi. (5.9) 

The variational principle (5.3) yields the Lagrangian 
equations 

d6/aqi + p2 aT/aqi = 0. (5.9) 

They are the same as the classical equations for 
the mechanics of a conservative system. The natural 
oscillations are normal coordinates. 

Formulation of Wave Propagation by 
Normal Coordinates 

The natural oscillations derived from the La- 
grangian equations (5.9) are normal coordinates of 
the fluid medium. As shown earlier,3 these normal 
coordinates may be used in a new method of evaluat- 

VI. CONSTANT GRAVITY FIELD 

We shall consider the case of a uniform gravity 
field of acceleration g. With a vertical z axis directed 
positively upward, the body force field is represented 
by the components 

xi = (O,O, -9). (6.1) 

The modified variational principle (2.14) and (5.3) is 

6(w, + wp) + p2 6T = 0, (6.2) 

where 

dp 2 +ke’ - pgew - &g - w 
dz 

dr, 

w, = +g /I pw2 dA , (6.3) 
F 

T=; 
sss 

p(u” + v2 + w2) dT 
7 

(u, v, w, are displacements). An extensive discussion 
of the properties of acoustic-gravity waves based on 
the writers fluid-displacement equations is given by 
Tolstoy in a simultaneous paper.’ He also shows 
for the particular case of a constant gravity field 
how the dynamical equations may be derived from 
a Lagrangian density. 

6 I. Tolstoy, Rev. Mod. Phys. 35, 207 (1963). 
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The variational principle (6.2) yields directly the 
differential equations (5.2) of reference 1 for the 
case of a constant gravity. 

In particular consider a liquid of constant depth h. 
Putting e = 0 the value of W, becomes 

%Q, = -+g (6.4) 

Consider a wave sinusoidal along x with plane 
motion in the xy plane. The displacements are ex- 
pressed as 

2 
WC 

= _gldp 
P dz 

v = ;. (6.7) 

u = df cos kx 
dx ’ 

w = kfsin kx, 

v = 0. 

(6.5) 

The variational principle (6.6) yields for the un- 
known f the Sturm-Liouville equation and the 
boundary condition already derived for this prob- 
lem as shown by Eqs. (5.8) and (5.10) of reference 1. 
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