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I 
General equations for acoustic-gravity waves in a fluid are derived as a particular case of the theory 

of elasticity of initially stressed continua. The differential equations for the fluid dynamics and the 
corresponding variational principles are obtained from the more general results for the elastic solid 
established earlier by the writer. The transition from solid to fluid is illustrated for the special case 
of a constant gravity field. The dynamics of a fluid under initial stress is thus brought within the 
scope of the theory of elasticity providin g a unified treatment of wave propagation in composite 
fluid-solid systems. 

I. INTRODUCTION 

D YNAMICAL equations and corresponding vari- 
ational principles for acoustic-gravity waves 

have been derived and discussed in two preceding 
papers’ ,’ in terms of the fluid displacement field. 
It is now shown that these results constitute a par- 
ticular case of the theory of elasticity of an initially 
stressed continuum.3’4 

There are many advantages in considering the 

1 M. A. Biot, Phys. Fluids 6, 621 (1963). 
* M. A. Biot, Phys. Fluids 6, 772 (1963). 
3 M. A. Biot, J. Appl. Phys. 11, 522 (1940). 
4 M. A. Biot, Phil. Mag. 27, 468 (1939). 

problem of acoustic gravity waves in a fluid from 
this viewpoint. As we have seen, use of the dis- 
placement field leads directly to the expression of 
the potential energy and to the corresponding vari- 
ational principles. In addition, a unified theory 
renders possible the treatment of propagation in 
coupled fluids and solids as a single system. 

In Sec. II the general equations for the dynamics 
of an elastic solid under initial stress are briefly 
recalled.3 By inserting isotropic components of stress 
in these equations we obtain the unmodified equa- 
tions for acoustic-gravity waves which were pre- 
viously derived.’ 
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The variational principle for an elastic solid under 
initial stress was derived by the writer in 1939.4 ,vhere 
In Sec. III it is applied to the case of a fluid by in- 
serting isotropic components for the stress. This 
yields the unmodified variational principle for 

Sii = S~ij, Sij = S6ij, (2.7) 

&ii = 
0 

acoustic-gravity waves which was derived by a i 

(i f j), 
(2 3) 

1 (i = j). 

direct method in the previous paper.’ The modified By inserting these values into Eqs. (2.4) we derive 
principle also follows as a rigorous consequence since 
it was shown in reference 2 that the two principles 

ds 
- - PeX, ~ pWijXj 

are mathematically equivalent. l3Xi 

In Sec. IV equations are written for elastic waves as a2Ui 
in an isotropic solid in a constant gravity field with - eii z + pAXi = P 2-w (2.9) 

initial hydrostatic stress. With zero value of the 
shear modulus these equations become those of 

The condition of initial equilibrium of the fluid is 

acoustic-gravity waves in a fluid. &S/ax, + pXi = 0. (2.10) 

II. DYNAMICAL EQUATIONS By taking this relation into account, Eq. (2.9) 

In a paper3 dealing with the propagation of elastic becomes 

waves in a solid under initial stress the following 
results were derived. Initially the solid is in equi- 

~+~$-=+pAXi=p$. (2.11) 

librium in a state of initial stress Sij. The external 
, , I 

forces acting on the medium are the body force field Introducing a body force derived from a potential 

Xi and certain boundary forces f,. The coordinates u and linearizing AXi we write 
are xi. In a small perturbation of this state the 
particle coordinates become 

5: = Xi + Ui (2.1) 

Xi = --dU/axi 

(2.12) 

and ui represents the displacement field. The strain is With this value of AXi, Eqs. (2.11) become 

et, = )(aui/axj + &4j/f3ZJ. (2.2) 

The local rotation of the medium is 

Wij = $(du,/dx, - a26,/axi). (2.3) 

The incremental stresses due to the perturbation are 
denoted by Sij and are referred to axes which have 
been subject to a solid rotation wij. They are linearly 
related to the strain components eij through suitable 
elastic coefficients. The dynamical equations for this 
medium as derived by the writer3 are 

2 + p AX, - PWikXk - @Xi 

I 

a”Zi a"ui 
- ’ aXi axj ui=pz- (2.13) 

Equations (2.11) and (2.13) are identical with Eqs. 
(2.24) and (3.4) derived in a previous paper* by a 
more direct method for the dynamics of a fluid 
under initial stress. 

III. VARIATIONAL PRINCIPLE 

In the theory of elasticity under initial stress 
developed by the writer,3 the following variational 

+ Sj& 2 , + si, 2 _ ejk 5!!S2 = a2ui principle was established' for the static iase. 

I axj P xr. (2.4) 

The initial density distribution is denoted by p and 6 A.V dr = AX&& 

AXi = X&) - Xi(x) (2.5) 

represents the increment of body force on a particle 
+ ss, Afi 6~; dA, 

due to its displacement. The volume dilatation is where A is the boundary of the volume r and 

e = auj/axi. (2.6) AI’ = stiieij + $Sij(eikWkj + ejkwk; + w<kWjk), 

For a fluid the stresses are isotropic. We write tij = S{j + Sije - $(Sikeik + Sikeik). 

(3.1) 

(3.2) 
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The incremental boundary force is 

Afi = (sif -I- Swik -I- Si,e - Sikeik)ni, (3.3) 6 I?.. 
T (3.se + CR + pAU> d7 + /// ~ai 6Ui d7 

where nj is the unit outward normal to the boundary. = 
Validity of the principle (3.1) for dynamics is 

Ss, [(s + Se>%, + j 2n,] 6Ui dA. 

implicit from d’hlemberts principle by including the This result is identical with the unmodified va& 
inertia force into the body force. This is obtained ational principle expressed by Eq. (3.4) of the 
by replacing AX< by AXi - ~i, where ai is the previous paper.2 
particle acceleration. The variational principle (3.1) 
becomes IV. CONSTANT GRAVITY FIELD 

6 
sss 

AVdr = 
7 /lYY 

Consider an elastic solid initially in equilibrium 
(Ax-, - ui)p 6u< dr in a constant gravity field 

T 

+ ss, Afi 6~; dA. 

xi = (O,O, -9). (4.1) 

(3*4) The x axis is directed vertically upward. 
Let us assume that the state of initial stress is 

Assuming a body force potential U according to hydrostatic. Hence 
Eq. (2.12) we may write 

as/e~ = aslay = 0, as/ax = pg. (4.2) 

AXi 6Ui = - sAU, (3.5) The density p is a function of z. 

with 
We also assume isotropic stress-strain relations 

for the incremental stresses 

Hence Eq. (3.4) takes the form 

= ss Afi 6ui dA. (3.6) 
A 

Let us now introduce the isotropic fluid stresses 
(2.7) into the values of AV and Aji. We find 

AV = $se -I- a, 

(3.7) 

sii = 2peii + &,Xe. (4.3) 

The dynamical equations (2.4) become 

~+i%+!+pg~=p!%, 

gG as22 
ax +ay + 2 - pgay = pa$ ) 

~~+~+&??-pg!!z+pge=p$!. 

(4.4) 

(displacements are u, a, w). These equations were 
derived by the writer in 1940.3 By putting the 
rigidity equal to zero (P = 0) we obtain the dynam- 
ical equations for a fluid. They coincide with Eqs. 
(5.2) discussed in a previous paper.’ 
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