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SUMMARY 

The writer’s theory of stability of multilayered continua is applied to the case of a 
periodic alternation of layers of two rubber-like materials of different rigidity in a 
state of homogeneous finite strain. An exact buckling condition is derived which is 
remarkably simple. It is solved numerically for the case of layers of equal thickness 
and the buckling load is plotted as a function of the wavelength for various ratios of 
the two rigidities. At small wavelength the buckling degenerates into interfacial 
instability. At large wavelength the instability coincides with internal buckling of 
an anisotropic continuum equivalent to the multilayered system. The case of 
layers of different thickness is discussed. By viscoelastic correspondence the results 
are immediately applicable to viscoelastic media. The general theory also provides a 
similar solution for layers of anisotropic materials. 

1. Derivation of the stability equation 

WE shall first consider an elastic medium of adhering layers of the same 

thickness with alternate elastic rigidity (Fig. 1). The medium is assumed 

incompressible with isotropic finite stress-strain relations corresponding 

to a rubberlike medium as derived by Treloar (1). The principal 

extension ratios in the initial state of stress are denoted by A,J,J,. The 

condition of incompressibility is 

I&, = 1 (1) 

The extension A, is parallel with the layers while 1, is oriented in the 

perpendicular direction. The principal stresses S,, Sa2 S,, associated 

with this strain satisfy the relations, (2), 

S,,--x8, = P&C-2:) 

&,--x,1 = P,(G-4) (2) 

&-S,, = P&C-Z) 

The coefficient ,~a is the shear modulus of one layer in the stress free 

state. In the other layer of shear modulus ,u,, the stresses are S:l,)Spaj Sra). 

They satisfy relations (2) with the coefficient ,L+,~ replacing ,~a. The last 

equation (2) for this layer is 

s$s~) = /40,(n;-il;) (3) 
[Quart. Joum. Mech. and Applied Math., Vol. XVII, Pt. I, x964] 
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FIU. 1. Elastic layers of equal thickness F, and alternate rigidities y, and pOl 
under initial stress. The number of layers is inf?nite. 

Consider a state of plane strain superposed upon this initial finite strain. 

The incremental deformation is in the plane of Fig. 1, and, referred to 

x, y axes, parallel with the finite extensions A, il,. 

We are concerned with the problem of stability of this periodic- 

layered system and particularly with a mode of buckling which has the 

same periodicity as the layers. This means that the deformation of each 

layer is antisymmetric with respect to its middle plane (Fig. 2). The 

deformation is assumed sinusoidal along x. Consider an interface with 

the layer ,uol on top and the layer p,, on the bottom. The incremental 

displacement of the interface is written 

u = U sin lx 

v = v cos Ix. 
(4) 

The incremental stress acting at the interface on the bottom layer is 

written 
A’f, = r sin Ix 

A’f, = q cos lx. 
(5) 

These stresses are normal and tangential components to the deformed 

surface. We have shown (3, 4) that the displacements and the stresses 

are related by the equations 

7 
- = a,,U+a,,V 
IL 

(6) 
cl 

1L= aJJ+G 
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FIG. 2. Buckling mode of the infinite multilayered system. The ‘effective’ 
compressions in each layer at buckling are P = S,, -S,, and PI = S,, -Sfl). 

The coefficients of these equations are 

l-k2 
a 11 = - 

z1-z2 

with 

a 12 = 
2z,-(l+k2)2, 

21-32 
(7) 

Consider now the layer of modulus ,uOI. The same relation as (6) may be 
written for the normal and tangential increments of the stresses in that 

layer. The parameters y, k, and 5 are the same in both layers. The only 

difference appears in the value of L which becomes? 

L’ = k%I(~~+x)(~+~) (9) 

i The simpler values may also be written, 

Ic = a$, L = p& L' = ,uo& 

However, it is of interest to keep the parameter 5 in view of its significance for 
viscoelastioity and more general problems. 
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With this value L1 the stresses in this layer are given by the equations 

7 
- --a,,U+a,,V EL’- 

(10) 
-!- = a,,U-u,,V. 
IL’ 

The coefficients a,, and az2 are preceded by a minus sign because the 

stresses and displacements are those of the lower face of the layer. 

Since perfect adherence is assumed and because the stresses are contin- 

uous at the interface, we may equate the values of T and q given by 

equations (9) and (10). This yields 

L(a,,U+a,,V) = L1( -a,,U+a,,V) 

L(a,,U+a,,V) = LVJ,,U--a,,V 
(11) 

Equating to zero the determinant of this homogeneous system we write 

l-n 2 alla,, ( 1 -=- 
l+n 2 

al2 

(12) 

The rigidity ratio is 
12 = iuol (13) 

PO 

The characteristic equation (12) represents the buckling condition of the 

multilayered system for the particular periodic mode of instability 

where all vertical interfacial displacements are the same. Attention is 

called to the physical significance of the variable 5. It may be written 

The quantities, 

(14) 

represent the incremental shear moduli for the two layers under initial 

stress. The values of P and P, are 

P = p&g-n;, = s,,-s,, 

PI = p&l;-A”,) = s,,-s$’ (16) 

They represent the ‘effective’ compressive stress acting in each layer 

along its axis. Before solving the characteristic equation (12) it is 

useful to establish the nature of its numerical solution by considering the 

two limiting cases y = 0 and y = co. 
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2. Limiting case of infinite wavelength-Internal buckling 

For large wave lengths the value of y tends to zero. For small values 

of y we write the limiting approximations 

21 = Y 

x2 = k=y. 
(17) 

With the values (17) the buckling condition (12) becomes 

or 
( > l-n2 k2 
- = 
1+n 

2 
-En+1 
5 n 

(18) 

(19) 

It is easy to interpret this result noting that for large wavelengths or, 

what is the same thing, for very thin layers, the medium behaves as an 

anisotropic continuum. It was shown (5) that the slide modulus L,, for 

this equivalent continuum is 

La, = --!-- 
$+& 

(20) 

From equations (8), (9), and (15) we derive 

L = /4+f3 

L1 = pl(l+c) 
(21) 

Hence 

L,, = (l+c)- 
ru+ru1 

(22) 

The average effective compressive stress in the equivalent continuum is 

P,, = Q(P+P,) (23) 

By taking into account relations (14), we write 

PU, = C(PUPu,). (24) 

It was shown (5) that the condition of internal buckling of such an 

anisotropic continuum is 
LJ = p,, (25) 

Substituting the values (22) and (24), this equation reduces to 

2 
-zn+T 
5 n 

(26) 

which is identical with the limiting equation (19). Hence at large 

wavelengths the instability coincides with the phenomenon of internal 

buckling of an anisotropic continuum. 

6092.2 Q 



222 M. A. BIOT 

3. Limiting case of small wavelength-Interfacial instability 

For small wavelength we put y = co. The values of z1 and x2 become 

21 = 1 

22 = k 
(27) 

Substituting these values in the characteristic equation (12), we find 

This equation coincides with the condition of interfacial instability 

of two adhering infinite half spaces analysed in a previous paper (6). 

4. Numerical solution of the stability equation 

Equation (12) has been solved numerically and the stability param- 

eter 5 has been plotted as a function of the wavelength variable y for a 

number of values of the rigidity ratio n. Results are shown in Fig. 3. 

We note that l/y is proportional to the ratio of the wavelength to the 

layer thickness. For y = 0 the values of 1; are given by equation (19) 

corresponding to internal buckling of the equivalent continuum. As the 

0 I 2 3 

Y- 

FIG. 3. Stability parameter 5 versus the wavelength parameter y for 
different values of the rigidity ratio rr = ,u,,~/,LQ,. 
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wavelength decreases the bending stiffness of the layers enters into play 

and the value of 5 increases. For y = co i.e. for very short wavelengths 

the curves for 5 tend toward horizontal asymptotes corresponding to 

interfacial instability, and determined by equation (28). 

5. Viscoelastic correspondence 

The present solution is applicable to a viscoelastic multilayered 

medium provided we replace the elastic incremental coefficients by 

operators. For example, if incremental deformations are purely viscous 

we substitute the operators 
P = rP 

(23) 
P1=KP 

in place of the elastic coefficients p and ,ur. The operator p = dldt is the 

time differential while q and Q are viscosity coefficients. The parameter 

n becomes the viscosity ratio 
VI n=- (30) 
11 

The parameter 5 is 

(31) 

This shows that in each layer the initial compressive stress must be 

assumed proportional to the respective viscosity coefficients. For a 

given viscosity ratio and a given wavelength and amplitude of folding 

grows at an exponential rate proportional to exp@t) whose 1, is deter- 

mined from the value of 5 by using the same diagram as in Fig. 3. 

Strictly speaking, the correspondence is valid only if the medium is at 

rest under the initial stress. However, as shown in earlier discussions, for 
all practical purposes the results are valid for a medium with initial strain 

rate. 

We are assuming here that the instability is in the nature of a creep 

buckling where inertia effects are negligible. A more complete theory 

including inertia forces and compressibility has been developed in an- 

other paper (7). 

6. Extension to layers of different thickness and anisotropic 
properties 

The present results are easily extended to the case of a multilayered 

system of layers of alternating thickness h. and h,. Equations (11) are 

replaced by 
L(a,,U+a,,V) = L’(-ua;,U+a;,V) 

L(a,,U+a,,V) = L’(a;,U-c&V) 
(32) 
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The coefficients a& now refer to the layer of thickness h, and are obtained 

by putting y = +lh, into the values of z1 and z2. For h, = co the 

stability is the same as for the single embedded layer analyzed previously 

(8). In this case Fig. 3 is replaced by the diagram of Fig. 2 in the 

previous paper (8). Actually it is not essential that h, be infinite for this 

case. It is sufficient that the wavelength and the thickness h, be such 

that 

tanh(&h,) _N 1 (33) 

This will be the case if the wavelength is smaller than about kh,. This 

result indicates the general nature of the solution for intermediate values 

of the thickness ratio h/h,. 
Equations (32) are also valid for anisotropic media. The coefficients 

for this case were obtained in a previous detailed analysis (3). 

Finally, the case of viscoelastic layers of alternating thickness and 

anisotropic properties is treated in the same way by viscoelastic corre- 

spondence (9). 
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