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STABILITY OF MULTILAYERED CONTINUA INCLUDING 
THE EFFECT OF GRAVITY AND VISCOELASTICITY 

BY 

M. A. BIOT’ 

ABSTRACT 

The theory of stability of multilayered continua is extended to include the effect 

of gravity and the case of viscoelastic materials. It is also applied to obtain numerical 

solutions for the buckling of the anisotropic plate in finite elasticity with free bounda- 

ries or embedded in an infinite medium. In the multilayered system it is shown that 

the effect of gravity forces may be included by a very simple process leading to a 
matrix multiplication scheme for the solution of the characteristic stability problem 

and to a new variational principle. By the correspondence principle the theory is 

immediately extended to the stability problem of multilayered viscoelastic media, and 

a general theorem is derived for the conditions under which only real values are 
possible for the characteristic exponents of the stability problem. As an example of 
gravity instability, two cases are solved numerically for purely viscous or elastic layers. 
The theory yields the solution for a large class of problems of technological and geo- 

physical interest. 

1. INTRODUCTION 

In a previous paper (I)~ the general equations for the mechanics of 
a continuum under initial stress were applied to the problem of stability 
of an elastic anisotropic medium in finite strain. The results included 
the problem of stability of the single elastic plate or the multilayered 
medium. 

In the present paper, numerical solutions are evaluated and plotted 
for the case of an elastic medium, and the theory of stability of multi- 
layered continua is further extended to include the case of viscoelastic 
materials and the effect of gravity. The particular case of buckling of 
the anisotropic elastic plate is analyzed numerically in Section 2. In 
the same section a numerical solution is also derived for the buckling 
of the same plate embedded in an infinite medium either isotropic or 
anisotropic. 

The influence of gravity forces acting in a direction normal to the 
layers may be introduced by a very simple and general procedure al- 
ready developed for particular cases (2, 3). This is derived in Section 3. 
It is shown that for incompressible media the system is equivalent to 
an analog model where gravity is replaced by surface forces acting at 
the interfaces or free surfaces of the layers and proportional to the 
normal displacements. They may be interpreted as a buoyancy effect, 

1 Shell Development Company, New York, N. Y. 

1 The boldface numbers in parentheses refer to the references appended to this paper. 
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depending on density differences. All equations obtained for the 
gravity-free cases are, therefore, readily extended to the heavy medium. 
The recurrence and matrix equations are also extended to this case and 
provide methods of programming the numerical solution of stability 
problems for a large number of layers when gravity forces enter into play. 

A variational principle including the effect of gravity is also derived 
by considering the total potential of the analog model. 

Application of the general principle of correspondence leads to 
equations for the stability of layered viscoelastic media which are 
formally identical with those of the elastic case. This is discussed in 
Section 4 and general thermodynamic properties derived previously for 
the viscoelastic operators of a medium under initial stress are discussed 
for the particular case of the incompressible orthotropic medium con- 
sidered in the present analysis. The state of initial stress assumed in 
each layer is of the same type as in the elastic case. 

The question of the nature of the characteristic exponent of the 
stability problem is examined in Section 5. It is shown that the modes 
of instability are proportional to a real exponential function of time 
under conditions which are less restrictive than those imposed by 
thermodynamic principles. 

Section 6 deals with the stability in a system where the initial stress 
is due only to gravity forces and is purely hydrostatic. Two examples 
of interest in geology are solved numerically. They are discussed in the 
context of purely viscous and isotropic media. The problem in this case 
becomes identical with that of gravity instability of layered incom- 
pressible Newtonian fluids. The results are also applicable to purely 
elastic media and show the existence of critical values for the appearance 
of buckling under initial hydrostatic gravity stresses. 

2. BUCKLING OF A FREE AND EMBEDDED ANISOTROPIC PLATE 

The first application of the general theory (1) to be considered is 
the stability of a single elastic anisotropic plate of thickness h with free 

P P 

FIG. 1. Free layer subject to a uniform compression I’. 

defined by two elastic coefficients N and Q for incremental plane strain. 
surfaces subject to a uniform compression P in a direction parallel 
with the plate (Fig. 1). The material is assumed incompressible and 
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Alternate elastic coefficients (4, 5) used in the theory are 

L=Q++P M = N + $P. (1) 

L, the slide modulus, represents a shearing rigidity for tangential forces 
applied in a direction parallel with the faces of the plate; M represents 
a “tangent modulus” for normal stress in the same direction. These 
elastic coefficients were discussed in (11) and (12). 

Recalling the result for the case of a single layer (I), next consider a 
bending deformation. Such a deformation is antisymmetric in the 
thickness co-ordinate. The tangential and normal stresses at the top, 
distributed sinusoidally along the distance parallel with the plate, are 

Afz = r sin lx Af, = q cos lx. 

The displacement components at the top surface are 

u = U sin lx V = VCOSZX. 

(2) 

(3) 
: 

The surface stresses and the displacement are related by (1, Eqs. 34) I 

&= UllU + a12v 

(4) 
P 
z = aleU + a221/: 

The coefficients are 

all = Pl" - Pz" 

x1 - x2 

al2 = (P12 + 1)x2 - 0322 + l>Xl 

Xl - x2 

a22 = a11x1x2 

(5) 

with 
x1 = PI tanh Pn 

x2 = p2 tanh P2r (6) 

y = +lh. 

The parameters /31 and /32 are the positive values of 

I% = &J + \lm2 - k2 

82 = & - &a2 - k2 (7) 
2N - Q 

m=Q++P 
Q k2 = Q t_ ;;, 
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The nature of the irrational expressions fll and pz will be discussed 
later in the context of their physical interpretation. For the time being 
assume that fll and & are real and positive. 

Putting 7 = 0 in Eqs. 4 and eliminating U yield 

9 alla22 - al22 
iE= V. 

a11 
(8) 

Introducing the values of Eqs. 5 for aii and cancelling out the common 
factor x1 - x2, yields 

ad22 - al22 = (Pl" + 112x2 - (022 + 1)2x1 

01" - 82" * a11 
(9) 

For a free layer, p = 0. Hence, the characteristic equation is 

(P? + 1)2X2 - (P22 + 1)2x1 = 0, (10) 

which may be considered as a relation between { = P/ZQ and y = Zh/2, 
with N/Q as a parameter. The root 5 of Eq. 10 is plotted in Figs. 2 and 
3 for N/Q = 1,3, and 10. The ratio N/Q is a measure of the anisotropy 

i 

i 

0.20. 

0.15 - 

Y 

FIG. 2. Stability parameter S as a function FIG. 3. Stability parameter { as a function 
of y for the free layer of Fig. 1. of r for the free layer of Fig. 1. 

of the material under initial stress. The case N/Q = 1 corresponds to 
an isotropic medium and its solution is discussed in (4, 5, and 11). 

For large wave lengths y is a small quantity, and the hyperbolic 
tangents may be replaced by their power series, retaining only the terms 
in y and ya. After cancellation of the factor (pz2 - &2)y, Eq. 10 

8 In these equations, s<j is the incremental stress referred to locally rotated axes. The 
displacement components are u and v, the local rotation is o, and the plane strain components 
are e,,, eyy, and ezv. 
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becomes 

k2 - 1 + $(k2 + m)r” = 0. (11) 

Substituting the values of Eq. 7 for k2 and m and solving for r give 

,=21v y2 
3 Q 1 + +y”’ (1% 

For small y this becomes 

2N 
r = j Q Y2, (13) 

which shows the parabolic behavior of the curves of Fig. 3 for small 
values of y. Equation 13 coincides with the result found by Euler’s 
theory of buckling for a thin plate, provided 4N is used as the elastic 
modulus. This can be verified by writing Eq. 13 in the form 

p=4NEZh2 
12’ (14) 

Hence, for large wave lengths the instability appears as a buckling of 
the plate through bending under axial compression. 

As the wave length decreases there is a gradual change from bending 
to shear buckling. At the larger values of y-that is, for wave lengths 
which are small relative to the thickness-the phenomenon degenerates 
into a surface instability. When y tends to infinity, the hyperbolic 
tangents in Eq. 10 tend to unity, and the characteristic equation 
becomes 

032” + 1)2/h - (PI2 + 1)2P2 = 0. (15) 

After cancellation of the factor PI - p2, Eq. 1.5 may be written 

2k(m + 1) + k2 - 1 = 0. (16) 

Substituting the values of Eq. 7 for m and k and solving for N/Q yields 

N -= 
Q + 

- - (17) 

This equation yields the value of 5 corresponding to the horizontal 
asymptotes of Fig. 2 for y = 00. It is a function of N/Q, and when 
N/Q varies between 1 and infinity, the asymptotic value of { goes from 
0.839 to 1. Its value is tabulated in (13). 

Equation 10 has been solved under the assumption that the roots p1 
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and & are real. Note that 

m2 - k2 = 
1 

2 [4N(N - Q> + P2]. (1% 

Hence, if it is assumed that N/Q > 1, then m > 0 and m2 - k2 > 0. 
This corresponds to Case 1 of the discussion of the roots in (1). There 
are two subcases : 

la. 

lb. 

For r < 1 the roots /31 and p2 are real, and this corresponds to 
the branches plotted in Fig. 7. 
For I{ ( > 1 the root flz is pure imaginary, which corresponds to 
internal instability. Putting & = it, the value of x2 remains 
real 

x2 = p2 tanh B2r = - 4 tan 57. (1% 

Solutions of Eq. 10 for this case are represented by an infinite num- 
ber of branches in the plot of 5 verS%S y. They are not shown in Fig. 2. 
If plotted, they would lie outside the range - 1 < { < 1, and represent 
the phenomenon of internal instability in the presence of free boundaries. 

The second example concerns the stability of a single layer embedded 
in an infinite medium (Fig. 4). Since the embedding medium is the 
same on top and bottom, only the antisymmetric deformation need be 
considered. The layer of thickness h is under an initial compressive 
stress P acting in a direction parallel with the layer. To simplify the 
analysis, two assumptions are made : (1) assume perfect slip between the 
layer and the medium; and (2) assume that the initial stress is zero or 

FIG. 4. Single layer embedded in an infinite medium. 
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FIG. 5. Stability parameter S as a function of y for the embedded layer of Fig. 4 
(with Q.rr/Q = l/100). 

negligible in the embedding medium. Hence, the tangential force 7 
is put equal to zero, and the relation between the normal force p and 
the normal deflection V is then given by Eq. 8. It has been shown 
(6, 7) that the correction due to perfect adherence is very small for the 
case of the single layer. The layer is anisotropic and characterized by 
the two elastic coefficients N and Q. The embedding medium also 
anisotropic, is characterized by the elastic coefficients N1, Q1. 

To derive the characteristic equation for this problem, the properties 
of the half space must be examined. In the absence of initial stress, 
the coefficients aij for the half space are obtained by putting P = 0 in 
Eqs. 68 of (1) : 

all = a22 = 2dN1/Q1 (20) 
al, = 0 

and the slide modulus becomes L1 = (Il. Substituting these quantities 
in Eqs. 76 of (1) for the upper half space, yields 

4=- 24CQYlV. (21) 

This result was discussed in (13). In this case the half space behaves 
as an isotropic medium of effective shear modulus 

Qetf = +‘JlQl. (22) 

The characteristic equation is obtained by equating the values of q in 
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Eqs. 8 and 21 at the upper interface. Introducing the value 

L = Q + f = Q(1 + i-> (23) 

for the slide modulus of the layer yields the characteristic equation 

y + (1 + p) (Pl” + l);;c, 1 j/y + 1PXl = o* 

l2 
(24) 

This equation establishes a functional relationship between { = P/2Q 
and y = 1h/2 for given values of the two parameters, N/Q and QerJQ. 
Plots of r wws y are shown in Fig. 5 for Q&Q = l/100 and for 
N/Q = 1, 3, and 16. 

If the coefficients N and Q were independent of the initial stress, the 
buckling load P and the corresponding wave length would be given by 
the minimum value <min of { in Fig. 5. Actually the coefficients N and 
Q depend on the initial stress P and the complete family of curves f 
versus y must be considered as a two-parameter system, depending on 
N/Q and QdQ. Ob viously as the finite strain is increased, buckling 
will occur at the point where the horizontal of ordinate 5 touches the 
stability curve. Hence, the buckling condition is written 

On the right-hand side of this equation the minimum value of [ is 
considered as a function of the two variables N/Q and Q.&Q. It is, 
therefore, an intrinsic equation for the critical buckling stress P. As 
in the case of the free layer, Eq. 24 contains branches in the range 
ISI > 1 which correspond to internal instability. 

The particular case of the isotropic medium, N/Q = 1, has been the 
object of a previous analysis for the case of perfect interfacial slip (5) 
and perfect adherence (6). In the latter case the branches in the region 
I( 1 > 1 corresponding to internal instability were also plotted. 

For small wave length, hence large values of y, the plots of Fig. 5 
become asymptotic to horizontal lines, which represent an interfacial 
instability. A more complete plot showing this asymptotic value is 
given in (6) for the case N = Q. The phenomenon of interfacial in- 
stability was discussed separately in another paper (14). 

3. INTRODUCTION OF GRAVITY FORCES--ANALOG MODEL 

The effect of gravity may be introduced quite simply into the 
formulation (2, 3). 

This section will present a general derivation of this procedure. 
In a homogeneous region of incompressible medium of mass density p, 
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with the acceleration of gravity g acting in the negative y direction, 
the initial stress components are 

s11 = - p + pgy + C 

szz = PKY + c (26) 

SlZ = 0, 

where P = Szz - S11. Both P and C are assumed constant in the 
homogeneous region. The body force in this case is 

x=0 
Y=-g. (27) 

Substituting these expressions in Eqs. Al of (1) gives 

(28) 

The derivation of the second equation takes account of the condition for 
incompressibility, replacing esz by dv/dy.3 If the fictitious stress 
components, 

Sll ' = Sll - pgv 

s22' = six? - pgv 

s12 ' = s12, 

(29) 

are introduced, the Eqs. 28 become 

ad as12' _+_- 
ax ay 

p*=o 
ay 

aS12f aS22f -+-- 
ax ay 

P$O. 

(30) 

Putting s’ = s - pgv, the stress-strain relations become 

Sll’ - s’ = 2Ne,, 

s22’ - s’ = 2Ne YY (31) 

s12 ' = 2Qe,,. 

With this fictitious stress system, Eqs. 30 and 31 are identical with those 
in which gravity is equal to zero (1) ; however, there is a difference in the 



240 M. A. BIOT [J. F. I. 

boundary conditions. The boundary forces, expressed by Eqs. 89 of 
(I), become 

when the fictitious stresses are substituted. 
Consider the terms 

A’fi = s12’ i-k, 

Alf, = ~22’ + pgv. 

(33) 

Their physical significance is the same as in the gravity-free case. 
They represent the incremental stress components along directions 
tangent and normal to the deformed surface and referred to unit areas 
after deformation (1). An important property of the stress components 
A’fi and A’fu is their continuity across an interface between two layers 
of different material. This is immediately evident for the case of 
perfect adherence, since these components represent stress at the same 
point. On the other hand, for the case of perfect slip A’fi = 0, but 
A’fy represents normal stresses at different points of the interface; 
however, the differential slip is a small quantity of the first order so 
that A’f, may still be considered continuous if second order quantities 
are neglected. 

Next, introduce the stress, 

A’% = SH’ + Pe,, = r sin lx 

A”j’U = szz’ = 4 cos lx, 

(34) 

which represent the boundary stresses r and 4 in the gravity-free case. 
The stresses (Eqs. 33) may then be written 

Alf, = r sin lx (35) 

A% = (q + pgl/r) cos Ix. 

These results are directly applicable to multilayered systems by 
expressing the continuity of the stresses of r and 4 + pgV at an inter- 
face. Note that the values of 7 and p at the top and bottom faces of a 
layer are given by the equations derived for the case of zero gravity. 

First consider the case of perfect adherence. Proceeding as in the 
derivation of equations for the multilayered system (1) and expressing 
the stress continuity at the interface adjacent to the jth and (j + l)th 
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layers give 

ali 
- lLj dUj+l 

ar. 
= lLj+l ault: 

- lLj$ + pjgVj+l = lLj+l* + Pj+lgVj+l, 
H-1 if1 

which may be written as 

& (Lj1.i + Lj+lIj+l) = 0 

+ (LjIj + Lj+Jj+l) + i (Pj+l - Pj)gVj+l = 0. 
3+1 

241 

(36) 

i37j 

Similar equations are obtained for the interfaces adjacent to a semi- 
infinite medium. The equations may be given a more compact form by 
introducing a gravity invariant 

9 = h $ (Pi+1 - Pdgvi+12 (3% 
1-O 

where p. and pn+l are the mass densities of the upper and lower half 
spaces, respectively. The stability equations of the multilayered 
system are now 

ag 0 -= 
dUj 

-& (3 + $9 = 0 
3 

where 

3 = LIZ + i LjIj + L’I,‘. (40) 

(See Eq. 102 of 1.) The terms LIZ and L’I,’ represent the contribution 
of the lower and upper half space. They are omitted if the correspond- 
ing upper or lower surface is free. 

Equations 39 may also be written as a variational principle 

sc3+ 8) =o (411 

with arbitrary variations 6 Uj, 6 Vj. 
The physical significance of this expression is apparent since it 

represents the total energy of the analog model. 
These results may be expressed intuitively by stating that the effect 

of gravity may be replaced by a force (pi+1 - pj)gV per unit area normaI 
to the interface and positive when acting downward. It is proportional 
to the vertical displacement V, and is in the nature of an elastic restoring 
force with a “spring constant” equal to (pi+1 - pj)g- Hence, it is 
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stabilizing or destablizing, depending on the sign of the density differ- 
ence. At a free surface the effect of gravity is represented by a normal 
stress pg V acting downward. 

The replacement of gravity by elastic interfacial and surface forces 
leads to a system which is mathematically equivalent to the actual one. 
It may therefore be considered as an analog model. 

The present analysis is an exact derivation from the general theory 
of a result which is intuitively evident if the fictitious interfacial forces 
are identified with buoyancy forces. 

The case of layers with perfect slip at the interface is treated in a 
similar way. 

The procedure of matrix multiplication developed earlier may be 
extended to include the effect of gravity. This is readily done by addi- 
tion and subtraction of terms in Eqs. 108 of (1) and writing them in 
the form 

The matrix is now 

The additional coefficients are 

Cs=B+B9 

Cs = Bc+$Bs 

LBn LCs’ 
-LG LC, 

B1 -Cs’ 

(42) 

(43) 

C’=B _!%B 6 6 
IL 2’ 

(44) 

Because of the continuity of CJ + pgV at an interface, the same pro- 
cedure of matrix multiplication may be used as in Eq. 112 of (1). Note 
that the boundary condition at a stress-free surface is now 4 + pg V = 0. 
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The recurrence equations (39) or the matrix multiplication process 
using the matrix (43) are well suited to programming of automatic 
computers for the numerical solution of problems including gravity 
instability which involve a large number of layers. 

4. VISCOELASTICITY AND CORRESPONDENCE PRINCIPLE 

The general validity of a correspondence principle applicable to 
viscoelastic media under initial stress has been shown (8). Equations 
for viscoelastic stability are formally the same as for elastic media and 
are obtained by replacing the incremental elastic coefficients by 
operators. 

The form of these operators was derived from the principles of 
irreversible thermodynamics (9, 10) and later generalized to the case of 
a medium under initial stress (7). Elastic coefficients defined in terms 
of incremental forces per unit initial area may be chosen instead of 
stresses. Such coefficients were used in the previous sections. For 
example, if sz2 = Sz2 = 0, the stress-strain relations may be written 

tll = 4Me,, (45) 

t21 ’ = 2Le,,. 

These coefficients yield the incremental axial force tll and the tangential 
force tzl’ per unit initial area for a strip of material under the initial 
axial stress Sll. If the medium is in a state of thermodynamic equilib- 
rium under the initial stress, the operators corresponding to such 
coefficients as M and L have the same form as for a medium initially 
stress-free (7). Hence, for a viscoelastic material, Eqs. 45 are 
replaced by 

tll = 4iii!e,, (46) 

t 21 ’ = 2Ee,, 
with 

@= s - P - M(r)dr + M + M’p 
0 p-l-r 

(47) 
EC 

s 
w~L(r)dr+LfL’p. 

0 p-l-r 

In these expressions, let 

d 
P=& 

(t = time variable). When p is an algebraic real or complex quantity, 
Eqs. 46 represent the stress-strain relations between variables which 
vary with time proportionally to the factor exp (pt). Thermodynamic 
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principles also require that M(r), M, AI’, and L(r), L, L’ be all positive 
quantities. 

According to Eqs. 1, the coefficients N and Q correspond to the 
operators 

fl=&-tp 

&= z-*p (49 

and the operational stress-strain relations are 

Sll - s = 2iVe,, 

szz - s = 2iVe,, (50) 

SlZ = 2Qe,,. 

As an example, consider a laminated medium constituted by thin 
alternating layers of elastic and viscous incompressible materials. The 
elastic layers carry the initial compressive stress PI. Their elastic 
properties are defined by the coefficients N1 and Q1 and they occupy a 
fraction cyl of the thickness. The soft layers are constituted by a 
viscous material of viscosity VJ occupying a fraction cz2 of the total thick- 
ness. The viscous layers are assumed to be free of initial stress. The 
operators for the viscous layers, are 

Lt = m, = &, = pq. (51) 

Applying the correspondence principle to Eqs. 32 and 33 of (I), the 
operators of the composite medium are derived, 

iV = NICYI + PWZ 

The slide modulus L1 of the elastic layer is 

L = QI + +PI (53) 

and the initial stress in the composite medium is 

P = crlP1. (54). 

The operators (52) correspond to a Kelvin and Maxwell model, re- 
spectively. 

As another example, consider the initially stress-free elastic half’ 
space. As shown by Eq. 21, the deflection under surface forces is the 
same as if it were isotropic with an effective elastic coefficient 

Qetf = dNlQ1. (5% 
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If the half space is purely viscous, it is represented by two operators, 

Wl ='Pq1 

&i = pm. 
(56) 

Applying the correspondence principle, the coefficient Qcff becomes the 
operator 

&eff = PGG. (57) 

This shows that the surface of an anisotropic viscous medium behaves 
as an isotropic one of Newtonian viscosity 

These considerations may be applied to the stability problem of 
single or multilayered viscoelastic media. By the correspondence 
principle the results obtained previously for the elastic medium may 
be immediately extended to viscoelasticity. Consider the case repre- 
sented in Fig. 4 for the single embedded layer under a given initial 
compressive stress P and perfect interfacial slip. For viscoelastic 
materials we must replace the elastic coefficients of the layer by the 
operators 57 and &. Similarly, the half space is characterized by 
the effective operator &r. These operators are functions of the real 
quantity p. For given value of p we may calculate the value of r as a 
function of y using the same characteristic equation as for the elastic 
case. This yields a plot which belongs to the family of curves of Fig. 5. 
Consider now the ordinate r = P/2&. The horizontal line through 
this ordinate may intersect the curve for two values y1 and y2 of y. 
This shows the existence of two wave lengths in the layer such that their 
amplitudes are proportional to exp (et). Repeating this process for 
other values of p its value may be plotted as a function of y. The 
value of y for which p is a maximum defines a dominant wave length. 
It is the wave length of folding of the layer whose amplitude grows at the 
fastest rate. Obviously at this point y1 = y2. Therefore, the maxi- 
mum value of p must satisfy the same equation (2.5) as for the elastic 
case where the coefficients are replaced by the operators. 

The dominant wave length of an embedded layer for the case of isotropic 
viscosity has been discussed and evaluated (5). 

5. CONDITIONS FOR REAL VALUES OF THE CHARACTERISTIC EXPONENTS OF 
VISCOELASTIC INSTABILITY 

The characteristic equation for stability must be solved for p as a 
function of the wave length. There are usually several or an infinite 
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number of such roots represented by multiple branches in the p versus 
y plot. 

The characteristic roots p must be real if the principles of linear 
thermodynamics are satisfied (10). This was derived from the property 
that for thermodynamic systems initially in an equilibrium state the 
stability problem is defined by two quadratic forms. One of these is 
the dissipation function which by nature is positive definite. Hence, 
the characteristic roots fi are real quantities. In the case of a system 
under initial stress the other quadratic form which represents the 
generalized free energy may be indefinite, indicating an unstable equi- 
librium, and some of the characteristic roots yield increasing exponen- 
tials of time. 

This is formally identical with the properties of the characteristic 
roots represented by the square of the frequency in stability and 
vibration problems of conservative dynamical systems. 

A less restrictive and more formal condition for the existence of real 
characteristic roots may be obtained by considering the particular 
situation analyzed in the present paper. In this case the properties of 
the medium depend on the vertical coordinate y. The material is 
incompressible and is characterized by two operators R(y) and Q(y) 
with axes of orthotropic symmetry along the vertical and horizontal 
directions. The principal initial stresses are oriented in the same direc- 
tions and expressed by 

s11 = - P(Y) + &2(y) (W 
szz = &z(y). 

They are functions only of the vertical coordinate y. 
With a constant gravity field of acceleration g, and a mass density 

distribution p(y) a function only of y, the equilibrium condition for the 
initial stress is 

dSzz - - pg = 0. 
(zy (61) 

The equilibrium equations (Al of 1) for the incremental stress may 
be written in the form 

aa11 dAl2 .-....-+-= 
ax ay 

0 

dA13 
-+ 

d&e 
ax 

~+gv~-P~=o, 
(62) 
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where4 
A,, = ~11 - Peuv - pgv 

AU = slz + Pe,, 

A22 = ~22 - pp. 

The condition of incompressibility, 

247 

(63) 

ezz + eyu = 0, (64) 

has been used in deriving these equations. Assume that the charac- 
teristic equation for stability has complex conjugate roots p and p’ 
with corresponding solutions represented by the variables u, u*, V, v*, 
etc. Add Eqs. 62, after multiplying the first by u* and the second by 
v*, and integrate the result over the area S. This gives 

aAl1 Js( - U* ax 
aA12 + u* - d&2 + v* - aa22 

ay ax 
+ v*- 

S ay 
+ gv*v $ - Pv” !$ dxdy = 0. 

> 
(65) 

Assume a solution which is periodic along x and choose a domain S 
limited by two vertical lines at a distance of one wave length and two 
horizontal lines of ordinates yl and y2. Integrating by parts, Eq. 65 
becomes, after substituting the values in Eq. 50 for the stresses and 
taking into account the condition of incompressibility, 

[S (u*An -I- v*Azs)dx]:: = [Is (4iife.,e,,* + 4Le,yezu* 

+ gvv” $ - P g ‘$) dxdy. (66) 

Because of the periodicity of the solution, the line integral along the 
vertical sides cancels out and reduces to the term on the left-hand side. 
If the displacements vanish at the horizontal boundaries, the line inte- 
gral is equal to zero. This is the case for rigid adhering boundaries and 
for an infinite or semi-infinite medium with vanishing displacements at 
infinity. For a rigid boundary with perfect slip it is also equal to zero 
because v* and Al2 (which, according to Eq. 63, represents the tangen- 
tial force) both vanish. Finally, for a free boundary, sz2 = 0 and 
A,, = 0. Hence, 

J (u*A12 + v*Azz)dx = - pg 
I 

v*vdx. 

In all these cases the derivation of Eq. 66 may be repeated, replacing all 

4 The variables are defined as in Eq. 28. 
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quantities by their complex conjugates. Subtracting the 
from each other gives 

s/ 
s [(B - B*)ezzezz * + (L - L*)ezyezJ*]dXdy = 

[J. F. I. 

two results 

0. (68) 

This equation cannot be verified if the imaginary parts of i%? and L are 
of the same sign. Hence, if this is the case, the characteristic roots p must 
be real. This is also equivalent to the condition that the imaginary 
parts of 15 and & be of the same sign. As shown by expressions (57), 
this condition is satisfied for the operators derived from thermodynamics. 

It is of interest to point out that Eq. 51 furnishes implicitly a proof 
of the uniqueness and stability of the viscoelastic solution under given 
perturbing forces for the case where ii? and L are positive functions of p 
while dp/dy and P are negative or zero. If the field U, v represents the 
difference between two solutions corresponding to the same perturbing 
forces, it satisfies Eq. 66 considered as a Laplace transform with real 
values of p. It can only be satisfied for u = v = 0. Hence, in this 
case the solution is unique and stable. 

The conditions for the existence of real characteristic roots are 
illustrated by the problem of the surface instability of the viscoelastic 
half space (5). When the characteristic equation is rationalized, it is 
found to be cubic, with two of the roots complex. However, they are 
spurious, and it was shown that only the real root satisfies the condition 
of vanishing disturbance at infinity. 

6. GRAVITY INSTABILITY OF VISCOUS AND ELASTIC MEDIA 

The particular case when the initial stress is purely hydrostatic leads 
to instability due only to the gravity forces. The basic equations are 
obtained by putting P = 0 into the previous result. The simplest 
way to derive the equations is to use the concept of analog model. 
This analog model behaves like the actual medium under initial stress. 

(a) (b) 

FIG. 6. Gravity instability of a viscous layer. (a) on ‘top of a rigid base and surmounted by 
an infinite viscous medium ; (b) between two infinite identical viscous media. 
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It is obtained by considering a stress-free medium and replacing the 
gravity force by surface forces acting at the interface between the 
layers. The coefficients aij and bij for the stress-free layers are then 
given by Eqs. 85 and 86 of (1). Consider the medium to be incom- 
pressible, purely viscous and isotropic. In this case the operators 
become 

@=E=fi=Q=rlp 

where 7 is the viscosity coefficient. 

(69) 

As an example, consider a viscous layer of thickness h, viscosity 7~ 
and density p lying on a rigid base (Fig. 6a). On top of this layer lies 
an infinitely thick medium of viscosity 7’ and density p’(p’ > p). 
Perfect adherence is assumed at the interfaces. Therefore, the dis- 
placement vanishes at the bottom side of the layer and the problem may 
be formulated in terms of two variables U and V representing the dis- 
placement components at the upper interface. 

Consider the upper half space. In the absence of initial stress and 
for an isotropic medium the coefficients (Eqs. 20) are 

a11 = az2 = 2 

a12 = 0. 

The stress in the upper half space at the interface is 

rf = - 21q’pU 

Q’ = - 21+p v. 

(70) 

(71) 

In the layer the displacement at the bottom face vanishes. Hence, 
applying Eq. 59 of (I), the stresses in the layer at the top face are 

7 = ZrlP(AIU + A2V) 

q = JrlP(AzU + A3V). 

(72) 

The coefficients are 

A1 = $(a11 + L) 

A2 = %(a12 + he) 

Aa = $(a22 + b22). 

(73) 

The values of aij and bij are those of the isotropic and stress-free layer 
expressed by Eqs. 85 and 86 of (1). They are functions only of 7 = $Zh. 
In the analog model, a surface force (p - p’)qV must be applied at the 
interface such that 

7’ = 7 

4’ = 4 + (P - P’kV. 
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(75) 
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Combining Eqs. 71, 72, and 74 yields 

(2 + Kkl1)u + KAzli = 0 

1 v=O 

with the parameters 

17 
K=7 

u = b’ - l-J)& 
(76) 

rl V’P - 

The characteristic equation is obtained by equating to zero the de- 
terminant of Eqs. 7.5. It may be written 

K~A 22 

2 + KAI 
(77) 

For a given value of the viscosity ratio K, u is a function only of y. 
This value of u as a function of y for K = l/1000 has been plotted 

as curve a in Fig. 7. The value of u goes through a minimum. This 
minimum represents a maximum value for P and corresponds to a 
dominant wave length. The dominant wave length is 

& = + 
?‘d’ 

(7% 

0 0.1 0.2 0.3 0.4 C 

Y 

FIG. 7. Parameter Q of gravity instability as a function of y for the case K = l/1000. Curve 
a-For the layer on a rigid base (Fig. 6~). Curve &For the embedded layer (Fig. 6b). 
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where Ed is the value of y corresponding to the minimum value of u. 
This minimum is shown in Table I as a function of II along with corre- 

sponding values of Ed and ?. 

TABLE I.--iWinimum Value of u and corresponding value yd and $. 

K 

l/1000 
l/100 
l/10 

Umin Yd gdlh 

0.687 0.114 27.6 
1.49 0.243 12.9 
3.36 0.495 6.35 

Equations for the layer embedded in an infinite medium represented 
in Fig. 6b are obtained in a similar way from the analog model. Using 
Eqs. 59 of (1) for the layer gives 

The coefficients Aj are functions of y only and are given by Eq. 60, 8.5, 
and 86 of (I). Equating to zero the determinant of these equations 
yields a quadratic equation for u. Its solution is shown as curve b in 
Fig. 7 for K = l/1000. 

An interesting property of Eqs. 79 is their invariance when U1, VI, 
Uz, V2 are replaced by Uz, - V2, U1, - VI and u by - u. This shows 
that the characteristic equation contains only u3. Hence, the roots u 
are equal and opposite in sign. There are two characteristic modes 
for the system (79). The unstable mode is associated with a positive 
value of p and its amplitude is proportional to the increasing exponen- 
tial exp (pt). In this mode and for p’ > p the amplitude of the upper 
interface is the largest. The other mode, obtained by performing the 
substitution indicated above, is stable and its amplitude is proportional 
to the decreasing exponential exp (- fit). If the layer density is 
higher than in the surrounding medium, that is, for p > p’, it is easily 
seen that the latter mode is the unstable one. 

In general, the characteristic equation for p will be of a degree equal 
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to the total number of non-rigid interfaces plus the free surfaces. To 
each root corresponds a modal solution which is either stable or unstable. 

By the correspondence principle the present solution is, of course, im- 
mediately applicable to gravity instability of elastic media. The 
operators T@ and q’@ must be replaced by the corresponding shear 
moduli P and P’. The parameter K becomes 

For the case of a rigid base, the interface will buckle as soon as the 
density difference satisfies the equation 

where gmin is given by Table I. For values of (p’ - p)gh/p’ smaller 
than the value in Eq. 81, the layer is stable. 
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