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Summary 

The incremental elastic coefficients for rubbertype elasticity are inserted 
in some earlier theories by the author 1) leading to an exact theory for the 
buckling of a thick slab in finite strain. The critical compression as a function 
of the wave length shows a continuous variation. The buckling is of the 
bending type at large wavelengths and becomes a shear type instability 
for shorter slabs. In the limiting case of vanishing wavelength the buckling 
degenerates into a surface instability. The formal behavior is analogous 
to the transition from bending waves to Rayleigh waves in the vibration of 
elastic plates. The range of validity of the classical Euler theory is discussed 
and stress distributions across the thickness are evaluated. The problem 
is also treated by an approximate variational procedure and it is shown that 
a very simple bending-sheartype deformation yields a remarkably accurate 
formula through the complete range of wavelengths. 

3 1. Introduction. The equations of elasticity for a medium under 
initial stress were applied by the author in 1938 to the buckling of a 
thick slab 1) **). As can be seen from the recent development 2) this 
early result is also an exact solution for the stability problem of a 
slab of rubber-like material in finite elasticity. Since the theory is 
mathematically very simple and is also not handicapped by ap- 
proximations it becomes possible to clarify the physics of the 
phenomenon and to evaluate the range of validity of well known 
classical approximate treatments such as the Euler theory and 
variational procedures. 

*) This work was supported by the Air Force Office of Scientific Research under 

contract No. AF 49(638)-837. The contents of this paper were included in AFOSR 
Report No. 1770 of November 1961. 

**) The problem is also a particular case of the buckling of an embedded slab analyzed 
more recently in the context of viscoelasticity 5) 6). 
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The Euler formula is compared with the exact results and found 
to be valid down to slenderness ratios corresponding to a length 
equal to ten times the thickness in the compressed state. 

As the slab becomes shorter the nature of the instability exhibits 
a gradual transition from a bending-type buckling to a shear buckling. 
The latter starts to appear at slenderness ratios for which results 
depart from the Euler theory. Finally for vanishing shortness the 
shear buckling itself degenerates asymptotically into a surface 
buckling already analyzed previously 2). The phenomenon is 
formally analogous to the behavior of bending waves in a slab, 
which at very short wavelengths degenerate into Rayleigh waves 
propagating at each of the free surfaces. 

Variational principles developed earlier a) 4) for the theory of 
elasticity of a continuum under initial stress are applied to the 
problem of slab buckling in the last section. The introduction of a 
very simple, two parameter approximation for the buckling mode, 
into the variational process yields a remarkably accurate result 
which is valid throughout the complete range of slenderness ratios 
from zero to infinity. 

3 2. The stubility theory. A rubber slab originally of length 30 
and thickness ho is shown in fig. 1. The width in the direction 
perpendicular to the figure is infinite. The slab is then compressed 
to a length 9 and a width h by a compressive stress P in the direc- 
tion of its axis (fig. 2). The compression is exerted by two friction- 
less and rigid blocs a and b. Overall slippage between the rubber 
and the blocs is prevented by attaching the rubber to the blocs 
at points A and B on the axis. 

We shall investigate the stability of this slab for plane strain 
perturbations in the plane of the figure chosen as the x, y plane. 
The x axis is on the axis of the slab and the faces are located at 
ordinates y = i: h/2. The components of the perturbation dis- 
placements in the x, y plane are denoted by G, ‘u. The strain com- 
ponents are 

at4 av 
exx = ax ’ e,v = ay p (2-l) 

(2.4 
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Fig. 1. Rubber slab in the original unstressed state. The slab is viewed 

across the thickness. 

Fig. 2. Rubber slab in the initial state of compression and in the buckled 

state. The slab is viewed across the thickness. 

The local rotation is 

(2.3) 

The incremental stresses referred to locally rotated axes satisfy 
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the equations 

as12 asz2 _+-- 
ax ay 

P$=O. 

We have shown 2) that for a rubbertype material in a state of 
initial strain these incremental stresses are related to the pertur- 
bation strain components by the relations 

$11 - s = 2ruezz, 
~22 - s = 2f-q,, 

s12 = 2pezll. 

(2.5) 

The incremental modulus ,u depends on the initial strain. The 
condition of incompressibility is 

exx + eyy = 0. (24 

For the state of initial strain we may consider two possibilities. 
It may itself be a state of plane strain derived by compressing the 
slab in the x direction and restraining any change of length in a 
direction perpendicular to the x, y plane. In this case the finite 
stress-strain relation is given by 2) 

P = /Q(l/P - P) (2.7) 

and the incremental modulus is 2) 

p = &L&$2 + l/22). (2.8) 

The quantity A (A < 1) measures the finite compressive strain. 
In this case the length and thickness of slab in the compressed 
state are respectively 

9 = ZJ, h = h,/il. (2.9) 

On the other hand the initial strain may correspond to a case 
where the slab is free to expand perpendicularly to the x, y plane. 
In this case the only stress is the compression P and the finite 
stress-strain relation 

with an incremental 

is 2, 

P = /&(1/A - P), 

modulus 2) 

Ed = 8/Jo(n2 + 1 /A). 

(2.10) 

(2.11) 
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The length and width of the plate become 

LZ’ = $4&A, h = hzojd;i. (2.12) 

The parameter ,ua is the shear modulus in the unstressed state 
(A = 1). The condition of incompressibility of the material is 
satisfied by putting 

24 = - ar$/ay, ZJ = +/ax, (2.13) 

Introducing this function 4 into equations (2.1), (2.2), (2.3), (2.4) 
and (2.5) after suitable eliminations leads to the equations 

~-(P+;)$(~+~)=o. 

$_+(P-;)L(!&++ JY) = 0. (2.14) 

Elimination of s yields 

(p+;)$=O. (2.15) 

This equation may also be written with factorized operator 

( Y$ +&)[(p-;)~+(p+;)$]=O. (2.16) 

We are looking for a solution of equations (2.14) which is sinusoidal 
along x. Such a solution is readily found by making use of equation 
(2.16). We find: 

+ = k (Cs cash ly + CZ cash kly) sin lx, 
(2.17) 

s = CzPk sin kly cos lx. 

where Cr and Cs denote undetermined constants and 

k2 = l” - ‘I2 
P + PI2 . 

(2.18) 

We shall now introduce the boundary conditions that the faces 
of the slab are stress free. We have shown that this is expressed 
by the equations 

e - 0, w - 
s + 2peyy = 0, 

(2.19) 
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to be verified at y = f /z/2. Because of the symmetry of the 
solution (2.17) this needs only be verified at one of the faces. 
Substituting the solution (2.17) into the boundary conditions 
(2.19) we obtain 

2Cr cash y + Cs(1 + ks) cash ky = 0, 
Cr(1 + P) sinh y + 2Csk sinh Ky = 0, 

(2.20) 

with 

y = Qlh. (2.21) 

Eliminating the constants Cl and Cs yields the characteristic 
equation 

4k tanh ky - (1 + ks)s tanh y = 0. (2.22) 

This is a relation between k and y which corresponds to instability. 

5 3. Numerical disc~ssiort of the characteristic equations. We put 

5=-$-. (3.1) 

hence 

1-r @=--.---_. 
1+5 

Equation (2.22) may then be written 

(1 + LJs k tanh ky - tanh y = 0. (3.2) 

Since 5 is a function of the compression P, and y is a parameter 
representing the wavelength, equation (3.2) represents a functional 
relationship between the buckling wavelength and the axial com- 
pression in the slab. 

Equation (3.2) is a particular case of results obtained in earlier 
work by the author 1) 5) 6) *). 

The value of [ determined by equation (3.2) has been plotted as 
a function of y in fig. 3. 

*) Due to a misprint the characteristic equation derived in 1) should read 

1 + (1 - 24(42G)s k tanh &zkt 

(1 + 42G)s = tanb )at ’ 
For Y = 4 it becomes identical with (3.2) above. 
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By putting y = LX in equation (3.2) we obtain the equation 

(1 + 02 k - 1 = 0, (3.3) 

whose real root is the asymptotic value 

5 = 0.839. (3.4) 

This asymptotic case corresponds to the surface instability of the 
half space (h = CX) already discussed previously 2) 5) 6). 

t 

Q 
0.8 

0.6 

0 I 2 

Fig. 3. Value of [ as a function of y under buckling conditions as determined 
by the characteristic equation (3.2). 

For small values of y we may expand the hyperbolic functions 
of the characteristic equation (3.2) in power series. Including 

terms up to the third power in y we may write 

tanh ky = ky - +k3y3, 
tanh y = y - 373. 

(3.5) 

Substituting these approximations in equation (3.2) we obtain 

r = $772 - C), (3.6) 
or 

+2y2 
3+y2 - 

(3.7) 
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We shall discuss the physical significance of this result in the 
next section. The parameter c is essentially a function of the 

finite initial strain. If the initial compression is one of plane strain 

we express P and ,u by means of equations (2.7) and (2.8), hence 

(3.8) 

If the initial compression allows for free expansion in a direction 

normal to the load we must use equations (2.10) and (2.11). Hence 

(3.9) 

Since 

0<1<1, 

we also conclude that in either case 

(3.10) 

0<5<1. 

Therefore k remains a real quantity. 

(3.11) 

The solution obtained here represents a sinusoidal bending of 

the slab in the x, y plane. If _Y denotes the wavelength we may 

write 
y = nh/mY. (3.12) 

Hence y is inversely proportional to the ratio of buckling wavelength 

to the thickness of the slab. We may think of the solution as 
representing the buckling of a slab of length _Y compressed between 
two rigid and frictionless surfaces but attached to these surfaces at 
two points A and B on the axis as shown in fig. 2. 

In the state of initial compression the slenderness corresponding 

to values y = 1, y = 2, and y = 3 is illustrated in fig. 4. The 
general behavior of the slab may be described by stating that the 
compressive load increases gradually as the wavelength decreases. 

As the compression reaches a critical value corresponding to 
5 = 0.839 the wavelength becomes vanishingly small and the 
buckling degenerates into surface ripples. 

$ 4. Physical significance of the results. Consider the approximate 
equation (3.7) which was obtained as the first approximation by a 

series expansion of the characteristic equation in powers of y. 
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Since 5 is of the order y2 we may further neglect [ in the factor 
(2 - C). We obtain 

P(=l 

5‘ = 8y2. 

I 

-I 
y=2 

(4.1) 

I 

lllllI I 

y=3 

Fig. 4. Slab slenderness in tde state of initial compression for y = 1, 2, 3. 

This approximate value is plotted in fig. 5 at the same time as the, 
exact value. As can be seen equation (4.1) provides a good approxi- 

1‘ 

C 
0.3 

0’ 0.2 0.4 a6 

o*8 r--_l 

Fig. 5. Portion of the graph of fig. 3 near the origin, and comparison. with. 

the Euler theory. 
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mation to the exact curve up to values 

y = 0.3. (4.2) 

This corresponds to a slenderness represented by a length to thick- 
ness ratio 

9/h g 10. (4.3) . 

The approximate equation (4.1) is identical with the result 
obtained from the Euler theory of buckling of slender plates. 
This is easily verified as follows: putting sss = 0 in the stress 
strain relations (2.5) and taking into account condition (2.6) for 
incompressibility, we derive : 

s11 = 4pesz. (4.4 

Hence the coefficient 4,~ plays the role of an incremental Young’s 
modulus for plane strain. The equation for the deflection vo of a 
thin plate of thickness h under an axial compressive stress P is 

h3 dsvo 
4p * - - + Phvo = 0. 

12 dzs 
(4.5) 

Substituting a sinusoidal deflection 

vug = v cos lx, 

we obtain the characteristic equation 

(4.6) 

P = Q,/_Gh2, (4.7) 

which is identical to equation (4.1). The Euler theory is therefore 

valid down to Z/F, ratios of about ten. 
It is of considerable interest to examine the stress distribution. 

The stress components may of course be expressed immediately 

in terms of the constants Ci and Cs by introducing expressions 
(2.17) into the stress strain relations (2.5). It is also convenient 

to express the stresses in terms of the normal deflection of the 
plate at the free surface. The surface deflection (at y = h/2) may 
be written 

v = v cos lx. (4.8) 

Hence from (2.13), (2.17) and (4.8) we derive: 

IV = -Cc1 cash y - Cs cash ky. (4.9) 
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We find the values of Ci and Ca in terms of V by adding to equation 
(4.9) one of the boundary conditions (2.20). 

The “bending stress” sii is given by 

Sll 4k 

2/A v cos lx 
= ___ tanh ky 

sinh yq 

1 - k2 
___ - k2 ;;;;; 1, (4. IO) 

sinh y 

with 

rl = (2/h) Y. (4.11) 

The distribution across the thickness is shown in fig. 6 by plotting 
the factor 

sin yrj 
F11= ___- k2 

sinh kyq 

sinh y sinh ky ’ 
(4.12) 

as a function of 17 for two values of y, namely: 

y = 1.95, 3.05. (4.13) 

0 0.2 0.4 0.6 0.s I 

Fig. 6. Distribution of “bending stress” ~11 as represented by the factor F11 
for y = 1.95 and y = 3.05. 

The maximum value of sii occurs at q = 1. Its value (s&~~ 
is given by the relation 

(S&m 
2/_JlV cos lx 

= 4k tanh ky. (4.14) 
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For y < 1 hence for large wavelengths this equation reduces to 

(Sll)maz 

2plV cos lx 
= 4y. (4.15) 

This expression is the same as that obtained from thin plate 
theory. The shear stress is given by 

592 1 j-k2 cash kyrj 

2plV sin lx = -1 cash ky 

Its distribution across the thickness is shown in fig. 7 by plotting 
the factor 

F12 = 
cash kyrj cash yrj 

cash ky - cash y ’ 

for the same values (4.13) of y. 

(4.17) 

Fig. 7. Distribution of shear stress ~12 as represented by the factor Fig 
for y = 1.95 and y = 3.05. 

The maximum value 
given by 

(~12)maz 

2plV sin lx - 

of sis occurs at the center (y = 0) and is 

1 

> 
-~. 

cash y 
(4.18) 
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For y < 1 it becomes: 

(S12haz _ y2 

2plVsinlx = ’ 
(4.19) 

Finally the stress component ~22 is given by 

s22 4k 
= ____ tanh ky 

sinh kyq 

2$ v cos lx 1 - k2 sinh ky 
- s] . (4.20) 

For small values of y this reduces to 

s22 

2/A v cos lx 
= #ys(q - 73). (4.21) 

The maximum value occurs at 7 = l/2/3 and its value is given by 

(S22)mas 4 

2/J v cos lx 
= - 73. 

943 
(4.22) 

We notice that for large wavelength the relative orders of magnitude 
of the stresses obey the relations 

Q.2 “= ay, 

s22 ss s11y2. 
(4.23) 

The stresses sis and sss are respectively of first and second order 
relative to the stress sri. 

9 5. Approximate variational method. We have shown that the 
equations of elasticity of a medium under initial stress may be 
derived by a variational method 3) 4). In the present case of plane 
strain and an initial compression P in the x direction the incre- 
mental energy density used in the variational procedure becomes 

AV = &iesz + +t22euy + h2e,, - P(ezyw + 4~~). (5.1) 

The stresses tij are components referred to initial areas. They are 
related to the stress components su by the relations 

h = sll - Pevy, 
t22 = s22, 

t12 = s12 + frPesu. 

(5.2) 

Substituting in the energy density (5.1) and taking into account 



196 M. A. BIOT 
~- 

equations (2.1), (2.2), (2.5) and (2.6) we obtain 

AV=2Me&+2Le&-_P 

where 

M=p+$ 
L=p+;. 

(5.4) 

The elastic coefficients L and M have a simple physical significance 

which will be discussed in more detail in a forthcoming publication. 
The coefficient 4M refers to the incremental force in the x direction 
and per unit initial area produced by an elongation e,, in the x 
direction (fig. 8). The coefficient L measures the tangential force 

applied to the faces of a thin strip cut along x and associated with 
a slip deformation (fig. 8). We may refer to L as a “slide modulus”. 
Note that these coefficients are defined in the vicinity of a state 
of initial compressive stress P. 

4imm% 4Mo, 

2-q 
P 

-------+-A 

+--h--+ 

Fig. 8. Physical significance of coefficients M and L. 

The energy of a length 3’ of the slab is 

W = ;.ix jhib dy. (5.6) 
0 -h/Z 

In order to apply the variational method let us assume a mode of 
deformation such that an initial cross section remains plane. Hence 

the displacements are 
u = fry sin lx, 
7J = Ue cos Ix (5.7) 
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where ui and vo are to be determined. An additional assumption 

is introduced when performing the integration in equation (5.6). 
The term 2Le$, is proportional to the product sisezV. The approxi- 

mation (5.7) yields a constant value of sis over the cross section. 
Since actually this is not the case it is more accurate to average 
out the integral by assuming sis to be constant in the interval 

and zero outside (0 < K < 1). This amounts to integrating the 
terms 2LeI& between the limits - Kh/2 and Kh/2. With this 
procedure the value of W is given by 

2W/L? = @&%%,2 + JLhK(tq - Iv@ - $PhJ%,2. 

The variational principle yields the equations 

aw/azQ = 0, awjavo = 0, 

or 

+MZ2h‘k1 + LK(ul - Zvo) = 0, 
LK(til - Zvo) + PZvo = 0. 

Eliminating zti and vo we find the characteristic equation 

iZshsM(l - P/KL) = P. 

(5.9) 

(5.10) 

(5.1 I) 

(5.12) 

Introducing the variables y and 5‘ defined by equations (2.21) and 
(3.1) with the definition (5.4) for M and L the characteristic 
equation (5.12) becomes : 

35‘ 
Y2 = 2+- 

1 

II 

25 * 1 
(5.13) 

* - K(1 + t-) 

If we choose the value K = 0.91 this equation yields a curve 
which cannot be distinguished from the exact one when plotted 
in fig. 3. It is of course remarkable that the simple procedure 
used here leads to a result which is valid throughout the complete 
range of buckling wavelengths. This includes the horizontal 
asymptote for large y where the phenomenon degenerates into a 
surface buckling. 

In the analysis we have assumed an incompressible material. 
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However the variational method is not restricted to this case. 
For a compressible material we may introduce the approximation 
ias = 0. The energy density (5.1) then reduces to the same ex- 
pression (5.3). The property of compressibility is contained in the 
particular value of the coefficient M. For example in, a material 
which is unstressed in the initial state the coefficient 4M becomes 
E/(1 - ~2) where E is Young’s modulus and v is Poisson’s ratio. 
The result of the present analysis indicates that the same high 
order of accuracy is to be expected if we apply the variational 
method to evaluate the buckling of a compressible slab. 

Received 1st ,May, 1962. 
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