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Summary 

Incremental elastic coefficients are derived for an isotropic medium in a 

state of finite initial strain. The analysis is based on concepts and methods 

developed by the author in earlier publications 1) a) 3) 5) which require 

only elementary procedures and bring to light the physical significance 

of the results. Remarkably simple formulas for the incremental shear 

coefficients are established. For comparison the same results are derived 

by an alternate procedure using Riemannian tensors and the calculation 

is shown to be much more elaborate. Application is made to the particular 

case of second order elasticity theory and expressions derived for the in- 

cremental coefficients including the correction terms of the first order in the 

initial strain. This provides a complete theory of first order correction for 

acoustic propagation under initial stress. 

$ 1. Introduction. We consider an elastic continuum which is 
isotropic in the unstrained condition. By this is meant that the 
relations between the stresses and the finite strains are invariant 
under any solid rotation of the continuum. 

The problem we are concerned with is that of deformation of 
such a medium in the vicinity of an initial state of finite strain. In 
particular we wish to derive relations between small incremental 
strains and incremental stresses. In some earlier work we have 
discussed in detail the nature of the incremental elastic coeffi- 
cients 1) 2) a). This was done in complete generality and without 
reference to any particular property of elastic symmetry. 

*) This work was supported by the Air Force Office of Scientific Research under 

contract No. AF 49(638)-837. The contents of this paper were included in AFOSR 

Report R’o. 1772 of November 1961. 
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In the present case since the medium is initially isotropic it is 
obvious that in a state of initial strain it will acquire the symmetry 
of the initial principal stress system. For incremental deformations 
it will behave as a medium of orthotropic symmetry. The three 
planes of elastic symmetry will coincide with the three orthogonal 
directions of the three principal initial stresses. 

An important aspect of the problem resides in the definition of the 
incremental quantities. The small components of strain and rotation 
are defined without ambiguity in exactly the same way as in the 
classical theory of elasticity for small deformations. The choice of 
a definition for incremental stresses however is not unique. In the 
earlier work as well as in the present paper we have adopted a 
particular Cartesian definition. The incremental stress is referred to 
orthogonal axes which undergo the same local rotation as the 
medium. Hence the incremental components of stress are linear 
functions of the strain. In addition in the description of finite strain 
the elementary procedures of matrix algebra have been used instead 
of the concepts derived from the tensor theory. 

There are considerable advantages in this approach as contrasted 
with the usual treatment of problems of finite strain. This is well 
illustrated by the two separate derivations of the incremental 
elastic coefficients given in the present paper. The first one 
contained in 3 2 uses the elementary approach. The analytical steps 
are quite simple and illustrate quite clearly, the physical significance 
of the result. The alternate derivation in 9 3 uses methods and 
concepts which belong essentially to the general tensor theory. 
A comparison shows that the latter is considerably more involved 
analytically. It leads to the required simple result only by noticing 
the cancellation of complicated expression as common factors. This 
fact should lead to some difficulty in more complicated problems 
where the simplifications are less apparent. Furthermore, the ana- 
lytical steps do not provide any insight in the physical nature of the 
result. 

The reader more familiar with the usual approach may well be 
disturbed by our use of symmetric matrix coefficients to describe! 
finite strain. This is because the product of two such matrices is not 
necessarily symmetric and does not possess the group property. 
Another way of looking at this is by saying that if we apply two 
successive pure deformations we introduce a rotation in addition 
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to a pure deformation. That this constitutes no difficulty is well 
illustrated by the derivation in 9 2 where a small incremental pure 
strain is superimposed upon a pure finite elongation. Although each 
of these transformations is a pure strain without rotation the final 
result contains a rotation. It will be seen that this fact introduces 
no difficulty in the derivation. 

In the last section we have discussed the particular case of 
second order elasticity for an isotropic medium. This is identical 
with the problem of deriving first order corrections to the elastic 
coefficients for the case of small initial strain. The theory was 
developed in detail by the author a), and the second order stress 
strain relations were derived very simply without using the concept 
of invariant. It was shown that this requires the introduction of 
tive elastic coefficients. which are readily measurable *). 

In 9 4 the results of the present paper are combined with the 
previous second order theory. The first order correction of the 
elastic coefficients, due to initial strain is evaluated. The result is 
of special importance for the analysis of initial strain corrections 
in acoustics. These coefficients when inserted in the general theory 
of propagation of elastic wave in a medium under initial stress 5) 
yield a complete mathematical treatment of the problem. 

While the author’s theory was developed more than twenty years 
ago it contains as a particular case what has more recently been 
referred to as “hypoelasticity”. This becomes evident by considering 
the limiting case of vanishing increments of stress and displacement 
and dividing all equations by the time differential. In the limit all 
variables are replaced by time derivatives. The limiting Eulerian 
equations are formally identical with those obeyed by the author’s 
incremental variables. A time dependent finite deformation may 
then be considered a continuous sequence of incremental defor- 
mations under initial stress. In addition to greateragenerality there 
are other advantages inherent in the author’s Lagrangian view- 
point. These become apparent when solving specific problems of 
elastic and viscoelastic stability, in expressing boundary and initial 
conditions and interpreting the physical significance of the results. 
Furthermore the author has shown 1)2) that the equations lead 
directly to the theory of elasticity of the second order and include 
the practically important case of small strains and large rotations. 

*) This is in contrast with the coefficients I, m, n proposed by Murnaghand). 
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5 2. General expressions for the incremental elastic coefficients. 
Consider an elastic medium with arbitrary stress-strain relations 
of isotropic symmetry. Let the original unstressed state be denoted 
by (a) and the coordinates in this state by XYZ. Three principal 
stresses Srr, Sss, Sss are applied to the medium. The corresponding 
deformation produces deformation denoted as state (b). We assume 
the principal stresses to be directed along the coordinate axes. 
State (b) is the initial state of stress. Because of isotropy the prin- 
cipal directions of deformation are also parallel with the coordinate 
axes and the coordinates X, Y, Z in state (b) are 

x = allX, 

y = a22Y, 

2 = a33.Z. 

0.1) 

We now produce a state of deformation (c) by superposing a small 
incremental strain upon state (b). The coordinates in state (c) are 

t=(l +exx)x+ex~y+ezx~, 
q=ex,x+(l +eydy+eyzz, 

5 = ezxX + evzy + (1, + 4 z. 
(2.4 

The stress increments are linearly related to these small strains 

by the relations 

(2.3) 

These coefficients reflect the orthotropic symmetry of the incre- 
mental coefficients in the state of initial stress. This is itself a 
consequence of the original isotropy of the medium. This writer 
has shown 2) that the existence of a strain energy requires that the 
coefficients satisfy the following relations: 

Bl2 - B21 = 522 - Sll, 

B23 - B32 = 533 - s22, (2.4) 

B31 - B13 = S11 - 5.33. 

The coefficients Bi* depend of course only on the incremental 
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principal strain and must be measured by applying incremental 

stresses. 

This is however not necessarily the case for the shear coefficients 

Q1, Qs, Qs and we will now derive the important property that in 

general these coefficients may be immediately calculated from the 

initial state of stress and the corresponding finite strain. In other 

words these may be expressed in terms of Sir, Sss, Sss and 

all, &2, a33. 

To show this let us restrict the incremental strain of state (c) to 

a pure shear component e,,. This is a two dimensional incremental 

strain where the coordinates in state (c) are 

5 = x + exl/y, 

11 = ex,x + Y, (2.5) 
5 = 2. 

Combining relations (2.1) and (2.5) we find: 

5 = al3 + esya22Y, 

17 = ezvad + a22Y, (2.6) 

5 = a&. 

which defines the transformation from the unstressed state (a) to 

state (c). We need only consider the first two equations which 

reduce to a two-dimensional transformation. This transformation 

may be written 

[;I = [it; ;;;I [;$ - 2i-j [C-j. (2.7) 

This represents a solid rotation through an angle 8 about the axis, 

followed by a pure deformation. We may evaluate the coefficients 

bar of the pure deformation by identifying the coefficients in the 

two transformations (2.6) and (2.7). This involves only very simple 

algebra. Since e,, is small it is possible to express these coefficients 

by neglecting second order quantities. We find: 

bii = ali, 

bss = a22, 

his = 
41 + 42 

(2.8) 

ali + a22 
exy. 

The pure transformation bij represents principal strains bI and bII 
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along two principal directions I and II (fig. 1). The principal 
direction I lies at an angle CL with the x axis. The magnitude of 
this angle to the first order is 

hz 
CL= 

hl - bzz 
, 

or 

a:1 + 42 
CC= 

g1 - a ;2 
exy. 

(2.9) 

(2.10) 

Fig. 1. Stress field after application of an incremental shear strain. 

We also find that if we neglect second order quantities the magni- 
tudes of the principal strains are 

bI = bll = all, 

bI1 = b22 = ~2332. 
(2.11) 

In other words, to the first order the finite strain in state (c) is the 
same as in state (b) except that the principal directions are rotated 
through an angle cc. Because of the assumption of isotropy and to 
the same approximation, the state of stress in state (c) must also 
be the same as in state (b) provided the principal directions are 
rotated through an angle cc. If we resolve this state of stress on the 
coordinate axes x, y, we obtain a first order shear component 

s12 = (Sll - S22) ff* (2.12) 
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Substituting the value (2.10) of LY this becomes: 

s12 = (Sll - S22) 
41 + 42 

41 - 42 
exzl. 

Hence the value of the incremental shear coefficient: 

2Q3 = (&I - &2) 
41 + 42 
4 - ak 

. 

(2.13) 

(2.14) 

As announced its value depends only on the finite initial stress 

and does not involve any incremental physical properties. An 

identical derivation yields immediately the two other shear coeffi- 

cients : 

2Q1 (S22 5.33) 42 + 43 = - 
ai2 - a& 

9 

2Q2 (5.33 &I) 43 + 41 
(2.15) 

= - 

43 - 41 

These expressions are valid without reservation if the initial 

stresses are unequal. ,However they become indeterminate if any 

two of the principal stresses in the formulas are equal. For example 

let us assume that 

Sll = s22, 

all = a22. 
(2.16) 

Obviously in this case the medium retains its isotropy around the z 

axis i.e. it becomes transverse isotropic. To find out the limiting 

value of the coefficients in this case we consider an increment darr 

of the elongation all. This corresponds to an incremental strain 

e - &l/Ql, xx - 
with e 1/y = ezz = 0. 

The incremental stresses are: 

(2.17) 

srr = Llsrr, .sss = Llsss, s33 = dS33. 

We may write: 

(2.18) 

d&%1 - S22) = Sll - s22, 

a:1 - al2 = 2adlall, 

and expression (2.14) becomes 

(2.19) 

2Q3 = 
Sll - s22 

. 
exx 

(2.20) 
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On the other hand subtracting the difference of the first two 
equations (2.3) (with e,, = ezz = 0) yields: 

Bll - Bl2 = 
Sll - s22 

exx 
(2.21) 

From (2.20) and (2.21) we derive: 

Brr = B12 + 2Q3. (2.22) 

Similarly applying an incremental strain dass we find: 

B22 = B21 + @3. (2.23) 

Also because Srr = Sss relations (2.4) yield 

Bl2 = B21. (2.24) 
Hence 

B 11 = B22 = B12 + 2Q3. (2.25) 

Symmetry about the .z axis implies the following equalities: 

B13 = B23r B31 = B32, QI = Q2 = Q. (2.26) 

With these results the incremental stress-strain relations (2.3) 

become 

s11 = 2Qskx + B12(exx + +,/v) + B13ezzt 

~22 = 2Q3eug + Blz(ezz + eyu) + B13ezz, 
~33 = B31(exx + 
s23 = 2Qegz, 
~31 = 2QeZx, 
~12 = 2Q3ezu. 

ez/d + Bmz, 

We must still verify the last relation (2.4) 

(2.27) 

B31 - B13 = SII - S33. (2.28) 

Therefore if Srr = Sss the stress-strain relations (2.27) contain 
five incremental coefficients. Furthermore in this case the coefficient 
Qs is defined by the incremental properties of the normal stresses. 

$ 3. Alternate derivation by the method of invariants. For the 
purpose of comparison we shall now derive the same results by an 
alternate method which uses the concept of invariants of the 
general tensor theory. 
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Consider the homogeneous transformation 

E = a11X + a12Y + a132, 

q = a2lX + a22Y + a232, 

5‘ = a3lX + a32Y + a33Z. 

(3-l) 

The coordinates XYZ of a point in the unstrained original state (a) 
become 6, q, 5 after deformation. The transformation (3.1) contains 
nine independent coefficients defining the superposition of a solid 
rotation and a pure deformation. It is well known that for an iso- 
tropic elastic medium a cube of unit volume in the original state 
acquires a strain energy W which is a function of three invariants, 

w = W(Il, 12,13). (3.2) 

These invariants are functions of the nine coefficients in the trans- 
formation (3.1) and are defined as the coefficients in the poly- 
nomial 6) 7)) 

F(A2) = (16 - IlA4 + 12A2 - 13, 

where 

Al-As B3 B2 

+l2) = B3 A2 - A2 B1 

B2 Bl A3 - A2 

The elements in the determinant are: 

A1 = UT1 + a& + a&, 
A2 = a?2 + ai2 + ai,, 

A3 = a& + a& + af3, 

B1 = m2al3 + a22a32 + a32a33, 

B2 = al3all + a23a21 + a33a31, 

B3 = alla12 + a2la22 + a31a32. 

(3.3) 

(3.4) 

(3.5) 

These invariants II, Is, Is remain unchanged when the trans- 
formation (3.1) represents rigid rotation. 

We shall first consider a state (b) of finite initial strain defined 
by the transformation 

5 = arrX, 
11 = a22Y, (3.6) 

{ = a33Z. 

The principal directions of strain and the principal stress are 
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parallel with the coordinate axes. The invariants become 

with 

I1= Al + A2 + & 

12 = AlA2 + A2A3 + ~41A2, (3.7) 

13 = AlA2A3, 

Al = a;,, A2 = u;s, A3 = a&. 

The principal stresses are: 

(3.8) 

1 8W 
s11= -~-, 

a22a33 aall 

s22 = 
1 aw 

~~- 9 
a33all aa22 

1 aw 
s33 = ~ - 

alla22 aa33 ’ 

Evaluating the partial derivatives we find: 

(3.9) 

For our purpose, as will appear later we shall need the values of the 
derivatives aWlaIl, aWlal and aWlal expressed by means of 
the stress components and the finite strains. We must therefore 
solve the system of equations (3.10) for these derivatives. We find: 

aw -_=- 
ah ; [C1A;(~2-~3)+~2~;(~3-&)+~d;(&-~2)], 

aw --=- 
aI ; [ClAl(A3--A2)+C2A2(Al-A3)+C3A3(A2-A1)], (3.1 1) 

aw 
~ = ; [Cl@2 - A3) + C2(A3 -Al) + C3(Al- A2)], 
aI 

with 

D = As(4 - A;) + Az(Af - A;) + A&4; - A;) (3.12) 
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and 
Sll 

cl = alla22@3 - 
2A1 ’ 

s22 
c2 = @lla22@33 - I 

2A2 

5.33 
c3 = a11@22a33 - . 

2A3 

(3.13) 

Let us further consider a state (c) defined by the transformation 

CF = UllX + @lay, 

7 = a22Y, 

5 = a&. 

(3.14) 

We assume urs to be small. The state (c) is obtained from the 
state of initial stress (b) by adding a small shear displacement 
along the x direction (fig. 2). If y denotes the small shear angle, 
then 

a12 = @227. (3.15) 

Y 
at1 

Afx 

x 
~ 5 -- 

I 3 

f ’ f 
I 

I Y- 
a,, 

I 
If I 

I 

I’ / / 
” / I 

-1--+ 
X 

4 aIt A 

Fig. 2. Shear displacement superposed on a state of initial sfinite strain. 

Denoting the coordinates in the initial state of stress by 

x = arix, 

y = a22Y, 

z = as&, 

(3.16) 
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the transformation (3.14) may be written as: 

(3.17) 

with 

(3.18) 

It defines the superposition of a small shear strain ezV and a 
rotation cc). The deformation is obtained by applying a force Of% 

per unit area of state (b) to the face perpendicular to the Y axis. 
This tangential force is associated with an incremental shear stress 
sis referred to axes which have undergone the same rotation m 
as the material. From general equations expressing boundary 
forces in terms of stresses and derived in earlier work *) we may 
write 

Af, = ~12 - 5&w - Sozy, (3.19) 
or 

~12 = Afz + (SH - 54 exg. (3.20) 

We must now calculate Of% from the strain energy. The invariants 
corresponding to the transformation (3.14) become : 

11 = Al + A2 + A3 + a;,, 

12 = -41-43 + A2A3 + ‘41‘42 + ‘43&, (3.21) 
13 = AlA2A3. 

The force is derived from the strain energy by the relation 

aiiaz2Af, = +QwG = 2 
aW 8W 

r+A3r- 
a12. (3.22) 

1 2 > 

Since ais is small we may use in equation (3.22) values of the 
invariants in which we have substituted ais = 0. Hence they are 
the same as in equations (3.7). The derivatives aW/aIl and 
aW/aIz are therefore expressed by equations (3.11). Substituting 
these values we obtain: 

8W 
al+A3F= 

1 

aw a11;;a33(AlA~-A1A3-A~A3+Ai;)(S~&).(3.23) 
2 

*) See equation (4.8) of reference 2. 
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An important simplification is introduced in this expression by 
noticing the identity 

D = (AIL42 - A1As - AsAs + A$(& - Az). (3.24) 

Hence, 
aW 

ar + A,+:- = (3.25) 
1 2 

We also write 

a12 = 2a22ezy. (3.26) 

Substituting these last two expressions into equation (3.22) yields: 

Of% = 2a222 2 (SH - .522) exv. 
41 - a22 

Finally from equation (3.20) we derive: 

s12 = :t: f ?J: (Sll - S22) exy. 

(3.27) 

(3.28) 

This result coincides with,equation (2.13) obtained by a different 
method in the preceding section. 

$ 4. Second order elasticity and the corresponding incremental 
coefficients. In the previous discussion we have considered an 
isotropic medium in the vicinity of a state of finite strain. We shall 
now turn our attention to a particular case of special interest 
where the state of initial strain is small but second order terms are 
taken into account in the expressions for the stress as a function 
of the initial strain. 

We have already considered this problem in a paper published 
many years ago 3) and it was shown that, for a body which is 
isotropic in the unstressed state, the second order stress-strain 
relations involve five elastic constants. The procedure similar to that 
followed in the present paper is elementary and does not require 
the use of invariants. 

By using the results obtained in 5 2 we may carry the analysis 
one step further and actually evaluate the incremental coefficients 
which in this case will be linear functions of the initial strain. 

In order to do this let us briefly repeat the analysis of the earlier 
paper 3). Consider a unit cube of the elastic medium in the un- 
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stressed state and let us apply normal forces 711, 722, 733 to the 

faces. The lengths of the edges then become: 

a11 = 1 + Eli, 

a22 = 1 + -522, (4.1) 

a33 = 1 + E33. 

The relation between stresses and deformation including the second 

order terms in the strain are: 

711 = 2p11 + J”E + D&f1 + 

+ F($ + 8;~) + F’Ell(E22 + E33) + G&22&33, 

722 = 7~~22 + 1s + D&t + (4.2) 

+ F(E;3 + & + F’E22(&33 + Eli) + G~33w9 

733 = &E33 + 1~ + DE& + 

+ F(& + &, + F’~33(~11 + ~22) + G&11&22, 

where 

8 = El1 + -522 + E33. (4.3) 

The expression for 711 is obtained by writing a general equation 

including all first and second order terms and then introducing 

the condition that it remains the same if*we interchange ~2s and ~33. 

Equations for 72s and ~33 are then derived by cyclic permutation. 

In addition because of the existence of a strain energy the ex- 

pression must satisfy the relations: 

aTll a722 
---, 
aE22 sell 

ar22 aT33 

aes3 aE22 
, (4.4 

aT33 arll 
-~=* 
sell aes3 

This requires : 
F’ = 2F, (4.5) 

and relations (4.2) become: 

711 = 2p11 + h + D&f1 + 

+ FL& + -& + 2&11(&22 + &33)] + G&22&33, 

5-22 = 2~22 + 1s + D&i2 + 

+ #3 + &;1 + z&22(&33 + Eli)] + G&33&11, (4.6) 

733 = 2/J&33 + h + D& + 

+ FL&;31 + &;g + 2&33(&11 + &22)] + Gw~22. 
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These relations now contain five elastic coefficients. Denote by 

~11, 022, ~33 the stresses, i.e. the forces per unit area after de- 

formation. Hence we write: 

711 = a22@33gll, 

5-22 = a33a11022, (4.7) 
733 = alla22033. 

Consider now a state of initial stress: 

ml = Sll, 

a22 = S22, 

c33 = s33. 

(4.8) 

An incremental deformation along the same principal directions 

will generate stress increments which may be identified with the 

differentials 

~11 = doll, 

~22 = do22, (4.9) 
~33 = do33. 

The strain increments are: 

dell darr 
e 2.=---=‘--) 

a11 all 

deea da22 
eu2/ = - = ___ , 

a22 a22 
(4.10) 

ezz = - = - . 

a33 a33 

Writing the total differentials of equations (4.7) after taking into 

account equations (4.8), (4.9) and (4.10) we find: 

srr f Srl(eVV f e,,) = 

all arll 1 aTll 1 3711 =---- 

a22a33 asll 
exx i- - - 

a33 asz2 
e2/2/ + ~ ~ e 

a22 aE33 
zz> 

s22 + S22(h + exs) = 

1 a722 a22 3722 1 a722 =-- 

a33 aEll 
exx + ___ - eyy + __ ~ ezz, 

a33w a&,, al a&, 
(4.11) 

s33 + S33(exx + eyy) = 

a33 8733 
egg -t ~ - h. 

ala22 a&33 
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Note tijat by virtue of equations (4.4) the coefficients on the right 
hand side of these equations constitute a symmetric matrix. 
Comparing with equations (2.3) we derive the elastic coefficients. 
Limiting the expression to first order terms we find: 

B11=(2P+A)(l + El1 - E22 - E33) + 2kl+ q&22 + &33), 

B22= (&+4(1 + ~22 - ~33 - 811) + 20822 + %33 d- ~11)~ (4.12) 

B33 = (2~ + 1) (1 + 833 - 811 - E22) + 2D&33 + 2F(&11 + &22), 

and 

B23 + .522 = B32 + s33 = A( 1 - Eli) + =-(E22 + E33) + Gm 

B31+ S33 = B13 + s11 = A( 1 - ~22) + 2F(&33 + ~11) + G&22> (4.13) 

B12 + Sll = B21+ S22 = A(1 - ~33) + 2%11+ ~22) + G&33. 

Note that the cross coefficients satisfy conditions (2.4) as should 
be. 

It remains to evaluate the coefficients Qr, Qs, Q3, for incremental 
shear. This can be done immediately by applying the results 
obtained in 9 2. According to relations (4.7) the initial stresses are: 

Sll = 2- ) 
a22a33 

722 
s22 = -- ) 

a33all 

s33 = 733 . 

alla22 

(4.14) 

Substituting in (2.14) we find: 

2Q3 = 
hm1 - 722a22)(& + &J 

aw22a33hl - a22)(au + a22) . 
(4.15) 

To the first order and after cancellation of the common factor 
~11 - ~22 in numerator and denominator we derive: 

2Qa = 2,~ + (il+p++----F)(~1+~22) + (1--2~+2F--G)&33. (4.16) 

Similarly the other two coefficients are: 

2Q1 = 2/4 + (l+p+D--)(&22+&33) + (A-2p+2F-G)m 

2Q2 = 2p + (2+,u+D--F)(~33+~11) + (A-2,u+2F-G)~22. (4*17) 
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Equations (4.12), (4.13), (4.16) and (4.17) express the incremental 

elastic coefficients of the isotropic elastic medium under initial 

stress as a function of the first order correction terms in the initial 

strain. 

These coefficients were used in the general theory of propagation 

of elastic waves in a medium under initial stress 5). By intro- 

ducing the values (4.12), (4.13), (4.16) and (4.17) they furnish com- 

plete equations by which we can predict the first order effect of 

the initial stress on the acoustic propagation in the isotropic solid. 

Received 1st May, 1962. 
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