
REPRINTED FROM 

Quarterly Journal of 

Mechanics and Applied 

Mathematics 

VOLUME XVII PART 1 

PEBIlUAXY 1964 

CONTINUUM THEORY OF STABILITY OF AN EMBEDDED 

‘LAYER, IN FINITE ELASTICITY UNDER 1NlTlAL STRESS 

By M. A. BIOT 

(Shell Development Compar~y, New York) 

CLARENDON PRESS . OXFORD 

Subscription price (for 4 numbers) 75s. post free 



CONTINUU!M THEORY OF STABILITY 
OF AN EMBEDDE~~AYER IN FINITE ELASTICITY 

UNDER INITIAL STRESS 

By M. A. BIOT 
(Shell Development Company, New York) 

[Received 29 October 19621 

SUMMARY 

The writer’s theory of elasticity under initial stress is applied to the problem of 
buckling of a thick elastic slab embedded in an elastic medium of infinite extent. 
The initial stressed state of the system is one of homogeneous finite strain, and 
perfect adherence is assumed at the interface of the slab and the embedding medium. 
The characteristic equation is solved numerically and the relation between the 
stability and wave length parameters is plotted for various values of the ratio of the 
rigidities of the two media. It is shown that for vanishing wave length the buckling 
degenerates into an interfacial instability in analogy with Stoneley waves. By 
viscoelastic correspondence the present result is also an exact solution for two 
viscoelastic media whose operators and initial effective compressive stresses differ 
only by the same constant factor. 

1. General results 

CONSIDER a layer of thickness h (Fig. 1) of an isotropic elastic medium 

whose strain energy per unit volume is 

W = &&I;+n;+n$-s) (1) 
The finite principal extension ratios are denoted by il,l,l,. The medium 
is assumed incompressible, i.e. 

i2,&& = 1 (2) 

The layer is embedded in a similar medium of strain energy 

Jv = &n(n;+~~+~:-3) (3) 
Perfect adherence is assumed at the interface. 

Consider now a state of homogeneous finite strain defined by the three 

extension ratios Ai. Assume the direction 2, to be parallel to the layer, 
while 2, is perpendicular to the plane of Fig. 1. 

Choose coordinates X, y in the plane of the figure, x being parallel to 
the layer. The differences of the principal initial stresses in the x, y plane 
are, for the layer, P = s,,--s,, = p&4,2) (4) 

and for the embedding material, 

P, = s,,-s:I,’ = p&-n;) (5) 
[Quart. Joum. Me&. and Applied Math., Vol. XVII, Pt. I, 1~641 
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FIG. 1. Embedded layer and state of initial stress. (The initial stress 
component S,, is not represented.) 

We superpose small deformations upon this initial state of stress and 
assume that the incremental deformation is a plane strain in the x, y 

plane. The incremental stress in the layer is then given by 

522 -s = 2pe,,. (6) 

s12 = 2pe,, 1 

These stress components are referred to axes which rotate locally with 

the material. Because of incompressibility we must satisfy the condition 

e,,+e,, = 6. (7) 

It is easy to show (1, 2, 3) that for a medium defined by expression (1) 

the incremental elastic coefficient ,u is given by 

P =_&(X+~;) (8) 

The coefficient ,u,, is the shear &dulus in the unstressed state (A, = A, 

= 1). Similarly, in the embedding medium the incremental stresses 

are expressed by equations (6) where ,u is replaced by 

Pl = I,P&+~z,, (9) 

The stability equations of this system are obtained by applying the 
results derived in some earlier work (4, 5) inserting for the elastic 

coefficients used in these papers the values 

& =pu, 01 = f-b R=co (10) 
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The last condition (R = co) corresponds to incompressibility. 

Under conditions of instability, the deformation of the layer is a 

sinusoidal bending which is represented by an antisymmetric solution. 

The displacement components of the upper interface are written 

u = U sin lx 

v = v~oos lx (11) 

Equating normal and tangential stresses on both sides of the interface 

yields the equations 

ruoIr-4l~+4,~1 = /-d%,~+%,~l 

/%1kw--am = ,u,[%~S%Jl 
w 

The coefficients are 

a;, = l+k 
1-k’ 

a 11 = __ 
Zl--3 

a;, = k-l a 
2z,-(l+k2)z, 

12 = 
G-3 

a;2 = W+k) a22 = a1173752 

with 

x1= tanhy, z2 = k tanh ky, y = @h 

The values of k and 5 are the same in both media, i.e. 

k= L-_l 
J l-t5 

&2’,=L!51AS; 
2 1 

i 

We shall denote the ratio of rigidities of the two media by 

(13) 

(14) 

(15) 

The characteristic equation corresponding to instability is found by 

equating to zero the determinant of equations (12). We find 

(~11~22-~~2)+~(~226;1+~ll~~2+2~12~;2)+n2(al,a~,-a;~) = 0 (17) 

The bracketed expressions in this equation may be written 

2 
w322-%!2 = -%4w(1+k2)2~11> 

xl-Z2 

~;1~,2+~11~;2+~~12~;, = - I--' [(1+k)2 v,--4x,+W+k ) 2z l+k(l+k)23, 
(18) 

7-1-x2 

cz;,~;,-~;; = k(l+k)2-(1-k)2 
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2. Limiting cases 

(a) The case n = 0 corresponds to the free layer, and equation (17) 

becomes 
42,-(l+P)%, = 0 

This equation for the buckling of a thick plate was already derived by the 

writer in (6) and discussed in more detail in later publications (4, 7). 

(b) The case n = co is that of a half space with a free surface. The 

characteristic equation becomes 

k(l+k)2-(l--k)2 = 0 (20) 

It is the buckling condition of a free surface. Multiplying equation (20) 

by (1 --k) it becomes 
4k-(l+kZ)2 = 0 (21) 

In this form it is readily seen to be identical with the limiting case of 

equation (19) for the buckling of a free plate of infinite thickness. This 

can be shown by putting y = co into the values of zr and x2. They 

become z1 = 1 and zs = k. For these values equations (19) and (21) are 
the same. It can be seen that surface instability is already implicit in 

equation (19) of the writer’s paper (6). 

Other equivalent forms of equation (21) for surface instability are 

k(l+Q2-1 = 0 (22) 
or 

53+25”-2 = 0 (23) 

These forms of the equations were discussed in detail in the context of 

elasticity and viscoelasticity in several previous papers (3, 4). The root 

of equation (23) is 
5 = 0.839 (24) 

(c) Another particular case of interest is to consider the limiting case of 

equation (17) for a layer of infinite thickness. In this case (y = co) 

a;1 = a;,, = l+k 

ai2 = a12 = k-l (25) 

aLa = aa2 = k(l+k) 

Equation (17) then reduces to 

(26) 

This is the condition for interfacial instability of two adherent half 

spaces of different rigidities. It coincides with the results derived in 
previous work (8) where it was solved numerically for the root 5 as a 

function of n. 
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3. Numerical solution for the general case 

For the general case we may solve the characteristic equation (17) for 

< as a function of y for given values of the rigidity ratio n. This yields a 

one-parameter family of curves plotted in Fig. 2. 

The value of 5 attains a minimum. The corresponding value of y 

yields the buckling wave length which suddenly appears for a given 

I.0 
\- 

0.8 

I I I I I 

I 2 :! 

Y’ 
FIG. 2. Stability parameter 5 as a function of the wave length parameter y 
for five values of the rigidity ratio n = ,u,,~/,u,. Asymptotes for y = 00 

represent interfacial instability. 

value of n when the compressive strain is gradually increased. Other 

wave lengths can be induced by introducing a constraint in the system. 

For vanishing wave lengths (y = ~0) the value of 5 tends to a horizontal 

asymptote corresponding to interfacial instability. The asymptotic value 
of 5 is the root of equation (26). 

This phenomenon is entirely analogous to the dynamical case where 

bending waves in the layer degenerate into Stonely waves at the interface 

for increasing frequency and vanishing wave length. 

For the materials assumed here the value (15) of 5 is always smaller 

than unity. Hence values are plotted only in that range. However, as 
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already shown in the similar case discussed earlier (5), there are an 

infinite number of branches for the solution of equation (17) in the range 

151 > 1. Such branches correspond to the phenomenon of internal 

buckling, which has been discussed in detail in another paper (2). 

4. Viscoelastic correspondence 

The solution obtained here for the elastic medium is directly applicable 

to viscoelasticity. It constitutes also an exact solution for the case 

where the operators & and &, which represent the two media and the 

initial stresses P and P, differ only by the same constant factor n. This 
value of n is the same as in the numerical solution discussed here for the 

elastic case. If the medium is assumed to obey thermodynamic principles 

& is an increasing function of the time differential operator p. Hence, 

the dominant wave length corresponds to the minimum of 5 and is the 

same as in the elastic case. Strictly the medium should be at rest under 

the initial stress but for all practical purposes the theory is applicable 
to viscous fluids. 
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