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Abstract. General solutions are developed for the continuum dynamics of 
elastic plates and multilayered media under initial stress. By the use of specially 
suited analytical devices they are obtained in a remarkably simple form which 
brings out their mathematical structure and their physical significance. The 
results are derived for orthotropic materials and include the special case of a 
material isotropic in finite strain. They provide basic solutions, incorporating 
the effect of initial stress, in problems of vibrations and acoustics of sandwich 
plates and seismic propagation in stratified rock. The problem of elastic stability 
of plates and multilayered media is solved as a particular case by putting the 
frequency equal to zero. This extends to compressible media the analysis 
of internal, interfacial, and surface instability and other related phenomena 
developed earlier by the writer in the context of incompressibility. By viscoelastic 
correspondence the result also provides complete solutions for the dynamics 
of viscoelastic plates and multilayered viscoelastic media under initial stress. 

1. Introduction. A continuum theory for the dynamics of elastic plates 
under initial stress is of considerable interest in many fields. It is essential 
in order to evaluate the influence of initial stresses on the acoustic properties 
of the plate, and should provide a rigorous foundation for problems of buckling 
and dynamic instability of plate structures. By extension to multilayered 
media constituted by a superposition of elastic layers the theory becomes 
applicable to problems of vibration and acoustics of sandwich structures and 
to seismic propagation in stratified sedimentary rock in the presence of initial 
stress. 

It is our purpose here to derive general equations for the dynamics of elastic 
plates and multilayered continua under initial stress. 

While the results are rigorous and very general the analytical expressions 
involved are remarkably simple in view of the complexity of the phenomena 
involved. 

* This work was sponsored by the Shell Development Co. 
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The derivation is based on the theory of elasticity of a medium under initia1 
stress established by this writer in a series of papers published more than 
twenty years ago (see for example [I] and [2]). 

The medium may be isotropic or orthotropic. The initial stress and the 
elastic properties are assumed to have one plane of symmetry parallel with 
the plate. 

The theory is also applicable to an isotropic medium in a state of finite 
initial strain. The treatment is elementary and does not require the use of 
tensor theory or invariants. 

The present application to the dynamics of plates parallels very closely 
the analysis of the stability of incompressible multilayered elastic media in 
a recent paper [3]. In fact the experience obtained in solving that less complicated 
case has been crucial by leading the way to important and drastic analytical 
simplifications of the present results, and by providing their physical interpreta- 
tion. (The author has been assisted by Dr. A. Winzer in the analytical work.) 

The problem of the single plate is analyzed by considering separately the 
excitation of symmetric and antisymmetric deformations in sections 3 and 4. 
The general case is obtained by superposition in section 5. The result is expressed 
by means of six distinct matrix elements which play a fundamental role in 
the theory. It leads directly to a compact formulation of the dynamics of the 
multilayered systems expressed by recurrence equations as shown in section 6. 
This also provides a matrix multiplication scheme, similar to the method 
suggested by Thomson [4], and further developed by Haskell [5] which is 
particularly suitable for numerical work when a large number of layers is 
involved. The limiting case of an incompressible medium is derived in section 7, 
and the close relationship between oscillations and modes of instability is 
briefly discussed in section 8. 

By putting the frequency equal to zero the present theory becomes the 
stability theory of elastic multilayered media, thereby generalizing the results 
obtained earlier for the case of incompressibility. All the special features of 
internal buckling, surface and interfacial instability discussed previously 
in the context of incompressibility are, of course, contained in the present 
more general results. 

Viscoelastic Correspondence. The principle of viscoelastic correspondence 
developed by the writer in several papers in 1954-55 is applicable to the con- 
tinuum under initial stress. All the results obtained in the present paper are 
presented in the context of elasticity, but are considerably more general. They 
are immediately applicable to viscoelastic media by replacing the elastic co- 
efficients by corresponding operators (for example see reference [S]). These 
operators have been derived from thermodynamics. Strictly speaking this 
is valid only for a medium initially at rest in the state of initial stress, but 
for all practical purposes this restriction may generally be overlooked. 
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2. Dynamics of a plate under initial stress. Consider an elastic plate of 
thickness h in a state of uniform initial stress S,, (Fig. 1). Choose the y axis 
to be normal to the plate with the two faces coinciding with the planes y = =th/2 
and the x axis oriented along the initial stress S,, . 

1 
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FIGURE 1. Plate under initial stress P viewed across the thickness. 

Consider plane incremental deformations represented by thez, y displacements 
U, v. The incremental strain is defined by 

(2.1) 

av 
e,, = -, 

dX 

e,, = ‘; euu = -, ay 

; g+g. ) 
It was shown ([l], [2]) that the incremental stress Sii is related to this strain 
by the relations 

s 11 = &ezz + JLzezlv, 

(2.2) s - &e,, + Bzzeyv, 22 - 
S 12 = 2&e,,. 

The incremental stress sii is referred to axes which have undergone a rotation 

(2.3) _+p). 
The elastic coefficients satisfy the relation 

(2.4) B,, = & + P, 

where 

(2.5) P = -s,,. 

The notation P is used here in conformity with the symbols used in previous 
work. 
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The incremental stresses must satisfy the dynamical equations [2], 

(2.6) 

where p is a constant density of the material. For harmonic oscillations all 
quantities are proportional to the factor exp (id) which contains the time t. 

We may omit this factor in the solution and write equations (2.6) in the form 

(2.7) 

!!!k+&$_p$+ cY2pu = 0, 

G%+~ - P g + cY=pv = 0. 

We shall consider a forced harmonic oscillation or a wave propagation such 
that the deformation of the plate is sinusoidal along x. 

In order to introduce the boundary conditions we need another result from 
the general theory. This involves certain force components Afz and Afu which 
are defined as follows. 

Consider an area AB inside the plate (Fig. 1). In the state of initial stress 
but prior to the application of any incremental deformation this area is a 
plane surface parallel with the faces of the plate. When incremental stresses 
are applied, Af, and Ajy represent the x and y components of the stress at the 
surface AB acting on the material lying below this surface. It was found ([l], [3]) 
that these components are related to the incremental stress sii by the relations 

cw Affz = s12 f Pe,, , 

AL = ~22 . 

These equations provide a complete formulation of the dynamical problem. 

Isotropic medium. The equations include the case of an isotropic medium 
in finite strain. We have shown ([7], [S]) that in this case the incremental co- 
efficient is given by 

(2.9) Q&p$ 
2 1 

where X, and X2 represent the finite extension ratios of the initial state in direc- 
tions parallel and normal to the plate. 

3. Single plate-Antisymmetric case. We shall first consider an antisymmetric 
solution which represents flexural deformations of the plate (Fig. 2a). In addition 
we shall consider solutions which are sinusoidal along x. Hence we put 
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(a) 

( b) 
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u = U(y) sin Ix, 

v = V(y) cos Ix. 

x 

I 
I 
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FIGURE 2. Antisymmetric (a) and symmetric (b) deformations of a plate. 

The functions U(y) and V(y) must satisfy the condition of antisymmetry, 

(3.2) 
u($) = -u(-;) = u, , 

v(i) = v(-;) = v, . 

By definition U. and V,, are the displacements at the upper face. We must 
find a solution of equations (2.1), (2.2), (2.7), satisfying condition (3.2). Such 
a solution is 

(3.3) 
u = C, sinh p,ly + C, sinh P&y, 

v = c: cash p,ly + C: cash Pzly. 

The quantities appearing in this solution are defined as follows. We have put 

(3 -4) 
D = B,, - &/12, 

L= Q-f-*P. 

The latter expression is the slide modulus L which has been introduced and 
extensively discussed in previous work ([3], [8]). The constants of integration 
satisfy the relations 

(3.5) 
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Substitution of the general solution (3.3) into the differential equations (2.1), 
(2.2) and (2.7) leads to a characteristic equation which is quadratic in p”, i.e. 

(3.6) p” - 2mf12 + k2 = 0. 

The coefficients are 

2m = 

(3.7) 

k2 = Q 
-(L-P-$? 
LB,, > 

The two roots p; and pi of equation (3.6) yield the values of p1 and pz appearing 
in the solution (3.3). 

The corresponding force components Aj% and Ajfy are obtained from equations 
(2.8). They are of the form 

(3 8 
Ajic = 7(y) sin Ix, 

AjY = q(y) cos lx. 

Because of the antisymmetry they satisfy the condition 

(3.9 

Q = J-4 = 7, , 

*(;) = -!I(-;) = q. . 

The values r, and pa therefore represent the stress at the top of the plate. They 
are the driving forces causing the oscillation of the plate. They are applied 
at the top and bottom surface so as to generate an antisymmetric flexural 
motion. The values of U. , V,, , 7, , q. contain two undetermined constants C, 
and Cz . Elimination of these two constants yields the values of T, and q. in 
terms of the displacements of the surface. We derive 

(3.10) 

ii 
= adJo + aazVa . 

Note the symmetry of the matrix. In writing the values of the coefficients we put 

y = $lh f 

(3.11) z1 = P1 tanh Pn, 

zz = Pz tanh Pzr . 

The parameter y plays a fundamental role in plate mechanics. In terms of the 
wavelength d: measured along the plate it is written 
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(3.12) y = 2. 

Hence r/y represents the ratio of the wavelength to the thickness. In the forced 
oscillation this is determined by the wavelength of the sinusoidal distribution 
of the normal and tangential forces applied to the surface. The coefficients 
in equations (3.10) are 

(3.13) 

with 

(3.14) A, = (Q - LpT)x, - (Q - L@z, . 

In deriving these expressions drastic simplification of the algebra is obtained 
by using the relation 

(3.15) 
Q(B21 + -u2 

B22 = (0 - L&(8 - L/33’ 

It may be verified that this relation becomes an identity by substituting the 
values ,L?:’ + pi = 2m and ,@i: = k2 in accordance with the characteristic equa- 
tion (3.6). 

Forced vibration under a normal exciting force. If the exciting force is 
normal to the surface of the plate we put 7, = 0 in equations (3.10). Eliminating 
U. in these equations we obtain for the normal exciting force q. the relation 

(3.16) 
2 

in _ allaz2 - aI2 

IL - 
V 

all 
a * 

By substituting the values (3.13) and putting 

R, = (a + B&* 
(3.17) 

0 - L/3: ’ 

R, = (Q + &d2 
0 - Lp; 

we find 

(3.18) allaz2 
2 

- al2 = R2z1 - Rs2 

all WPi - P3 * 

In order to obtain this result we must introduce the value (3.15) for B,, . In 
that case the expression is simplified by bringing out the common factor A, 
which cancels out in numerator and denominator. 
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Free oscillations. By putting qa_ = 0 in equation (3.16) we obtain the fre- 
quency equation for free oscillations of the plate. From the value (3.18) we derive 

(3.19) &xl - R,zz = 0 . 

Solutions of this equation yield the various branches of the plot of frequency 
versus wavelength corresponding to the propagation modes of antisymmetric 
waves in a plate under initial stress. 

4. Single plate-Symmetric case. A similar analysis has been carried out 
for symmetric deformations of the plate as represented in figure 2b. In this 
case the displacements satisfy the condition 

(4.1) 
u(k) = u(-;) = u, ) 

v(k) = - v(-;) = v, . 

The corresponding condition for the force components are 

(4.2) 
7(;) = -7( -;) = 7, , 

!I(;) = 9(-g = q. . 

We proceed exactly as in the previous section and derive the relations 

‘78 = b,,U, + bnV, , 
(4.3) 

1L 

g = b,,U, -I- b,,V, . 

The coefficients are 

b,, = Q(P: - P;)&a: $, 
8 

(4.4) b,, = B,,Ca: - P:) a, 

b,, = [(a + &&)z: ‘- (Q + &&:I +. 
* 

We have put 

(4.5) 

and 

2: = x,/p,” = $ tanh &y , 
1 

2: = x,/p,” = $ tanh &y 
2 

(4.6) A, = (Cz - Lpf)x: - (cl - L@x: . 
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Free oscillations. This case is obtained by putting 7, = q. = 0 in equations 
(4.3) hence 

(4.7) b,,b,, - b:, = 0 I 

The same simplification is obtained as in the case of equation (3.18). By intro- 
ducing the value (3.15) for B,, we find that equation (4.7) contains A, as a 
factor which may be cancelled out. Therefore we may write equation (4.7) as 

(4.9) R& - R,z: = 0. 

This is the frequency equation for the propagation of symmetric waves in 
the plate under initial stress. 

5. Single plate-General case. We consider the case where the applied 
forces are still distributed sinusoidally according to equation (3.8) but without 
any additional condition of symmetry or antisymmetry. The displacements 
and forces at the top of the plate are denoted by (Fig. 1) 

(5.1) VI , Vl , Q-1 , q1 

and at the bottom by 

(5.2) 7-J, , v2 , 72 , qa t 

This case can be obtained by superposition of the symmetric and antisymmetric 
cases which have been solved in the two preceding sections. The procedure 
is exactly the same as used in the writer’s previous work on stability of multi- 
layered media [3]. By superposition we obtain for the displacements 

(5.3) 
u, = u, -I- u, ) 

u, = - u, + u. , 

and for the applied forces 

(5 -4) 
71 = 7. + 7, , q1 = q. + q. , 

72 = To - 7, , q2 = -q. + q. . 

We substitute the values (3.10) and (4.3) for 70 , q. , 7. , q. in these last four 
equations. We then express the result in terms of the total displacement at 
top and bottom by substituting values U, = #(U, - UJ etc. obtained from 
equations (5.3). The result written in matrix form is 
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The matrix coefficients are 

A = %%l + L), D = $(a,, - b,,), 

(5.6) B = +(% + b,,), E = 3(~ - L), 

C = %-%z + L), F = $+xpz - b,,). 

An equivalent way of writing the equations in more compact notation is obtained 
by introducing the quadratic form 

I = +A(U,2 + Vi) - DU,U, 

(5.7) + $C(V:’ + Vi) + FVI V, 

+ B(U,Vl - U,V,) + E(UlVT2 - 

Using this expression, equations (5.5) may be written 

uz Vl> * 

(5.3) 

71 = 1L -$, 
1 

T2 = -lL$$, 
2 

q1 = lL-$& 
1’ 

q2 = __ILar. 
av, 

6. Multilayered media. We consider now a system of n superposed adhering 
layers. In the general case this system may be embedded between two semi- 
infinite media (Fig. 3). The layers are numbered from 1 to n starting at the top. 
The top and bottom semi-infinite media if they are present are numbered 
0 and n + 1 respectively and may be considered as layers of infinite thickness. 

s W 
II 

,(j) 
II 

FIGURE 3. Multilayered medium under initial stress. 
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The state of initial stress may be different in each layer. In the jth layer there 
is a principal stress component S if’ parallel with the layer and a component 
S,, normal to it. This normal component is the same in all layers. 

In the analysis of the single plate it was assumed that there was no normal 
component S,, for the initial stress. However it was shown in a previous paper 
[3] that all the results for this case are applicable when SZZ is not zero provided 
we replace P by 

(6.1) P = s,, - Xl, . 

The forces T and q at the boundary then represent the tangential and normal 
stress increment on the deformed surface. 

The interfaces of the medium are numbered from 1 to n + 1, and corresponding 
indices are attached to the displacement at these interfaces. The value (5.7) 
of I for the jth layer is written 

Ii = +A,(U: + U:,,) - DjUiUi,l 

(6.2) + $C,(Vf + VY,,) + FiViVi+1 

+ Bi(UiVi - Ui+1Vi+1) + E’i(UiV’i+1 - U,+,Vi). 

We now express the condition that the stresses r and q must be continuous 
at the jth interface. Applying equations (5.8) we derive 

(6.3) 

-g- (.&Ii + Li+Ji+J = 0. 
7+1 

These two equations are recurrence equations for the six displacements at 
three consecutive interfaces. They constitute a system of 2(n + 1) equations 
for the 2(n + 1) interfacial displacements. They are homogeneous and provide 
the frequency versus wavelength characterisitic equation by evaluation of 
the determinant. 

These equations may also be expressed in still more compact notation by 
introducing the total quadratic form 

9 = C LjIi l 

j-0 

Equations (6.3) are then written 

ail -= 
au, O* atI 0 -= 

avi l 

They are equivalent to the variational principle 

(6.6) 68 = 0. 
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These equations are completely general and include the case where the top 
or bottom are free. For example if the top and bottom surfaces of the multi- 
layered systems are free we simply put L, = L,,,, = 0. The values of I, and 
Ii+, corresponding to layers of infinite thickness are also simplified because 
we have assumed unattenuated modes of propagation. This requires the roots 
,& and p2 to have a real part different from zero. It may be chosen positive. 
In that case for a layer of infinite thickness 

(6.7) 

Hence 

tanh /3n = tanh P2r = 1. 

1 
2: = -, 

1 
P1 

2; = - 
Pz’ 

Substituting these values in expressions (3.13), (4.4) and (5.6) we derive 

a 11 = 51, = A, 

(6.9) 
a 12 = bu = B, 

a 22 = bm = c, 

D=E=F=O. 

This results in considerable simplification of the quadratic forms I,, and Incl 
associated with the top and bottom half space. 

Computational scheme by matrix multiplication. The frequency equation 
may be solved numerically by using the computational scheme suggested by 
Thomson [4] and developed by Haskell [5] for the propagation of modes in 
layered media. It has been extended to anisotropic media by Harkrider and 
Anderson 191. The method has been further developed by the writer for stability 
problems [3] using different matrix elements such that they reveal the mathe- 
matical structure and are immediately applicable to a large class of problems 
of the same type. 

The matrix equation (5.5) is written in the form 
* 

71 72 

Ql 

(6.10) 

II -1 

=m pp. 

. IV1 IV2 

IV, IV2 

This relates the values at the top face of a layer to the values at the bottom. 
The matrix 3n is 



(6.11) 
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B, B, LB, LB,- 

B, B, -LB, LB, 
. 

;Bs iB, B, -& 

-- ;Bg ;Bm -B, B, 

The ten elements Bi are functions of aii and bii and are taken from the earlier 
paper [3]. Their values are listed in the Appendix. The procedure of matrix 
multiplication and the resulting frequency equation is the same as already 
discussed in several papers ([3], [5], [9]). 

Surface waves and surface instability. For a plate of infinite thickness, 
equation (3.19) yields the characteristic equation for the propagation of surface 
waves. As already pointed out z1 and .za in this case take the limiting values 
(6.8) and equation (3.19) becomes 

(6.12) R& - R,& = 0. 

The values of ,& and pa must be chosen so that their real part is positive. 
Velocity curves for surface wave propagation under initial stress have been 

derived by Buckens [lo] as an application of the general equations (2.2) and 
(2.7). They correspond to solutions of equation (6.12). 

By putting ~11 = 0 equation (6.12) becomes the general condition for surface 
instability of an elastic half space. This problem has been discussed in detail 
by the writer in previous work and solved numerically for the particular case 
of an incompressible material (see for example [ll]). 

7. Discussion for the incompressible medium. The case of an incompressible 
medium leads to considerable simplification in the algebra. This limiting case 
is obtained as follows: We write the elastic coefficients in the form 

B,l = K + N + P, 

(7.1) 
B,, = K - N + P, 

B,, = K - N, 

B,, = K + N. 

We substitute these values in the stress-strain relations (2.2). They become 

(7.2) 

s 11 = Ke + (P - N)e + 2Ne,, , 

s 22 = Ke - Ne + 2Ne,, , 

S 12 = 2&e,, 
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with 

(7.3) e = e,, + e,, . 

We introduce the limiting values 

K-+ 03) 

(7.4) Ke+s, 

e = 0. 

With these values equations (7.2) become 

(7.5) 

511 - s = 2Ne,, , 

522 - s = 2Ne YY 9 

slz = 2&e,, . 

These are the incremental stress-strain relations for an incompressible medium 
in plane strain. 

All expressions derived for the general case are therefore immediately applica- 
ble to the incompressible medium by introducing the values (7.1) for the co- 
efficients and putting K = ~0. For example for the antisymmetric case we find 

a 
a: - P”, 

l1 - 21 -22’ 

(7.6) az2 = allzlz2 , 

a 12 = (0:’ + lb2 - (Pi: + l)zl 
21 - 22 

The coefficients (3.7) of the biquadratic in the limiting case K = Q) become 

(7.7) 

where 

(7.3) M=N+$P 

is a coefhcient whose physical significance was already discussed in detail in 
a previous paper [8]. 

We note that expressions (7.6) and (7.7) are identical with the result derived 
for the case of static stability of an incompressible plate [3] by putting CY = 0. 

8. Dynamic stability. Problems of static and dynamic instability are 
included in the present theory. Under conservative boundary forces the elastic 
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medium must obey the classical theory of small motions of a conservative 
system in the vicinity of an equilibrium state. 

This property is embodied in the variational principle for the elastic medium 
under initial stress [l]. The variational formulation was illustrated in detail 
in a recent paper on acoustic-gravity waves [12] and will also be discussed 
more extensively in a forthcoming book by the writer. 

As a consequence the characterisitic exponents a2 of the solutions are always 
real. Positive values of 0~’ corresponds to oscillations proportional to exp (&). 
A negative value ~11’ = -p2 yields a solution proportional to an increasing 
exponential exp (pt) and corresponds to a dynamic instability. 

If we examine for example the expressions (3.13) we notice that the only 
place where the frequency appears is in 

(3.1) Q = B,, - a2p/12 

and in the combination 

(3 -2) P’ = P + a2p/12 

in the values (3.7). A solution for which 

(3 -3) P’ < P 

corresponds to a dynamic instability. 

Analogy between buckling and free oscillations. These results lead to an 
interesting conclusion. Let us assume that a buckling instability exists for a 
small value of P. Consider for example condition (3.19) for antisymmetric 
oscillations of the free plate. Let us put equal to zero the frequency CZ. Assume 
the elastic coefficients Bii and L to be approximately independent of the initial 
stress P. If the frequency cr is also small the value of fi will be approximately 
constant, and the solution of the characteristic equation contains only the 
unknown P’. Therefore according to equation (8.2) the same solution represents 
either a buckling under a compression P or an oscillation of an initially stress 
ree plate provided 

(3.4) P = &3/r. 

This points to a fundamental similarity between dispersion curves for wave 
propagation and buckling stress as a function of the wavelength. 

This similarity extends to body waves, Stoneley and Rayleigh waves. It was 
pointed out by the writer that these waves are analogous to the phenomena 
of internal [8], surface [ll] interfacial instability [13]. If the frequency varies 
and goes through a zero value there will be a continuous transition from an 
oscillation to an instability. 

Internal instability of first and second kid. This phenomenon which was 
analyzed in detail for the incompressible medium [3] [8] may be derived in 
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the same way for the more general type of elastic material governed by the 
stress-strain relations (2.2). Internal instability will appear if at least one of the 
roots p1 and pz of equation (3.6) is a pure imaginary. There are two physically 
distinct cases depending on whether one or two roots are imaginary. They may 
be referred to respectively as internal instabilities of the first and second kind. 
The conditions under which this occurs is easily found in terms of the coeEcients 
m and h? along exactly the same lines as for the case of incompressibility [8]. 
By taking into account equation (2.9) the same important conclusion is derived 
that internal instability of the first kind is not possible in a medium which is 
isotropic for Jinite strain ([3], [SJ). 

Appendix : Coefficients in the matrix (6.11). 
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