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Abstract. Fundamental equations are derived for the mechanics of a fluid- 
filled porous medium under initial stress. The theory takes into account elastic 
and viscoelastic properties, including the most general case of anisotropy. It 
includes the theory of stability, and of acoustic propagation under initial stress, 
and by thermodynamic analogy the dynamics of a thermoelastic continuum 
under initial stress. Equations are also developed for a medium which is iso- 
tropic in finite strain. General variational principles are derived by which 
problems are easily formulated in curvilinear coordinates or in Lagrangian form 
by using generalized coordinates. It is shown that the variational principles are a 
direct consequence of the general equations of the thermodynamics of irreversi- 
ble processes, and lead to real characteristic roots for instability. 

1. Introduction. In the mechanics of porous media which has been developed 
to date the effect of the initial stress has not been introduced into the basic 
equations. The generalization of the theory to include this effect is of considerable 
interest in many applications. In civil engineering and geophysics the problems 
of consolidation and tectonics involve earth masses which are initially under high 
initial stress. In problems of foundation engineering the influence of the initial 
stress appears in a buoyancy effect which is actually used in design procedures 
and amounts to “floating” a building on its foundation. Since earth masses are 
generally porous and fluid-saturated, a consolidation theory taking into account 
this initial stress is obviously needed. On the other hand, problems of tectonic 
folding in geology are to a large extent problems of stability of porous media 
under initial stress. This requires an extension of the stability theory of continua 
to porous media. The theory presented in this paper is essentially the mechanics 
of fluid saturated porous media initially in equilibrium in a stressed condition 
and subjected to small perturbations. However, by a trivial limiting process 
where the variables become infinitesimals the theory leads also to instantaneous 
time rate equations valid for finite deformations. 

The consolidation theory [l] [lo] with suitable adaptations is combined with 

1 This work was sponsored by the Shell Development Co. 
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the mechanics of continua under initial stress [2], [3], [4], [5], [6]. That such a. 
generalization is readily possible was already pointed out many years ago by 
the writer in the original paper on consolidation [I]. 

The implications of the theory extend beyond the scope of stability and the, 
mechanics of porous media. This is outlined briefly in the Appendix. The results 
are immediately applicable to acoustic propagation in a porous medium under : 

initial stress including problems of seismic propagation in porous rock and 
geological structures. By thermodynamic analogy the same equations also 
govern the dynamics and stability of a thermoelastic continuum under initial 
stress. 

2. Equilibrium equations for the incremental stress field. A porous medium 
is assumed to be in equilibrium in a state of initial stress. The total initial stress 
in the bulk material is denoted by Si ,. . With a body force Xi per unit mass and 
a mass density p for the bulk medium the equilibrium condition for the state of 
initial stress is 

(2.1) 2-,+ /gyi6.= 0 

, 

The pore contains a fluid of mass density pI . In the initial equilibrium the fluid 
pressure P in the pores must satisfy the condition !jj 

(2.2) 
aP I A ,.y; 
axi I C’*. ‘L, 

In the present section the properties of this fluid will not appear explicitly in 
the equations. 

A first order perturbation of the equilibrium is now introduced. The coordinates 
2; of a point attached to the medium become 

(2.3) ti = Xi + Ui 

after deformation. The stress initially Sii becomes Cii at the displaced point. 
The strain is 

and the local rotation is 

(2.5) 

eij = a(%+%) 

A volume V in the initial state becomes V’ after deformation and its surface 
S becomes S’. The total force acting on S’ after deformation is 
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The stress at the displaced point referred to fixed Xi coordinates is Zii and n: is 
the unit normal to S’. The surface integral may be transformed to the original 
coordinate system by the transformation rules of surface integrals. We put 

(2.7) Aii = c~&f~~, 

where 

(2.8) Mi, = (1 + e)&! - eii + Wii 

are the partial Jacobians of the coordinate transformation written by retaining 
only zero and first order terms. The dilatation is denoted by 

(2.9) 

The transformed integral is 

e = 6ijt?ii. 

(2.10) Fi = Aiin; dS, 
s 

where nj is the unit normal on the initial boundary. 
Consider now the resultant of the body force acting on V’. Denote by Xi the 

body force field at the displaced point and by p’ the mass density of the bulk 
material at that point. The body force acting on V’ is 

(2.11) B< = /---,, X:p’ dV’. 

This is transformed to an integral over the original volume V by introducing the 
Jacobian 

(2.12) 

we find 

(2.13) B< = //I, Xlp’J dV. 

The quantity p’J is the mass of an element of bulk material originally of unit 
volume with a mass p. Hence we may write 

(2.14) P’J = P -I- AP 

where Ap is the mass of fluid which has entered the initial unit volume through 
the pores. 

Putting equal to zero the sum of the forces (2.10) and (2.13) acting on the 
volume V’ we derive 

(2.15) 
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Transforming the first term to a volume integral yields 

(2.16) + (P + Ap)X dV = 0. 
1 

Since V is arbitrary we must have the equilibrium condition 

(2.17) dA,, 
ax, + (P + Ap)X: = 0. 

I 

Following the procedure used in the writer’s earlier work [2], [3], [4], [5], [6] we 
now introduce incremental stress components sii referred to local axes obtained 
by giving the original coordinate axes a solid rotation defined by wii . These 
stress components are related to z’i i by the equations 

(2.18) Cij = Sij + Sii + Skjwik + SikWjk* 

Terms of order higher than the first have been dropped. Again with a first order 
approximation 

(2.19) Aii = Xii + ~ii + Siie f SkiWik - Sikeki. 

We substitute this expression into the equilibrium equations (2, 17) taking into 
account the equilibrium condition (2.1) for the initial stress. This yields 

(2.20) 2 (aij + Siie + SkjWik - Sibeki) + pAXi f X:Ap = 0, 
1 

where 

(2.21) pi = X: - Xi. 

This is the difference between the body force field at the displaced and initial 
points. To the first order we may express it as 

(2.22) 

For a uniform gravity field AXi vanishes. To the first order we may also replace 
X’ by X and write equation (2.20) as 

(2.23) & (Sii + Siie + Sbi~d,+ - Si,t?ki) + PAXi + X,Ap = 0. 
3 

Except for the term XiAp these equations are identical with those obtained 
previously for the continuum under initial stress [2], [3], [4], [5], [6]. We have 
shown that they may be written in an alternate form by using the equilibrium 
conditions (2.1) for the initial stress and well known differential relations be- 
tween eii and wii . Equations (2.23) then take the form 

2 + pAXi - ,xoikXk - 

(2.24) 

PeXi + XiAp + Sik $$ + Sir 2 - eir % = 0. 
3 8 I 
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The boundary forces are obtained immediately from expression (2.10). The 
force per unit initial area acting on the deformed boundary is 

(2.25) fi = Adin,. 

This may be written 

(2.26) fi = Xijni + Aft, 

where At, is the incremental boundary force per unit initial area. Introducing 
the value (2.19) for Aii we derive 

(2.27) Afi = (.s~{ -I- X,,e -I- SkiWik - Sikebi)ni. 

This equation is used to express the boundary conditions. 
It should be noted that if the boundary is in contact with a fluid where the 

hydrostatic stress field is S(xi) the boundary condition is obtained by inserting 
into expression (2.27) the values 

(2.28) Sii = ]S(SJ - s(xi)16ii 

Xij = X6ij 

The incremental boundary force is then 

The boundary condition is found by equating expressions (2.27) and (2.29). 
This equation is useful in problems where the boundaries of the porous medium 
are submerged. 

3. Strain and incremental stresses. Consider a cube of unit size of the bulk 
material oriented along the original fixed axes and under initial stresses. Let us 
give the material an homogeneous deformation without rotation. After the 
deformation the cube becomes a parallelepiped. From equation (2.10) it is 
seen that the forces acting on the deformed faces of the element are determined 
by Aii after putting equal to zero the rotation wii . We denote this value of Aii by 

(3.1) A:i = Sii + sii + Siie - Sikeki. 

As done in earlier papers [2], [3], [4] ‘t ’ 1 1s convenient to introduce a non-symmetric 
tensor 

(3.2) t{i = Sii + Sije - S&?kj 

which represents incremental forces per unit initial area. Hence 

(3.3) A:i = Xii + t!i. 

During the deformation the fluid content in the pores also changes. We denote 
by Wi a vector representing the volume of fluid which has flowed into the element 
through the face perpendicular to the ith coordinate axis. We denote by p, the 
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increment of fluid pressure in the pores. We shall first assume that the initial 
fluid pressure and fluid density are uniform. 

For isothermal deformations there is a strain energy represented by the 
isothermal free energy. This increment of free energy of the element is 

(3.4) dW = Ali deii + ~1 d{. 

We have defined a fluid content variable as 

(3.5) 

We also introduce the symmetric part of tii as 

(3.6) tii = $(t:i + tli). 

Hence 

(3.7) dW = Sii deii + tii deii + pf df. 

This must be an exact differential. The incremental stresses tji and p, are 
linear functions of eii and I. Hence 

(3 *3) 

Because of the symmetry of tii and eii we put 

cf; = c;; = fy, 

(3.9) Mii = Mii, 

M:f = Mji. 

Since dW is an exact differential we must also satisfy the conditions 

(3.10) 
CT; = c;;, 

M,, = M:i. 

Hence equations (3.8) become 

(3.11) 
tif = C”Sie,,,, + Miir, 

py = M,ieii + Ml. 

We may express these equations in terms of the stresses sii by using relation 

(3.12) tii = Sij + Siie - $(Sikeki + SjkekJ 

obtained from equations (3.2) and (3.6). It may be written in the form 

(3.13) tdj = Sij + S~iS,,f?,, - +(Sip&i + Sj,&Je,,. 

Since epl = eV,, this may also be written 

(3.14) tii = sii + Sii8Nlrre#r - DSIe,,, 
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with 

(3.15) 

We now substitute tii into equations (3.8). This yields 

(3.16) 
sii = B:iepv + Miip, 

pf = Mijedi + MP, 
with 

(3.17) B:; = ct; - s;isr* + I):;. 

The matrix Br: is not symmetric, and obeys the following relations, 

(3.18) B:; + S&. = B;; + S,,& 

Hence in general 

(3.19) B:; ts B:‘,. 

This is the same property as already derived for the coefficients in the earlier 
theory for the continuum under initial stress [3], [4], [5]. 

In the derivation we have assumed the initial fluid pressure and density to be 
uniform throughout the element considered. When dealing with a medium under 
the action of a body force this is not the case and we must take into account the 
fact that the fluid density is not uniform. This becomes clear if we assume a 
steady state of flow for the fluid through the pores. The stresses remain constant 
in this case however, this is in contradiction with the stress-strain relations 
(3.16) because p in this case is not zero. However, this difficulty is easily taken 
care of by redefining [ as 

r= -; & (PfW>. 

It coincides with (3.5) when pf is uniform. 
As shown by the results obtained from the thermodynamic and variational 

principles discussed in section 6 below, it is also necessary to substitute another 
variable for the incremental pressure p, . Assuming isothermal transformations 
we must consider the function 

(3.21) 

For a given fluid at a given temperature it depends only on the pressure P. 
The incremental value A# of # at a given location must be considered and the 
expression pf A+ must be substituted for p, . With the definitions (3.20) for f 
the stress-strain relations (3.11) and (3.16) become 

(3.22) 
tij = CSie,. + M,,{, 

PAti = Miieii + M!: 
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and 

(3.23) 
Sii = Bt;e,,, + Mii{, 

p/A+ = Miieii + Ml. 

As an example we shall consider the case of an orthotropic medium whose axes 
of elastic symmetry coincide with the coordinate axes. We assume that the 
principal directions of the initial stress also coincide with the same directions. 
The initial stresses are denoted by S,,X,,X,, . The stress-strain relations (3.16) 
take the particular form 

S 11 = Bllezz + &zel/u + B13erz + Ml{, 

S 22 = &1S22 + &A, + &es. + Jfd, 

S 33 = &ezz + J&e,, + &ezE + Jfd, 

(3.24) S 23 = 2Q1ey., 

S 31 = 2Q2esz, 

S 12 = 2Q3ezv, 

P&J = Jf,e,, + Mzevv + M3ezr + Ml. 

The matrix Bii is non-symmetric and relations (3.18) become 

B,, + S,, = B,, + Sm = Cn, 

(3.25) B,, + S,, = B,, + S,, = Cm, 

B,, + S,, = B,, + S,, = C,,. 

The stress system tii is 

L = sll + &(e,, + ezr), 

& = szz + Szz(ezz + e,,), 

(3.26) &3 = s33 + S33(ez, + eUu), 

t23 = $23, 

t31 = s31, 

t12 = ..%z. 

With these stresses the first three equations (3.24) are replaced by 

L = Bllezz + C,,e,, + C31eBr + MJ, 

(3.27) L = Gzezz + &eve,, + C&e,. + M&, 

t 38 = Gezz + Czaevv + &es. + Md. 

The matrix in this case is symmetric. 
The medium may be isotropic in finite strain. This means that starting from 
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The body:force potential u is a function of the coordinates, and the body force 
field petunit mass is given by 

The condition ofyequilibrium of the fluid is expressed byTthe’-equation 

(4.4) 4 = Constant. 

It is readily:verified, by taking the gradient of 4, that 

(4.5) 

This is the equation for static equilibrium of the fluid. Let us assume now that 
the fluid is not in equilibrium. The departure from equilibrium may be measured 
by a “disequilibrium force” per unit volume defined as 

(4.6) p,x: = a4 
-pf Z’ 

If instead of a perfect fluid we are dealing with a viscous fluid of viscosity q the 
disequilibrium force produces a fluid motion through the pores and brings into 
the picture a dissipation function which may be written, 

(4.7) D = +?lrijtiitij. 

Time derivatives of Wi at the point 4i are denoted by tii . Principles of non- 
equilibrium thermodynamics for perturbations around an equilibrium state 
lead to the equation 

or 

(4.9) - 

The reciprocity property of the coefficient, 

(4.10) Tii = Tii, 

is a consequence of Onsager’s principle [El, [13]. Introducing the inverse matrix 
Of elements 7cij 

(4.11) [/Cii] = [Tij]-’ 

equationy(4.9)Ibecomes 

(4.12) qj_J( = -- P’ &! g. 
r] t 
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This equation is formally the same as that obtained earlier. For an isotropic 
medium, where lcii = ksii , it coincides with the result of Hubbert [ll]. 

The equations written here are expressed in terms of the final coordinate fi . 
After incremental deformations and all other values in the equations are at the 
displaced point Ei . For our purpose however we must introduce the initial 
coordinates xi . 

Let us consider the equilibrium value of (b which is put equal to a constant +,, ; 

(4.13) 9(F) = 4%) + W$) = 40. 

Since f may be replaced by x in this equation we may also write 

(4.14) $J(x) + U(X) = cpo. 

On the other hand for nonequilibrium the value of 4 at point .$ is 

(4.15) #(8 = NE) + 7-G). 

The difference is 

(4.16) @@) - 40 = Ati + AU, 

where 

(4.17) A9 = V(l) - 4(x), 

AU = v(t) - u(x),. 

The quantity A# is the same as that defined in the stress-strain relations (3.23). 
It represents the increment of # at a point attached to the solid. Substituting the 
value (4.16) of 4’(i) instead of C$ into equation (4.9) we find 

(4.18) -PI a (A# + AU) = tliitii. 
ati 

The derivatives are expressed by means of the coordinates ti after deformation 
of the porous medium. For our purpose we must express them in terms of the 
initial coordinates Xi . Therefore we write 

(4.19) 

Since A# + AU is of the first order we put 

(4.20) axi = 6.. 

agi ‘1 

and to the same order we may write 

(4.21) $ cAti + AU> = $, (W + AU). I * 

Hence equation (4.18) becomes 

(4.22) -P,& W + AU) = Viiwi* 
* 
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We may further linearize AV by first order Taylor expansion, 

Inserting this expression into equation (4.22) yields 

(4.24) -P&A+ - X&j) = qrijtij. 
I 

We note that for a constant fluid density the equation becomes 

(4.25) -$ (pf - pfXiU{) = 7,?rijtij. 
I 

The quantity in the bracket represents the excess pressure over the hydrostatic 
equilibrium value at the displaced point. 

5. General field equations. The field equations for the mechanics of a porous 
medium under initial stress are obtained by combining the preceding results. 
Since Ap is the mass of fluid which has entered through the pores into an element 
initially of unit volume we may write 

(5.1) AP = --&, (pfwi>. 
* 

From the definition (3.20) of { this becomes 

(5.2) AP = pfl. 

With this value inserted in the equation we write the equilibrium condition 
(2.23) and the generalized Darcy relation (4.24) 

T&, (Sij + Xi@ + Sk;Wir, - Sikf%i> + Paxi + Pfxil = 0, 

(5.3) I 

In addition we need the stress-strain relations (3.23) 

(5.4) 

Substituting these values of sii and A# into equations (5.3) we derive six field 
equations for the displacements ui and Wi , 

T& (Bfle,,, + Mcirl + & (f&e + SCOWS - SikekJ + pAXi + pfxil = 0, 

(5.5) j 

-Pt &I[- (Miieii + MC)] + Pf & (XA> = qriiGi* 
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If we wish to use the form (2.24) of the equilibrium condition the first equation 
(5.5) is replaced by 

& @fh, -I- Miil) -I- pAXi + (pJ - pe)Xi 
(5.6) ’ 

In the particular case where the fluid is of uniform density in the initial state 
the stress-strain relations (3.23) become equation (3.16) with the definition 

(5.7) r=-?!!$ 
I 

for !: and the incrementa fluid pressure p, . In this case the second field equation 
(5.5) is also simplified to 

The condition of uniform density requires either that the fluid be incompressible 
or that the body force be zero. In the latter case the initial fluid pressure is also 
uniform. In the absence of a body force the field equations are further simplified 
by disappearance of all terms containing Xi . In this case using the form (5.6) 
the field equations become 

$, (abbe,. -b M,,[) + Sik $$ + Sik 2 - eik $ = 0, 

(5.9) ’ 1 1 t 

-& (Msieii + Ml) = q~~itii. , 

For uniform initial stress the term d&h/dXi further vanishes in these equations. 

The case of variable permeability. In many problems where the pores are 
very small or exhibit strong anisotropy the variation of the porosity cannot be 
assumed small in the mathematical sense. In this case the tensor rii must be 
made dependent on the deformation and local rotation and the equations become 
nonlinear. It is convenient in this case to write the flow-rate equation (4.24) by 
using the permeability tensor kii . 

(5.10) -P&ii $ (A# - X,u,) = qtii. 
I 

The values of kii are those at the displaced point and they are referred to un- 
rotated axes. By analogy with equation (2.18) for the stress we may write it 

(5.11) kif = Kii + Kpi~<p + Ki,~ip, 

where Kii is the permeability referred to locally rotated axes. We have already 
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discussed earlier the dependence of Kii on the strain tensor [9], [lo]. For example 
if the initial permeability is isotropic 

(5.12) Kij = K&+ 

The permeability after deformation may be written 

(5.13) IL = 2Pl(e)eii + W%(e), 

where &(e) and &(e) are functions of e, such that 

(5.14) MO) = K. 

A realistic expression for the permeability is obtained by inserting the condition 
that for a critical change of volume e = e, the porosity vanishes and Kc? drops 
to zero. This is obtained by choosing the functions &(e) and p,(e) such that 

(5.15) P1(eC) = P&J = 0. 

Simple functions for p1 and & should be adequate to approximate the empirical 
data. 

Strictly speaking, the permeability should depend also on the fluid content. 
For example, in equations (5.13) we may write 

(5.16) P1 = P,(e, C), 

PZ = Me, l), 

where p& are now functions of e and {. 
It is, of course, possible to write more general functional relations of this type 

by applying general theorems of tensor invariance. However it is doubtful 
whether such additional complications are required in actual applications. 

Instantaneous rate equations. As a particular case of the previous results 
it is of interest to derive equations which govern the instantaneous time deriva- 
tives of the variables at a fixed point xi . This is readily obtained by dividing 
the equations for incremental variables by the time interval At. Since the equa- 
tions are all linear in the increments the variables tend toward the time deriva- 
tives when At tends to zero. For example, we write 

(5.17) lim @,/At) = vi, 

where vi is the velocity of the solid at point xi . We also put 

lim (sii/At) = Sii, 

(5.18) 

lim (AXi/At) = $$Vi, 
1 

lim (Ap/At) = 
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Eij = t(g + z), 

Qii = (2 _ -c%i), 

& = Ejj6ji. 

With these definitions the limiting equations (5.3) are 

(5.19) j$ (Sii + CiiE + aki%k - 
2 

ai,&kj) + P 2 Vi + Xi & (P&‘i) = 0. 
t * 

The initial stress Sii is now replaced by uii the instantaneous stress value at 
point xi and time t. Similarly the stress-strain relations (3.23) may be written 
in terms of time derivatives. We put 

lim ({/At) = 
(5.20) 

Equations (3.23) become 

(5.21) Sii = Bfi&p. + Miii4, 

DP 
7% 

= MiiEii + Mae 

In these equations P is the fluid pressure field at time t. The operator 

D -_= 
Dt $+Vi& 

I 

is the time derivative at a point attached to the solid. 
With rate variables at point xi Darcy’s law is the same as equations (4.9) in 

which we write xi instead of & . Using the permeability kii instead of rii the 
equation is written 

(5.23) 

A rate equation is also immediately derived from equation (5.11) for the per- 
meability i.e. 

(5.24) 
Dk.. 
It = Xii + IcgiQip + kipQi,r 
Dt 

where Xii is the rate of change of the permeability referred to locally transported 
and rotating axes. The value of Xii may be put equal to a linear function of 
&ii and 8 i.e. 

(5.25) Xii = GtyE,p + Hii 
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The interest of the rate equations lie in the fact that in principle they 
are applicable to finite deformations. 

6. Variational and thermodynamic principles. The possibility of expressing 
the fundamental equations by means of a variational principle is of considerable 
importance for a number of reasons. It is of course useful in deriving approxi- 
mate solutions by the use of generalized coordinates. Another important applica- 
tion of variational principles is the formulation of the equations in curvilinear 
coordinates without having to use the particular methods of the tensor calculus. 
In addition the variational principle brings the theory within the fold of the 
general thermodynamics of irreversible processes as formulated by this writer. 
Such a. variational principle is readily obtained in this case by a straightfor- 
ward generalization of the similar principle derived earlier by the writer for the 
continuum under initial stress [3], [4], [5]. We put 

(6.1) AU = 3(tijeij + pfA$r) + SiiSii - p,Xi~ip 

with 

(6.2) 5ij = 4(eiuwpi + ej&Juwpi) + +JJi@jfi 

The variational principle is 

(6.4) A\k = A# - Xjui. 

The independent variables to be varied in the equation are the six components 
6ui and 6wi . 

We may verify the variation principle (6.3) by evaluating the variations. 
We note that the bracketed term in expression (6.1) is a quadratic form with 
symmetric coefficients. Hence the variation is written 

(6.4) $s(tiieij + P~A${) = tcihi + P,A#~C. 

Furthermore inserting the value (3.12) for tii we verify that 

(6.5) tij&?ij + SijS5ij = (Sij + S,jC? + SkjWik - S&&j) &, 6/.Li 
1 

also 

(6.6) a(PfXi”iCl = PfXiUisl + PfxiPGui* 

Introducing relations (6.4) (6.5) and (6.6) into the variational principle (6.3) 
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it is verified identically by performing the usual integrations by parts and using 
the field equations (5.3). 

The principle may be formulated in a more compact and significant form 
which relates it to thermodynamics. We write 

(6.7) AX. = dXiu. = _?!?&. 
I axj ’ axiaxi ’ 

and put 

6= 

The variational principle then becomes 

This may be further simplified by introducing an operational dissipation function 

(6.10) 13 = +pqrijWiWj* 

The variation principle becomes 

(6.11) 68 + 8lj = 
s 

(Af, 6ui - pf A@ nS8wi) dS. 
8 

In the variation the time differential operator 

(6.12) 
a 

““at 

is treated as an algebraic quantity. The variational equation (6.11) brings out its 
obvious relation to the principles of the nonequilibrium thermodynamics as 
developed in very general form by the writer [9], [14], [15] and based on On- 
sager’s relations [12], [13]. 

By using a generalized coordinate representation it leads to Lagrangian 
equations for the stability and consolidation problem. 

Application to nonlinear problems. It is worth noting that the variational 
method is applicable to nonlinear problems, where the permeability is assumed 
to be a function of the strain and the fluid content. This is of particular interest 
in consolidation problems where drastic changes in pore size and even closing of 
the pores is associated with radical changes in the consolidation process. 

‘7. Porous medium with viscoelastic properties. We shall now consider a 
medium with viscoelastic properties under initial stress. In this case the initial 
stress may or may not be associated with a steady deformation rate. A strict 
application of linear thermodynamics to this case requires that the medium be 
initially at rest and in thermostatic equilibrium in the initial state of stress. 
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However, the results which are derived here are still approximately valid when 
the initial state is one of steady flow provided the total deformations remain 
small during the time interval considered. 

The thermodynamics of irreversible processes as formulated by the writer is 
applicable to perturbation around a state of initial stress, and it was shown that 
a viscoelastic correspondence may be used to derive the relations between the 
incremental stresses and the strain. This is done by substituting operators in the 
elastic stress-strain relations. As pointed out in an earlier paper [16] use of the 
thermodynamic operators under initial stress is permissible in stress-strain 
relations which involve the components tii . Hence the stress-strain relations 
become 

(7.1) 

The 28 operators in these equations constitute a symmetric matrix and the 
thermodynamic principles show that they are of the general form 

(7.2) 

with similar expressions for ii?<{ and i@. The coefficients also satisfy certain 
conditions of positiveness which are the same as in the initially unstressed 
medium and are discussed in more detail in earlier publications. 

All other equations derived in the previous section remain the same, and all 
results are immediately extended to the viscoelastic medium by substituting the 
.operators in place of the elastic coefficients. This generalization applies to the 
variational principle by introducing an operational expression for CL The principle 
becomes 

(7.3) 

where C? is obtained by substituting operators for the elastic coefficients in 
,expression (6.8). 

The nonlinear problems of variable permeability may also be solved for the 
,case of viscoelasticity by application of the variational principle. 

Real characteristic exponents. In stability problems the characteristic 
,equation must be solved for p. For each root p there is a mode where all deforma- 
tions are proportional to exp (pt). From thermodynamic principles it was pointed 
*out [14] that all roots p must be real. This will be the case if all operators obey 
the thermodynamic restrictions. In this case only real values of p are obtained. 

Special case of a viscoelastic medium isotropic in finite strain. Of particular 
interest is that of a medium which is isotropic in finite strain for infinitely slow 
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deformations. Let us assume that for slow deformations it behaves as a purely 
elastic isothermal system. In the state of initial stress it acquires an orthotropic 
symmetry whose axes coincides with the principal directions of the initial stress. 
The operational stress-strain relations in this case are formally identical with 
equations (3.24) and are obtained by substituting operators for the elastic co- 
efficients. However, in this case, because of the finite isotropy of the medium the 
coefficients Q1 , Q2 , Q3 acquire a special form. For example 

(7.4) 

For slow deformation (p = 0) this operator reduces to the coefficient Q1 . The 
latter must coincide with the values (3.28) already derived for finite isotropy i.e. 

(7.5) 

The other two values Qz , Q3 are also given by equations (3.28). The initial 
extension ratios X1 , X, , X8 and initial stress values Sll , Szz , S,, in these ex- 
pressions are those associated with infinitely slow quasi-static finite strain. 

APPENDIX 

In this appendix we shall briefly outline two areas of application which do not 
strictly belong to the main subject of this paper but are closely related to it. 

One of these applications is the theory of Thermoelasticity of a continuum 
under initial stress. The other is the dynamics and acoustic propagation theory 
for a porous medium under initial stress. Since these developments are of interest 
in related fields and are immediately derived from the present paper the main 
results will be summarily sketched. They will be discussed in more detail in 
separate publications. 

Thermoelasticity under initial stress. This time we are dealing with a true 
continuum under initial stress in thermodynamic equilibrium. The perturbation 
from this initial state is represented by incremental stresses and an increment 
of local temperature 0 above the initial uniform level T,, . The analogy between 
thermoelasticity and the mechanics of porous medium developed earlier [17] for 
the initially stress-free case may be applied to the case of a medium under initial 
stress. The analogy applies to the case of a porous medium saturated with a 
weightless fluid initially of uniform density. In this case the value of !: and 
p, A# become 

(A.0 

In the analogy the entropy density is represented by 1 and the incremental 
temperature by p, . The entropy displacement is represented by Wi . The field 
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equations are obtained by putting p, = 0 in equations (5.6) and (5.9). 
The tensor qrii now represents XijT, where Xii is the thermal resistivity. With 
this analogy all equations derived for the porous medium are valid including the 
variational principle. This analogy is a consequence of the universal character 
of noneqilibrium thermodynamics whose general formulation covers both phe- 
nomena. 

The analogy also applies to acoustic propagation in a thermoelastic continuum 
under initial stress by using the results outlined in the following paragraph for 
the dynamics of a porous medium. 

Acoustic propagation in a porous medium under initial stress. Adding the 
inertia terms leads immediately to the equations which govern the dynamics of 
porous media under initial stress. Following the procedure developed in a recent 
paper [18] the equilibrium equations (2.23) are replaced by 

The flow rate equation (4.24) becomes 

(A-3) - 

where Pi i is the viscodynamic symmetric tensor operator introduced and dis- 
cussed in detail in the quoted paper [18]. The variational principle as generalized 
from equation (7.3) is expressed by 

(A-4) 

where 

(A-5) 

This is an operational invariant which embodies the viscodynamic properties of 
the medium while $ represents the viscoelastic properties. This separation in two 
basic invariants represents the essentially distinctive feature of the mechanics 
of porous media. 

Field equations obtained from these results govern the general phenomena of 
dynamic stability and seismic propagation in porous media. Attention is called 
to the possibility of including the thermoelastic dissipation of the porous medium 
by the use of suitable viscoelastic operators provided we neglect the effect of the 
temperature change on the fluid density and its associated coupling with the. 
gravity field. 
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