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Summary 

RUBBER IN 

The previously derived expressions for the incremental elastic coefficients 
of an isotropic medium under initial stress are applied to rubbertype elasticity. 
As a corollary an exact theory is obtained for the surface instability of such 
material under compression. It is found that in plane strain the incremental 
properties remain isotropic and are characterized by a single strain-dependent 
modulus. In three-dimensional strain the elastic properties are found to 
coincide with those of the elastic medium introduced by Green to illustrate 
the properties of electromagnetic propagation. The apparent rigidity of the 
surface as a function of strain is evaluated and is shown to result from the 
combined effect of the variation of rigidity modulus and a membrane effect 
due to the initial stress. At a critical compression the two effects act in opposite 
directions and the apparent surface rigidity vanishes causing incipient in- 
stability. 

The phenomenon is formally analogous to Rayleigh waves. Attention is 
also called to the existence of interfacial instability at a surface of dis- 
continuity of two elastic media under initial stress in analogy with Stoneley 
waves. 

S 1. Introdmtion. The expressions for the incremental coefficients 
previously derived 7) yield some remarkable results when applied 

to rubber. We shall assume that the material obeys the standard 
stress-strain relations established by Treloar 5) for rubbertype 
elasticity. It is found that in two-dimensional strain the incremental 
elastic properties remain isotropic under finite initial strain. Many 
earlier results derived for this case by the author are exact solutions 
of stability in finite elasticity. Our purpose here is to discuss such 

*) This work was supported by the Air Force Office of Scientific Research under 

zontract No. AF 49(638)-837. The contents of this paper were included in AFOSR 

Report No. 1771 of November 1961. 
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solutions. The case of the instability of the free surface of an 
elastic half-space which was analysed some time ago in preliminary 
form 4) 12) 13) is treated here in more detail. The appearance of 
surface modes of buckling is mathematically analogous to Rayleigh 
waves. 

There are other problems to which the same results are immedi- 
ately applicable. We shall contend ourselves with a brief mention 
of two cases. One of these cases is concerned with the instability 
arising at a surface of discontinuity between two elastic media of 
different rigidity under initial stress. This corresponds to the 
mathematically analogous phenomenon represented by Stoneley 
waves, The existence of such interfacial instability was shown as 
a particular case of a problem treated elsewhere 11). The problem 
is that of instability of a plate embedded in an indefinite medium. 
At wavelengths which are small compared to the thickness of the 
plate the buckling degenerates into an instability which is localized 
at the interface. 

The problem of instability of an elastic half-space whose rigidity 
varies exponentially with depth was also discussed in detail in the 
more general context of viscoelasticity 12): The medium is under the 
combined action of gravity and a horizontal compression. The 
results of that paper lead to a complete and exact solution for the 
buckling of the inhomogeneous rubberlike half-space under finite 
initial strain with an exponential distribution of the elastic modulus. 

The author’s equations have also been applied by Buckensra) 
to the problem of Rayleigh waves propagation in a prestressed semi- 
infinite medium. Surface instability in this case is established by 
the vanishing of the surface wave velocity. 

A general theory of elasticity for a continuum under initial 
stress was developed by the author and presented in a series of 
earlier papers initiated in 1934 1) 2) 3) 10). This theory constitutes a 
rigorous analysis of small incremental deformations in the vicinity 
of a state of initial stress. An important feature of our treatment 
is the use of stress components referred to orthogonal axes which 
undergo the same local rotation as the medium. 

The reader should not confuse this exact theory with approximate 
formulations introducing the assumption that the rotation is large 
in relation to the strain. While this assumption may easily be 
incorporated in the general theory as discussed earlier by the 



170 M. A. BIOT 

author, it is not necessary and no such approximation is introduced 
here. 

More recently the theory was applied to the problem of surface 
instability of an elastic half-space with an initial compression in a 
direction parallel with the surface 4) 1s). It was found that the 
surface may become unstable and exhibit a spontaneous waviness 
beyond a critical value of the compression stress. 

The theory developed in the more recent papers is directly 
applicable to the case of rubber elasticity. This follows from the 
property established hereafter that in plane strain a material 
such as rubber retains its isotropy for incremental deformations 
in the vicinity of a state of finite strain. We also derive the inter- 
esting reciprocal theorem namely that a material which remains 
isotropic in plane strain must obey the finite stress-strain relation 
of rubber. The proof is based on formulas for the incremental 
elastic coefficients which were obtained in the preceding paper 7). 

In the more general case a material of rubbertype elasticity 
becomes anisotropic for incremental strains but retains its isotropy 
for a state of plane strain increments in each of the planes defined 
by the principal initial stresses. 

Stress-strain relations of this type were already discussed by 
Green in 1839 with reference to an analogy between transverse 
elastic waves and the propagation of light in a crystal 8). 

It is a remarkable fact that in plane strain analysis rubbertype 
elasticity leads to incremental stress-strain relations of the same 
type as for the unstressed medium. They retain their isotropy and 
the elastic properties are characterized by a single shear modulus 
which is a simple function of the initial state of strain. The effect 
of the initial stress appears explicitly only in the equilibrium 
equations of the stress field through terms which are proportional 
to the gradient of the rotation. 

3 2 presents a short outline of the previously developed theory 
of instability of the elastic half-space 4). The incremental elastic 
coefficients for rubbertype elasticity are evaluated in § 3. Ex- 
pressions for the incremental shear coefficient as a function of the 
finite initial strain are obtained. These coefficients are introduced 
into the stability theory of the elastic half-space and the results 
are discussed in 9 4. 

The critical value of the compression corresponds to a finite 
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strain of the order of one half. In addition to the instability we 
have also computed the change of shear modulus with the strain 
and the apparent change of surface rigidity as a function of the 
compression strain. At the critical strain the apparent surface 
rigidity vanishes. 

$ 2. General equations of stability. The general equations for the 
incremental deformations of a continuum under initial stress were 
derived by the author in previous publications 1) 2) 3). More recently 
they were applied to the stability of the viscoelastic half-space A) is). 
We shall consider the result for the half-space in the particular 
case of an incompressible elastic medium. 

The surface of the half-space is at y = 0 and the y axis is directed 
positively inside the solid. A uniform compression P is acting in 
the solid in the x direction, i.e. in a direction parallel with the 
free surface. The deformation is assumed two-dimensional and is 
represented by the displacement field u, v in the x, y plane. These 
are incremental displacements which are zero in the state of uniform 
compression considered as the initial state. These displacements 
are associated with incremental strain components 

au av 
e - xx-~p eyy = a~ s exy = 2 ax 

l (“+$), (2.1) 

and a rotation 

(2.2) 

The incremental stress components sir, sss, sis are defined relative 
to axes which rotate locally through an angle m. We have shown 
that they satisfy the equilibrium conditions *) : 

as,, as12 
-+- ax aY 

--P$-=o. 

as12 asz2 
-+--- ax aY 

-P$O. 
(2.3) 

The equations relating the incremental stress deviator to the strain 

*) See equation (3.2) 4) or the more general equations to be found in the earlier work 

by the author 2) 3). 
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are written : 

~11 - s = 2pesz, 

~22 - s = 2pyy, 

~12 = 2pes2/. 

(2.4 

We shall see that these stress-strain relations are the correct ones 
for the particular rubber-like material considered hereafter. It is 
found that the incremental properties exhibit a two-dimensional 
isotropy as implied in relations (2.4) with an incremental shear 
modulus ,u which is a function of the initial compression. 

The boundary conditions express the condition that the surface 
y = 0 is a free surface. They are *) : 

e - 0, w - 
s22 = 0. (2.5) 

We must also add the condition of incompressibility 

exx +e 2/u = 0. (2.6) 

These equations may be considered as three equations for the 
quantities u, V, s with the boundary conditions (2.5). A solution 
which is sinusoidal along x and decreases exponentially with depth 
is 

u = - sin lx(A e-111 + Ck e-lkg), 
v = - cos Zx(A e+ + C e-lk?J). (2.7) 

We have put 

k= l-5‘ 

-G-F’ 
(2.8) 

The problem was solved in reference 4. The solution of the present 
case is derived by putting Poisson’s ratio equal to v = Q in the 
result. This leads to the characteristic equation: 

53 + 2[2 - 2 = 0. (2.9) 

When this equation is satisfied a non-zero solution exists for the 
incremental displacements $6 and V. This corresponds therefore to 

*) See equations (3.12) 4). 
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an instability in the sense that the medium is in neutral equilibrium 
for infinitesimal increments of deformation. The positive root of 
the cubic is 

[ = & = 0.839. (2.10) 

For a given value of ,u this defines a critical compressive load P. 
For this compression the surface may develop sinusoidal waves. 
The characteristic equation being independent of the wavelength 
all wavelengths are equally unstable. The physical significance of 
this will ire discussed below. 

9 3. Incremental elastic coefficients for rubber under finite initial 

strain. We shall now proceed to show that the incremental stress- 
strain relations (2.4) are the correct ones for rubber and we shall 
derive the dependence of ,U upon the initial strain. 

The finite stress-strain relations for a rubberlike material were 
derived by Treloar *) from statistical thermodynamics. He found 
that the isothermal free energy of rubber is 

(3.1) 
per unit unstrained volume. A unit cube with principal directions 
of strain along its edges becomes a parallelepiped of sides iii, 12, ils 
after deformation. These quantities are therefore the principal 
elongations. Boltzman’s constant is represented by k, N denotes 
the number of molecular polymer chains per unit volume and T 
is the absolute temperature. The quantity W also represents the 
classical strain energy of the theory of elasticity. We put 

,uo = NRT, (3.2) 
then 

w = &U()(~,” + n,z + n; - 3). (3.3) 

It will be shown that ,~a is the shear modulus of rubber for small 
deformations near the original unstressed state. 

It is assumed also that the rubber may be treated as incom- 
pressible. Hence the following constraint for constant volume must 
be satisfied : 

jlIj13Jt3 = 1. (34 

*) An outline of the results based on his earlier work is given by T r e 1 o a r 5). F u r t h e r 

experimental confirmation was recently obtained by Cifferi and Flory 6). 
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Suppose that we apply stresses Srr, Sss in two perpendicular 
directions, the third principal stress being zero. Because of incom- 
pressibility the elongation ds may be considered as a function of 
ill and 1s. Hence W is also a function of II and 1s: 

(3.5) 

The stresses are: 

1 8W 8W 
s11 = __ - = 

izzi13 aal 
11 - 

ail, ’ 

1 t3W 8W 
Sss Z __ - Z.ZZ 22 - 9 

(3.6) 

;ld3 ail2 ail2 

s33 = 0. 

We may superimpose a hydrostatic stress C without producing 
strain. The stresses then become: 

aw s11 = 11 - aA + ‘I 1 
aw 

sss = 12 - an +‘* 2 

s33 = c. 

(3.7) 

Substituting the value (3.5) for W we find: 

Sll - s22 = po(Jf - A;,. 
Similarly we derive : 

(3.8) 

5.22 - s33 = peg - g,, 

s33 - Sll = pop; - g,. (3.9) 

The incremental stresses srr, sss, sss are obtained by differentiating 
these expressions. 

sll - ss2 = dSrr - dSss = 2,/&r diir - ils d&j). 

Since 

exx = dJrl&, 
eVy = dAs/&, 

we have 

(3.10) 

(3.11) 

(3.12) 
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and similarly 

s22 - s33 = 2po(J+yy - gem), 

~33 - ~11 = 2po(&z - ~~ezz). 
(3.13) 

The shear coefficients QrQsQs follow directly from equations (2.14) 
and (2.15) of the preceding paper 7) by putting 

a11 = 11, 

a22 = A2, 

a33 = a3, 

(3.14) 

and substituting the values (3.8), (3.9) for the initial stresses. This 
yields the following relations for the shear stresses: 

s23 = PO@; + A;, eyz, 

s31 = po(Jl + 14) es, (3.15) 

s12 = po(g + 1;) ex?J. 

These expressions determine the significance of ~0 as the shear 
modulus in the vicinity of the original unstressed state, i.e. for 
Al=iz2=il3= 1. 

Let us now consider a two-dimensional incremental strain in the 
x, y plane, i.e. we put: 

ezz = 0. (3.16) 

Because of incompressibility we may write: 

exx +e -0. KY - (3.17) 

Taking into account this last condition the incremental stress 
components sir, sss and sis in the x, y plane are related to the strain 
by the relations: 

~11 - ~22 = +o(@ + 1;) exxt 

s22 - Sll = 2pop.f + 1;) eyy, 

~12 = p&,” + n,2) exy. 

(1.18) 

If we take into account the condition (3.17) for incompressibility 
these relations are equivalent to 

with 

a1 - s = 2pzx, 
s22 - s = 2py,, 

a2 = 2pe,y, 

(3.19) 

p = 8po(g + A;,. (3.20) 
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These relations coincide with equations (2.4). Results of the 
instability theory are therefore rigorously applicable to rubberlike 
materials whose finite strain energy is given by (3.3). 

We note the remarkable property that for two-dimensional 
incremental strain in any of the planes of symmetry of the initial 
stress the material remains isotropic. It is then defined by a single 
incremental modulus ,u whose magnitude depends on the initial 
strain. There are three such moduli corresponding to each plane of 
symmetry of the initial stress. 

The existence of anisotropic media which exhibit stress-strain 
relations with properties which have just been described were 
derived in the classical literature on the theory of elasticity by 
Greens) *). He discusses the analogy between the propagation 
of transverse elastic waves in such media and the propagation of 
light in crystals. Green’s work refers of course to initially un- 
stressed media. Therefore his conclusions on wave propagation do 
not apply to the present case for which the propagation equations 
contains additional terms arising from the initial stresses la). The 
additional terms due to the initial stress are the same as in 
equations (2.3). The stress-strain relations discussed by Green 
allow for compressibility of the medium. For the particular case of 
incompressibility they become identical with our relations (3.12), 
(3.13) and (3.15). If the initial finite strain is two-dimensional 
we put: 

13 = 1 (3.21) 
and 

11 = 1,‘ 12 = 1/n. (3.22) 

The initial stresses parallel with the plane of deformation satisfy 
the relation 

sii - sss = /@(ii2 - 1 /P). (3.23) 

If this deformation is produced by a single force applied in the x 
direction we put Sss = 0 and 

srr = /A&J2 - l/P). (3.24) 

The incremental shear modulus for this case is 

P = i/Jo@2 + 1 p). (3.25) 

*) A brief discussion of Green’s results can be found in Love’s Theory of Elasticity 9). 
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If the initia1 strain is three-dimensional and rest&s from the 
application of a uniaxial stress Sii in the x direction we put 

sss = s33 = 0 (3.26) 
and 

ill = 1, (3.27) 
122=;13= I/l&. 

The finite stress-strain relation is then 

Sll = PO@2 - l/J) 

and the incremental shear modulus 

(3.28) 

P = .,3.iuo(J2 + 1 /A)* (3.29) 

It is also of interest to examine the condition required for a material 
to remain isotropic for incremental stresses in plane strain. Consider 
a plane strain deformation parallel with the x, y plane, corre- 
sponding to the elongations (3.21) and (3.22). Assume that it is 
produced by a stress Sii while S 22 = 0. Then Sii is a function of A, 
the elongation in the x direction, 

Sll = &l(q). 

The incremental normal stress is 

(3.30) 

s11 = a dsll 
- exx. 

da 
(3.31) 

On the other hand appIying equation (2.13) of the previous paper 7) 
the incremental shear stress is 

14 + 1 
s12 = Sll z Qxi. 

The condition of isotropy for incremental stresses requires 

a dSl1 14 + 1 
~ = 2.511~ 

dil 14-l. 

(3.32) 

(3.33) 

This is a differential equation for Sir(L) whose solution is expression 
(3.24). Hence the condition of incremental isotropy in two-dimen- 
sional strain requires that the material obeys the finite stress-strain 
relation of rubber-type elasticity *). 

This property is undoubtedly related to the statistical thermo- 
dynamics of long chain molecules. 

*) It can be shown that a Mooney material satisfies the condition of incremental 
isotropy in the three principal planes of finite triaxial initial strain. 



178 M. A. BIOT 

$ 4. Discussion of surface instability. We have shown in the 
preceding section that for rubber-type elasticity the incremental 
stress-strain relations are given by equations (2.4). Hence it is 
possible to apply the previously developed theory for surface 
instability and in particular the characteristic equation (2.10). 

There are two significant particular cases to consider. In one 
case a state of uniform initial compression P is attained by two- 
dimensional strain i.e. by maintaining constant the dimension in 
a certain direction perpendicular to the compression. In the other 
the compression P is applied as a uniaxial stress with no lateral 
restraint. 

Let us consider first the case of two-dimensional compression. 
Expression (3.25) for the incremental shear modulus is a function 
of A and invariant when transforming A into l/A. It is a minimum 
for il = 1. 

The surface of the rubber is unstable when the characteristic 
equation (2.10) is verified. We note that this equation involves 
two variables, the compressive stress P and the incremental 
modulus ,u which both increase with the deformation. It is therefore 
not evident a priori that there exists a physical solution of the 
equation i.e. a critical load. That this is actually the case is verified 
as follows: From equation (3.24) the compression P = - .SII is 

P = /Q(l/P - P). (4.1) 

Introducing this value of P and expression (3.25) for ,u into equation 
(2.10) we find: 

1 - 14 
;+_ 

1 + P 
0.839. (4.2) 

This equation is satisfied for 

1 = 0.543. (4.3) 

Hence for a compressive strain slightly greater than one half the 
surface of the rubber 
pression is 

Since all wavelengths 
appear in the form of 
factors not considered 

is unstable. The critical value of the com- 

P = 3.08,~~. (4.4) 

are equally unstable the instability should 
wrinkles whose size is controlled by several 
in the theory. Such factors are for example 
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the inhomogeneities and surface irregularities of the medium. The 
size of the wrinkles is also influenced by second order effects 
associated with large local strains or large slopes present in the 
wrinkles. Also as pointed out below for a medium which is restrained 
at finite depth instability occurs only for wavelengths smaller than 
a certain limiting value. 

Expression (3.25) for the incremental shear modulus indicates 
that the rigidity increases with the deformation. On the other 
hand the apparent surface rigidity must vanish at the critical 
value (4.4) of the compression. It is of interest to evaluate the 
variation of the surface rigidity as a function of the compression 
by considering a normal sinusoidally distributed load 

q = qo cos lx. (4.5) 

This is a force perpendicular to the initial plane surface and of 
magnitude q per unit initial area. We should remember that we 
have considered a two-dimensional strain in the plane so that the 
surface load (4.5) corresponds to constant values along lines 
perpendicular to this plane. The surface deflection is also sinusoidal 
and represented by 

v = v cos lx. (4.6) 

The relation between qo and V was evaluated in a previous paper 4) 
and found to be 

v=&, 
P 

where 

p = +1 + [)2 - 11. 

(4.7) 

In the unstressed state, i.e. for P = 5 = 0, we derive q~ = 1 and 
,u = ,~a. Hence for this case the normal deflection of the surface is 

v+. (4.9) 

When a compression P is superimposed the vertical surface deflection 
is obtained by the same formula as for the initially unstressed iso- 
tropic medium except for the replacement of ,LQ by an “effective” 
rigidity modulus ,q. By Fourier analysis it is seen that in the 
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present case of plane strain the conclusion holds for any arbitrary 
distribution of the surface load along X. Note that we refer here 
only to the normal deflection under normal loads and that the 
procedure does not extend to the simultaneous evaluation of 
tangential displacements at the surface. 

The variation of the “effective” surface rigidity modulus with 
the initial stress is represented by the factor 

PP 
- = *p -b; l/P) 9. (4.10) 
PO 

Numerical values of this factor as a function of il are shown in 
table I. Values of the relative rigidity modulus ~/PO are also given. 

TABLE I 

The incremental modulus p and the 

effective surface rigidity factor pv/po 

as a function of the initial strain h. 

x CL/w I WIW 
2.00 2.12 2.27 

1.50 1.35 1.52 

1.20 1.06 1.19 

1.00 1.00 1.00 

.90 1.02 .90 

.80 1.09 .76 

.70 1.27 .57 

.60 1.57 .28 

.543 1.84 0 

Values il > 1 correspond to an initial state of tension and il < 1 

to an initial compression. It can be seen that the effective surface 
rigidity decreases with increasing compression and vanishes at the 
critical value of 1 given by (4.3). At this critical value we find 
p = 0 and this equation has the same real root as the cubic (2.9). 
Under tension the effective surface rigidity increases but is some- 
what larger than that due to the increase of the rigidity modulus 
alone. The apparent stiffening is due to the initial tension which 
tends to act like a membrane stress. This effect acts in the opposite 
way when the initial stress is a compression. The rigidity p is of 
course a minimum equal to ,ue for il = 1, i.e. when there is no 
initial stress. 
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It is of interest to note the value 

k = 12. (4.11) 

Hence k is always real in the solutions (2.7) and the deformation 
vanishes exponentially with the distance from the surface. 

The second case where P is a uniaxial compression is solved by 
using the same characteristic equation except that ,u is now given 
by expression (3.29). While the compression P is obtained from 
equation (3.28) where P = -.SI~. Hence: 

P = ,uo(l/il - 22). (4.12) 

The characteristic equation becomes : 

0.839. (4.13) 

The root 1 of this equation is: 

1 = 0.444. 

The critical value of the compression is: 

(4.14) 

P = 2.05~~. (4.15) 

Surface instability in this case requires a higher compressional 
strain L than for plane strain deformation but the critical com- 
pression is smaller. The value of k is k = At. Again it is always real. 

In both cases discussed here the value of k is k = 0.295 at the 
critical compression. Referring to the solution (2.7) which contains 
an exponential factor exp (-Zky) we see that the disturbance due 

to surface instability does not penetrate to a depth greater than 
approximately three times the wavelengths. In a slab of finite 
thickness the stability of larger wavelengths will be influenced by 

the thickness. As a consequence, if one of the boundaries is re- 
strained, instability at the other boundary will only appear for 
wavelengths which are smaller than about one third the thickness. 

The general case of arbitrary initial stress presents no difficulty 
since the characteristic equation (2. IO) remains unchanged. 

Received 1st May, 1962. 
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