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THEORY OF STABILITY OF MULTILAYERED CONTINUA IN 
FINITE ANISOTROPIC ELASTICITY 

BY 

M. A. BIOT’ 

ABSTRACT 

The writer’s general equations for the mechanics of continua under initial stress 
are applied to the formulation of a rigorous theory of stability of multilayered elastic 
media in a state of finite initial strain. The medium is assumed incompressible. It 
is either isotropic or anisotropic. The problem is analyzed in the context of the 
writer’s earlier discussions showing the existence of internal and interfacial instability. 
The results provide a rigorous solution of the problem of buckling of sandwich plates. 
Recurrence equations are derived for the interfacial displacements. It is shown 
that they are equivalent to a variational principle expressed in terms of these dis- 
placements. A matrix multiplication procedure is also developed for automatic 
computing of critical values when a large number of layers is involved. 

1. INTRODUCTION 

The theory of stability of a continuum under initial stress was de- 
veloped by the writer more than twenty years ago (1, 2, 3).2 More re- 
cently it was applied to problems of stability of elastic and viscoelastic 
media. Stability problems have been solved and discussed for the 
following cases : the isotropic homogeneous and nonhomogeneous half 
space of elastic and viscoelastic properties (4, 5) the embedded layer 
with elastic and viscoelastic isotropy (4, 6), and the surface instability 
and the buckling of a thick slab of rubber in finite initial strain (7, 8). 
The analysis was restricted to materials which retain isotropy under 
initial stress for incremental plane strain. Another series of papers 
introduced elastic anisotropy, whether induced by the initial finite 
strain or inherent originally in the stress-free material. The phenom- 
enon of internal instability implicit in the writer’s earlier paper on 
wave propagation (9) was given a detailed discussion and analysis (10). 

Further developments included the solutions for the problems of surface 
and interfacial stability under conditions of anisotropy in finite elas- 
ticity (11, 12). 

These results provided the essential foundation for the treatment 
of the more complex problems analyzed in the present paper. In par- 
ticular, it was necessary to clarify the nature of internal instability as 
well as surface and interfacial instability. This is quite analogous to the 
analysis of wave propagation in layered media, where a thorough under- 

1 Shell Development Company, New York, N. Y. 
2 The boldface numbers in parentheses refer to the references appended to this paper. 
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standing of the behavior of body waves, Rayleigh and Stoneley waves is 
essential before any sound treatment of more complex structures can be 
undertaken. 

This paper analyzes the stability of an elastic medium made of a 
superposition of layers of finite or infinite thickness. The medium is as- 
sumed to be incompressible. The assumption of incompressibility does 
not affect essentially the generality of the results and introduces con- 
siderable simplification in the algebra. 

The theory applies to an elastic continuum in a state of homogeneous 
finite strain. The state of initial stress, which may be different in each 
layer, has principal directions which are the same in all layers, one of 
these being perpendicular to the layers. The material in each layer 
may be orthotropic with the same planes of symmetry as the initial 
stress or it may be isotropic in the original stress-free state. In the 
latter case the initial stress will induce an elastic anisotropy with the 
same planes of symmetry. The incremental elastic coefficients for the 
case of a medium isotropic in finite strain were derived recently (10, 13). 

Some basic results derived in previous work are briefly outlined in 
Section ‘2. They refer to general solutions for the anisotropic medium 
under initial stress and a discussion of the elastic coefficients for lami- 
nated materials and for an elastic continuum which is isotropic in 
finite strain. 

These results are applied in Section 3 to a single anisotropic plate 
under initial stress. Equations are derived for the surface displace- 
ments under normal and tangential forces. Limiting cases are dis- 
cussed in Section 4. These include the case of infinite thickness and 
the classical degenerate case of an isotropic medium with vanishing 
initial stress. 

The multilayered system is treated in Section 5. The results for 
the single plate are used to derive a general formulation of the stability 
equations for multilayered media. Recurrence and matrix equations 
are obtained which are well suited for numerical solution with automatic 
computers. The matrix multiplication procedure is suggested by a 
method proposed by Haskell for the analogous case of wave propagation. 
The recurrence equations also lead to a variational principle expressed 
in terms of interfacial displacements as arbitrary variables. 

2. FUNDAMENTAL EQUATIONS AND GENERAL SOLUTIONS 

Consider the two-dimensional deformation of an anisotropic con- 
tinuum under initial stress. The deformation is in the X, y plane and 
the initial stress is a uniform compression P parallel with the x direction. 
Earlier work has shown that the incremental stresses sll, sz2, slz satisfy 
the equilibrium conditions 
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The local rotation w is 

as12 --_p+) 
ay 

aSz2 
__pg=o. 

aY 

_+p) 

where u and v are the components of displacement. 
stress components are referred to rotated axes. 

The general equations (Al) for plane strain are 
Appendix. Equations 1 are obtained by putting 

x= Y=O 

S22 = S1z = 0 

S11 = - P 
in Eqs. (Al). 

(2) 

The incremental 

written out in the 

(3) 

A principal stress S 33 may or may not be present in a direction 
perpendicular to the X, y ,plane. This component of the initial stress 
may be disregarded since it does not appear explicitly in the plane 
strain theory. 
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(1) 

The medium is assumed to be incompressible and orthotropic with 
the directions of symmetry parallel with the coordinate axes. For an 
elastic medium the incremental stress-strain relations are 

Sll - s = 2Ne,, 

szz - s = 2Ne 

s12 = 2QeS 

(4) 

The left-hand side of these equations represents the incremental stress 
deviator in two dimensions. It is not the same as the three-dimensional 
deviator. The strain components are 

a24 av 
e - zz = ax 

eVy = - 
ay 

ezU = k($+$). (5) 

The condition of incompressibility must be added : 

ezz + euv = 0. (6) 

The stress-strain relations (4) have been written with elastic coeffi- 
cients N and Q. The case of an orthotropic viscoelastic medium is 
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formally identical with the elastic case. By the correspondence prin- 
ciple introduced by this writer the elastic coefficients are replaced by 
operators N* and Q*. The algebra is the same for both cases and may 
be carried out with the elastic coefficients. Results are readily extended 
to the viscoelastic medium by substituting the operators in the final 
.-“..lC_ 
I C3UILtY. 

An important expression in the present problem is that of the incre- 
mental force acting on a deformed surface which is initially a plane 
perpendicular to the y axis. The force is expressed oer unit initial area 
before deformation. It is considered to act on 
as shown in Fig. 1. The x and y components of 

the’ bottom half space 
this force were derived 

AFTER DEFORMATION 

FIG. 1. Illustration of the incremental force 

components Afi, Afy. 

in earlier work and may be found by applying Eqs. A2 of the Appendix. 
TLC.., ,7-r, 
I ucy dlc: 

Afi = (2Q + P>e,, 
Aj, = s + 2Ne,,. (7) 

Equations 1 and 4 may be transformed to a simpler set by introducing 
a scalar Cp, since the condition of incompressibility (6) implies 

u=-!2 
ay 

v=i!f 
ax’ 
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With this expression, the equations reduce to a system with two un- 
knowns, 

as a --- 
ax ay 

[(zN-Q+$)$+(Q+;)$]=O 

dS 

ay +;[(2N-Q-f)$+(Q-f)s]=O (9) 
and expression (7) become 

A_L=(Q+$)($-$) 

a26 
Af,=s+2N-- 

axay’ 

(10) 

Eliminations of s between the two equations (9) yields 

( > Q-5 s+2(2N-Q)$2+(Q+;)$=0. (11) 

Solutions will be sought which are sinusoidal along x.7 Hence, let 

412 = f(Zy) sin Ix 
s = F(Zy) cos Ix (12) 

u = U(Zy) sin Ix 
21 = V(Zy) cos Ix (13) 

Afi = r(Zy) sin Ix 
AfU = a(Zy) cos Ix. (14) 

Equation 11 becomes an ordinary differential equation. The function 

f(6) satisfies the equation 

f 
1111 - 2mf” + k2f = 0. (15) 

The primes denote derivatives with respect to the argument 8 = Zy. 
Let 

+,,_2N-Q 
Q-f 

I," - 
Q+; 

@ = ___ 
Q +f‘ 

(16) 
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In previous work and also in the discussion which follows the parameter 

P 
r=@ (17) 

was considered. With this parameter, let 

m= 
2N/Q - 1 

l+C 

&? = l- r 
(1% 

1 + C’ 

Substituting C) and s in the first of Eqs. 9 determines F in terms off 

F= ZN-Q++ f 2) - (Q +f)Y 
All quantities are then expressed in terms off, that is, 

uz = -f’ 

vz = f 

+ -$I -f 

(18a) 

(19) 

Let 

-ij = (2m + l)f’ -7”. 

L=Q+;. (20) 

The physical significance of this coefficient is brought out by considering 
a deformation which is a uniform shear displacement 

u = ay 
v = 0. (21) 

The force on any plane 
Eq. 7. As a result, 

perpendicular to the y direction is given by 

Afi = LCY (22) 
Afg = 0. 

This represents a tangential shearing force Afi. The elastic coefficient 
L represents a sliding rigidity on this particular plane under the existing 
state of initial stress. This has been referred to as the slide modulus. 
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Another coefficient is (8, IO) 

jp/ = ]q + p. 

Using these coefficients, 

nz=2M-= 
L 

hzCL-p 
(24) 

L * 

For a medium which is isotropic in finite strain, Q is given by (10, 13) 

where X1 and Xz are the finite extension ratios in x and y directions in 
the state of initial stress. The slide modulus in this case is 

L=P x2 
x22 - A?’ (26) 

For a compression P in the x direction X1 < 1. 
If, in addition to being isotropic in finite strain, the material is 

incompressible and obeys the finite stress-strain relations of an idealized 
rubber-type material, 

r” E E.LO(x2? - \ 91 
Al-). (27) 

This material remains isotropic for plane incremental strain. The 
coefficients N and Q become equal, 

N = Q = &u,,(X? + Xz2). (28) 

The coefficient ~~ is the shear modulus at vanishing initial stress 
. (X, = A, = 1). 

Attention is called to an important property 
and (18) for such a material. They become 

l= 
x22 - x12 

x22 + Al2 

1 Xl2 + Al2 

m = 1+5. = 2x22 

k2 = $i = $ 
- I J 

of the parameters (17) 

(29) 
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Hence, they are independent of the rigidity coefficient pa and are 
completely determined by the magnitude of the finite initial strain. 

In the case of a laminated medium composed of alternate layers of 
different properties, one type of material is defined by the elastic coeffi- 
cients L1 and &Jr. The layers of this material are of equal thickness and 
under the comnressive strec;r, P.. ___- --___ r__L-_. _ c___.-- - __ They QcclJpy a fraction ry? of the 

total thickness. Layers of another material of coefficients Lz, M2 are 

(a) 

(b) 

FIG. 2. Antisymmetric (a) and symmetric 
(b) deformation of an isolated layer with an 
initial compressive stress P. 

sandwiched between the first and occupy a fraction a2 of the total thick- 
ness. They are also of equal thickness, and the compressive stress in 
them is Pz. Obviously, 

(Y1 + cY2 = 1 (30) 

and the total average initial stress in the composite medium is 

CulPI + CYZPZ = P. (31) 

The properties of this medium may be approximated by considering an 
anisotropic continuum of coefficients (10) 

M = MCI!1 + MZcY2 

1 
L= . (32) 

?+F 1 2 
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However, there are limitations to this approximation. It is valid only 
for deformations whose wave length is large enough relative to the 
thickness of the layers. Combining Eqs. 23 and 30 and the value for M 
from Eq. 32, the coefficient N of the laminated medium can be derived as 

N = Nlcul + Nz(~z. 

The coefficient Q may also be derived from Eqs. 20 and 32. 

(33) 

3.ANALYSIS OF AN ISOLATED LAYER 

The next step is to consider an isolated layer of thickness h. The 
x axis is located half way between the two faces (Fig. 2). Analysis of 
the most general deformation of this plate (which is sinusoidal along the 
x direction) is most conveniently accomplished by superposition of two 
types of deformation, one antisymmetric with respect to the x axis, as 
shown in Fig. 2a, and the other symmetric with respect to the same 
axis, as shown in Fig. 2b. 

In the antisymmetric deformation the function f(0) is an even func- 
tion of the argument 8 = Zy. The solution of the differential equation 
(15) which corresponds to this case is 

f = Cl cash p,e + Cz cash /?ze. (34) 

The constants of integration C1, Cz are determined by the boundary 
conditions. Let PI and pz denote the roots of the characteristic equation 

P” - 2mp2 + k2 = 0. (35) 
Hence, 

@I = &z + drn2 - k2 

pz = drn - dm2 - k2. 
(36) 

At this point something should be said about the choice of these roots, 
since there is a sign ambiguity involved in the definition of the square 
roots. The value of fl may be real, complex or imaginary. The follow- 
ing possible cases must be considered : 

1. m >Om2 - k2 > 0. Two subcases must be distinguished : 

(a) k2 > 0. In this case both roots @I and fiz are real, and their 
positive values may be chosen. 

(b) k2 < 0. Here the root fil is real, and the root p2 is pure imagi- 
nary. Again, positive values may be chosen for & and &/i. 

2. m torn2 - k2 > 0. i/ In this case both roots are imaginary, and 
positive values are chosen for PI/; and p2/i. 

\-. 1 ; ;> f? 
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3. rn2 - k2 < 0, with m assuming any real value, positive, negative 
or zero. In this case the roots are complex conjugates, and values for 
@I and ,6?2 are chosen with positive real parts. 

The two limiting cases m = 0 and m2 - k2 = 0 must also be con- 
sidered. The first does not give rise to any difficulty. The second case 
yields double roots and is discussed in detail in Section 4. 

Two of these cases, 1 (b) and 2, correspond to internal buckling (IO). 
This can be recognized by putting fi2 = - 42 and writing the charac- 
teristic equation (3.5) in the form 

LP + 2(2iV - L)p + L - P = 0. (37) 

Internal buckling corresponds to the existence of one or two real 
roots f for this equation (IO). Therefore, internal buckling is repre- 
sented by cases for which at least one root fl is imaginary. If the 
parameters remain outside the range of internal buckling, the roots PI, PZ 
are either real or complex conjugate. In the latter case the solution (34) 
remains real if the constants of integration C1 and C2 are also chosen to 
be complex conjugates. In all other cases the solution (34) remains 
real with real values of the constants. 

Designate by the subscript a the values of U, V, r, and 4 relative 
to the antisymmetric solution. They are functions of the argument 8 
and are designated as U,(0), I/r=(B), TV, and q,(8). Substituting 
solution (34) for f into relations (19) determines the displacements 

lu,(e> = - Clpl sinh p,e - C,p, sinh p,e 
I we) = Cl cash p,e + cz cash p,e 

(38) 

and the forces 

7.6) - = - C,(@12 + 1) cash p,e - C,(p,2 + 1) cash ,020 
L 

4m 
(39) 

~ = Cd31(P22 + 1) sir-h Pie + C2P2(P12 + 1) sinh P2e. 
L 

In deriving these expressions use has been made of the relation 

p12 + p?,” = 2m. (40) 

Next, write the values of these quantities at the upper face of the layer, 
that is, for 
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For simplicity, the variables at this point are designated by 

Their expressions are given by the following equations, 

(42) 

UJ = - c,p, sinh in - C& sinh PO 

VJ = Cl cash Ply + Cz cash 1327 

Ta 
-_= 
L 

- C&2 cash ,817 - C2P2" cash P2r - VJ (43) 

Solving the first two equations for C1 and Cz and substituting in the 
last two give 

Let 

Cl = - A 
a 

coLh Ply (Ua + VaP2 tanh P2r> 

c2 = A 
a 

coLh p y (U, + VA tad Pn> 
2 

and 

all = P? - P2" 

&L 

A, 
al2 = Pd32 a - 1 

a 

a22 = PIP2 @’ 
2 - P2”) 

A tanh Ply tanh ,02r 
a 

and 
A, = P1 tanh P2r - PZ tanh Pn 
A D *,.,I- n _. 

& = 
B 4-,-l. n _, 

p1 La1111 ply - p2 Ld‘lll f.J,z’Y. 

(44) 

(45) 

(46) 

(47) 
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It is aLo convenient to write these expressions in a more compact form 
by letting 

xl = PI tanh ,&r 
x2 = 82 tanh Pzr. (48) 

This gives 

all = 01" - P2" 

Xl - x2 

al2 = 
(PI2 + 1)x2 - (622 + 1)x1 

Xl - x2 

a22 = (I%” - fi22)xlx2 = allxlx2_ 

The displacements and 
tained by substituting 0 

(49) 

stresses on the bottom side of the layer, ob- 
= - y into relations (38) and (39), are 

U,(- r) = - U, 

Va(- r> = va 
T.(- 7) = Ta 

qa(- r> = - Pa. 

By a similar procedure the solution is obtained for the symmetric 
deformation illustrated in Fig. 2b. In this case the functionf(8) is odd, 
that is, 

f(e) = C1 sinh file + C2 sinh P20. (51) 

The variables for this case are designated by the subscript S. They are 
U,(e), V,(O), T*(e), p8 (0). Their values at the upper face of the layer 
are denoted by 

K(Y) = US 

V*(Y) = VS 

T*(Y) = 7s 
(52) 

0) = Pa. 

For this case we derive 

(53) 
& bl2U* -I- b22V* 
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with 

& = Pl” - Pz2 
A8 

tanh ,817 tanh Pzr 

(54) 

bm = plfi2 ‘12 ; ““, 
F 

Values of the variables on the bottom side of the layer are 

U,(- r> = us 
V,(- 7) = - v”, 

Ts(- r> = - 78 
(55) 

as(- r> = czs* 

Next, superpose the two solutions obtained above. Denote by U1, 1/‘1, 
71, ql, the values of the variables at the top of the layer and by U2, v2, 
72, g2 the values of the same variables on the bottom side (Fig. 2). 

For the top side, write 

(56) 

and for the bottom side, 

lJ2 = - u, + u, I72 = v, - v, 

(57) 
72 = ra - 78 p2 = - ¶a + ps. 

u, = $(U, - U,) u* = 3(U, + U2) 

TJa = 4(vl+ V2) v, = 3(Vl - V2). 
(58) 

Then, 

Substituting these values in expressions (45) and (53), the values of 
781 qu, T*, p8 are obtained in terms of the top and bottom displacements. 
Finally, introducing these values into Eqs. 56 and 57 gives 
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There are six distinct coefficients in this matrix expressed in terms of the 
six coefficients (49) and (54). They are 

A1 = 4(&l + b11) Ah = +(a,, - b11) 

A‘2 = +(a12 -I- b12) A5 = t (a12 - b12) (60) 

As = $(a22 + bzz) As = *(a22 - L&z). 

A more convenient way to write Eq. 59 is to introduce an invariant 
which represents a quantity proportional to the potential energy. Let 

1 = UNU,~ + %zU,lr, + UN Va2 + ~NU,~ + 2b,zU, V, + b22Va2. (61) 

Substituting Eqs. 58 into Eq. 61 gives 

I = Qll(U12 + U22) - A4UlU2 + $48(V12 + V22) +L4sv1v2 

+ A2(U1V1- U2V2) + -4s(U1V2 - U,V,>. (62) 

Equations 59 are then written 

= JLE aI 
71 au1 r2 = -IL= 

p2 = - l?L g. 

(63) 

2 

4. SOME LIMITING CASES 

In this section some particular cases of special interest will be 
examined. 

An obvious simplification should result by considering the layer 
thickness to be infinite. This should yield the solution for the half 
space. (11) In order to retain its physical significance, the solution must 
be such that internal buckling is excluded. This corresponds to cases 
1 (a) and 3 discussed in Section 3, and the roots ,& and f12 are real and 
positive or complex conjugate with positive real parts. 

Since 
y = $lh, (64) 

assuming an infinite thickness amounts to setting 

y & 00. (65) 

The same limiting case is also obtained for a finite thickness when 

I= 00, (66) 

that is, when the wave length becomes very small. Either case results, 
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of course, from the geometric interpretation of the parameter y as pro- 
portional to the ratio of the thickness to the wave length. 

Taking into account the positive signs of the real parts in the values 
of Pl and P2, 

lim tanh &y = 1 
-r+* 

lim tanh P2r = 1. 
-i-* 

Hence, the limiting values of the coefficients 

a11 = bll = Pl + P2 

a12 = bl2 = PlP2 - 1 

a22 = b22 = Pdh(P1 + 

The coefficients (Eqs. 60) become 

and 

A1 = a11 

A2 = a12 

Aa = ~22 

(67) 

(Eqs. 49 and 54) are 

(68) 

62). 

(69) 

Ad =As =As =O. (70) 

Reference to Eq. 59 shows that the top and bottom sides of the plate 
are now decoupled. 

The roots PI and /!I2 do not have to be evaluated separately. Because 
a sign has been chosen for the roots, it is possible to write without 
ambiguity 

P1P2 = k 

Pl + 132 = 42(m + 12). 
(71) 

The relation between surface forces and displacement at the top of the 
infinitely thick layer becomes 

;= UllU + u12v 

(72) 
P 

E = al2U+a22v, 

with the values of Eqs. 68 for the coefficients. This result coincides 
-with one obtained earlier by the author (11) for the lower half space. 

Similar expressions are obtained for the upper half space simply by 
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reversing the sign of all and u22. This is readily seen by using the last 
two equations of the matrix equation (59). 

It is convenient to express Eqs. 72 for the lower half space by using 
the invariant 

In this expression the coefficients uij are given by Eqs. 68 and 71. 
They depend only on the elastic coefficients and the initial stress in 
the medium, and are independent of the wave length. Equations 72 
may then be written 

T-IL?!! - 
au 

@Ldll 
av' 

(74) 

Similarly for the upper half space, the invariant, 

I, = $zllU2 - Ul2UV + $z12V2 (75) 

is introduced. Relations between surface forces and displacements for 
the upper half space are written as 

r = _jLal, 
au 

p= _&G 
(76), 

av' 

Another limiting case is obtained when the characteristic equation 
(3.5) has a double root. This is obtained when 

m2 - k2 = 0. (77) 
The double root is 

pr = p2 = G- = p. (78) 

Exclusion of internal buckling in this case requires that m be positive. 
When @r = /32, the coefficients aij and bij in Eqs. 46 and 54 become 
undetermined, and their true limiting value must be found. To do 
this, let 

(79) 

and expand the hyperbolic functions of expressions (46) and (54) to the 
first order in E. After cancellations of common factors in numerator 
and denominator, the limiting values are derived by putting e = 0, 
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For the antisymmetric case, 

a11 = 

a2 = 

a22 = 

4p cosh2 ,@ 

sinh 2& + 2Pr 

p2 sinh 2& - 2py _ 
sinh 2& + 2/3r 

1 

4p3 sinh2 & 

sinh 2& + 2/3r’ 

In the symmetric case the limiting values are 

bll = 
46 sinh2 fly 

sinh 2/3-y - 2/3r 

blz = 
P2 sinh 2Pr + Wr _ 1 

sinh 2Pr - 2j3r 

b 
22 

= 4P3 cosh2 Pr 
sinh 287 - 2Pr’ 

Condition 77 for the existence of double roots may be written 

4N(N - Q) + f = 0. 

I44 

(81) 

632) 

It is interesting to note that it cannot occur for N > Q. The particular 
case 

N=Q P=O (83) 

represents the classical case of an isotropic medium free of initial stress. 
The characteristic roots in this case degenerate into the values 

,&I = pz = p = 1. (84) 

Substituting /3 = 1 into Eqs. 80 and 81, the coefficients for the anti- 
symmetric case become 

4 cosh2 y 
‘11 = sinh 27 + 2y 

4r a12 = - 
sinh 27 + 27 

4 sinh2 y 
a22 = sinh 2y + 2y 

(85) 
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and for the symmetric case 

[J. F. I. 

bu = 
4 sinh2 y 

sinh 2y - 27 

* 
bm = 4r 

sinh 27 - 2~ 

bzz = 
4 cosh2 y 

sinh 27 - 2y’ 

These coefficients are identical with those obtained by solving directly 
the classical problem of the isotropic and incompressible elastic plate 
without initial stress. The basic equations for this classical case are, 
of course, derived immediately by putting N = Q and P = 0 into 
Eqs. 9, 10, and 11. It is seen that the latter degenerates into the well- 
known biharmonic equation. 

5. GENERAL EQUATIONS FOR THE STABILITY OF MULTILAYERED SYSTEMS 

The previous results make it possible to obtain very simply and in a 
systematic way the stability equations for a system of superposed layers 
under initial stress. In the preceding section it was assumed that the 
state of initial stress in the X, y plane is reduced to a single principal 
stress component Sll = - P acting in a direction parallel with the 
layer. In order to deal with more general problems, such as the case 
of layers embedded in an infinite medium, the case where the initial 
stress includes a principal component Szz acting perpendicularly to the 
layer (Fig. 3) must be examined. 

FIG. 3. State of initial stress in a layer when 
an initial component SZZ is present. 

As will now be shown, all expressions obtained in the previous 
section are valid for this case, provided P is defined as 

P = $2 - &I. (87) 

With this definition for P, the equilibrium equations (1) are obviously 
valid as can be seen by applying the more general equations (Al) of the 
Appendix. 
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Equations 63 also remain valid when P is given the value in Eq. 87. 
However, the physical significance of r and p must be given a new inter- 
pretation. This can be seen as follows. 

The incremental forces given by Eqs, A2 in the Appendix are 

Afi = ~12 - Sz20 - S&, 

Af,, = ss2 -I- S22ezs. 
(88) 

This may be written 

Afz = ~12 + Pe,, - Sz2 g 

Afj, = ~22 + S22 $ 

(89) 

where P = Sz2 - S1l. 
The terms 

A% = SIZ + Pe,, = (2Q f P)ezy 

A’f, = sz2 = s + 2Ne,, 
(90) 

coincide with expressions (7), except that P is now the difference 
(Eq. 87) of the principal stresses. Equations 89 show that A’f% and 
A’fU are the incremental stress components along directions which are 
tangent and normal to the deformed surface. Note that these stresses 
are now referred to unit areas after deformation. 

It is concluded that Eqs. 45, 53 and 63 are valid in the more general 
case where Sz2 # 0, provided 7 and 4 are interpreted as representing 

A% = r sin Ix 

A’fU = p cos lx. 
(91) 

Consider now a system of superposed layers with perfect adherence 
along parallel interfaces and embedded between two semi-infinite media 

I 

fiI .i 

FIG. 4. Superposed layers embedded between 
two semi-infinite media. 
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Since the stresses A% and A’fy given by Eq. 91 must be continuous at an 
interface, expressions (95) and (96) must be equal. 
This yields 

& CLjIj + Lj+lIj+l) = 0 
3+1 

(97) 

& (LJj + Li+Jj+1) = 0. 
3+1 

These two recurrence equations relate six variables, namely the two 
displacement components Uj and Irj at three successive interfaces. 

At the top and bottom interfaces the equations take a special form 
because of the infinite thickness of the upper and lower media. It is 
necessary to introduce the previously defined invariants II and I, for the 
lower and upper half spaces as given by Eqs. 73 and 75. In the present 
case they are written 

II = *al~Un+12 + a12Un+lVn+l + 3a221Jn+12 

I, = +all'U12 - a12'U1V1 + +a22'V12. 
(98) 

As for the other interfaces, the continuity of the stress Ayz and A’fy at 
the top and bottom interfaces can be expressed, by four additional 
equations : 

& (LlIl + L’I,) = 0 
1 

$- (LlII + L’I,) = 0 
1 

+ (U, + LIZ) = 0 
n+l 

-& (LJ, + LIJ = 0. 

(99) 

n+l 

In Eqs. 99, L’ denotes the slide modulus of the upper half space and L 
the slide modulus of the lower half space. 

Equations 97 and 99 constitute a system of 2 (n + 1) homogeneous 

(al (b) 

FIG. 5. (a) Superposed layers resting on a half space and free at the top. 
(b) Superposed layers free at top and bottom. 

equations for the 2(n + 1) displacement variables Uj and ‘vi- The 
characteristic stability equation is obtained by equating the determi- 
nant of this system to zero. 
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layers resting on a semi-infinite half space and free at the top 
(Fig. Sa’), L’ = 0. Equations 99 are then replaced by 

dI1 --= 
au1 

0 
aI1 -= 
av, 

0 

& (-LIn + LIl) = 0 
n+l 

+ (LJ, + LIZ) = 0. 
n+l 

(100) 

If the top and bottom surfaces of the layers are both free (Fig. Sb), 
then L’ = L = 0 and Eqs. 99 become 

aI1 - = 
au1 

0 
arl -= 
avl 

0 

aI, o 

(101) 
~ = 

a un+l 
aI, o 

a= * 
A further simplification of the general formalism is obtained by 

introducing a single invariant which corresponds to the potential energy 
of the complete system. Let 

$ = LIZ + & LjIj + L’I,. (102) 

The stability equations become 

a3 o 
---G 

as o 
---= 

dUj avj * 

(103) 

These 2(n + 1) equations include all three cases of free and embedded 
layers formulated by Eqs. 99, 100, and 101. 

It is of interest to examine the case where the various materials obey 
the finite stress-strain relations (Eq. 27) of rubber-type elasticity. 
Here, a system originally stress-free is brought to an initial state of 
finite homogeneous strain represented by the extension ratio X1 and Xz 
in the X, y plane. As shown by expressions (29), the parameters m, 
k2 and 5 are then identical for all materials. They may be expressed in 
terms of a single variable, say X12/X22 or {. The only other parameter in 
the values of Ij is y, which for the j th layer of thickness hj is written 

yi = $lhj. (104) 

If the thickness of one of the layers is chosen as reference, say hl, then 

yj = (hj/hl)r (105) 
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where y = $hJ. Hence, the values of Ij contain the variable y and 
the (n - 1) thickness ratios as parameters. Finally, taking into 
account Eqs. 26 and 27, Lj may be written as 

Lj = /Jdl)jXZ2 (106) 

where paj is the stress-free modulus of the jth layer. Hence, in all 
Eqs. 103, the common factor X22 cancels out. This brings out the ratios 
of the moduli poj as another set of parameters. When these rigidity 
ratios are given along with the various thickness ratios, the character- 
istic equation becomes a relation between the two variables { and y. 
The first characterizes the initial stress and the second the wave length. 
The minimum value of { as a function of y yields the buckling stress and 
wave length. 

The preceding analysis has assumed perfect adherence. If the 
layers are allowed to slip without friction at the interface, the following 
condition must be satisfied, 

7 = 0, (107) 

since the tangential stresses must remain zero. The displacements Uj 
in this case are not continuous. However, they may be eliminated from 
the equations by using condition (107) for perfect slip. This leaves a 
system of equations containing only the normal displacement Vi at the 
slipping interface. This normal component is continuous. 

A remark must be made here regarding the continuity of p when such 
slippage occurs. Since this value is evaluated at the displaced points 
and since these points do not coincide due to slippage, the values of 4 
are not exactly continuous. However, the difference is a second order 
quantity, and in a first order theory interfacial values of p may be 
assumed equal to each layer. The case of perfect slippage is illustrated 
by an example in a forthcoming paper in this Journal. 

The recurrence equations derived above contain relatively simple 
coefficients and constitute a system of linear equations containing not 
more than six variables at a time. 

It is possible to formulate the stability problem by a different pro- 
cedure which may have advantages for numerical work with digital 
computers. The procedure was developed by Haskell for the formally 
similar problem of wave propagation in multilayered media (14). Equa- 
tions 59 may be written in the form 

(10% 



151 M. A. BIOT [J. F. I. 

The matrix is 

/ 

B1 Bz LBs LBs 

B3 B4 - LB6 LB, 

;B, ;B,o -Bz Bh -- 

The elements B, are functions only of aij and bij. With 

A = (~2 - bd2 - (au - bll) (~22 - bz2) 

they are 

B1 = ; [(a12~ - b122) - (an + bu) (a22 - bzz)] 

BT = 2 [az2b22(all - bn) + u2h2 - un2b22] 

Bs = - ; (am - bzz) 

Bg =-a 2 (un - blz) 

2 
Bm = a (UII - bd. 

(109) 

(110) 

(111) 

The matrix equation (108) relates the values of the variables at two 
successive interfaces. Obviously the values at the top and bottom 
interfaces satisfy the equations 
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I 

71 TV&+1 

Pl 

JUl 
= fi mj $+l . (112) 

j=l n+l 

.lVl, < ZVn+l , 

The product fi mj of the SZj matrices for each layer is a 4 X 4 
j=l 

matrix. If the top and bottom faces are free, let 71 = q1 = 7,+1 
= 4 - 0, and Eq. 112 reduces to two homogeneous equations for the n+1 - 

two unknowns U,+l and V,+l. If the layers lie over a half space, 7,+1 
and qn+l are replaced by their values in terms of Un+l and V,+l for the 
half space and are again led to a 2 X 2 system of equations. If the 
layers are embedded between two half spaces, the values ‘of 71, 41, 
T~+~, q,+]. are expressed in terms of U1, VI and Un+l, V,+l. This case 
results in a system of four equations. 

In using this procedure attention must be called to the case where 
the wave length is sufficiently small so that the top and bottom faces 
of a layer become decoupled. This happens when 

aij z b<j. (113) 

In this case the layer may be replaced by a half space. 
The procedure and formulas proposed here for the mechanics of 

layered media are quite general and are not restricted to incompressible 
media or stability problems. The matrix coefficients (Eqs. 111) are 
given a new form which is immediately applicable to a large category 
of problems, including wave propagation in anisotropic multilayered 
media. The recurrence equations (103) or the matrix multiplication 
process of Eqs. 112 provide a systematic way of programming the 
numerical work for the solution of problems in the mechanics of layered 
media when a large number of layers are involved and the use of a large 
capacity digital computer is available. 

A variational principle is readily obtained from Eqs. 103, that is, 

S$ = 0. (114) 

In this principle the interfacial displacement Ui and Vi are given arbi- 
trary variations. Equation 114 is also a consequence of the physical 
interpretation of $ as the total incremental energy of the multilayered 
system expressed in terms pf the interfacial displacements. 

APPENDIX 

A brief outline is given here of previous results. The general equations were derived 
earlier (I, 2, 3, 9). For the case of plane strain and constant body force they were briefly 
rederived in a more recent paper (4). The results for this case are repeated here. The initia1 
stresses are denoted by Srr, &2, SIZ. The incremental stresses referred to axes rotated by an 
angle w are denoted by ~11, ~22, SIZ. They satisfy the equilibrium conditions 



I.53 M. A. BIOT fJ. F. I. 

The strain components e,,, eyy, e,, and the rotation w are defined as in Section 2. The body 
force components X and Y per unit mass are assumed to be constant.3 The coordinate system 

is chosen clockwise. 
Incremental forces acting at a boundary per unit initial area (that is, per unit area as 

measured in the state of initial stress) are represented by the following x and y components 

Afi = (sll - S~ZW + &e,, - Size,,) cos (n, x) 
+ (~12 - SZZO - &le,, + Size,,) cos (n, Y) 

Ah = (SIZ + SW + 5&e,, - &e,,) cos (12, x) 
(A2) 

+ (SW + SW - &a,, + S22ezz) cm (n, y). 

These forces are acting on a closed contour in the x, y plane and the normal direction chosen 
positive outward is designated by n. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

17) 

(8) 

(9) 

00) 

(11) 

(12) 

03) 

04) 
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