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I Theory of Buckling of a Porous Slab 
and Its Thermoelastic Analogy 
A theory is developed for the buckling of a$uid-saturated porous slab under axial com- 
pression. The problem is discussed in the context of the thermodynamics of irreversible 
processes. It is shown that there is a range of com@essive loads, between a lower and 
upper critical value, for which the slab exhibits creep buckling. The problem of folding 
instability of a porous layer embedded in a viscous or viscoelastic medium is also 
analyzed and the dominant wavelength is evaluated. Identical behavior is derived by 
analogy for a thermoelastic slab with a critical range between isothermal and adiabatic 
buckling. The theory is applicable to a large class of two-phase materials obeying the 
same thermodynamics. It also provides a simple analysis of thermoelastic damping of 

I plates. 

I N recent years some basic problems of stability of 
nonhomogeneous viscoelastic media have been treated by the 
author. The analysis was based on a general theory of stability 
of continua under initial stress. One of the main interests of 
these problems lies in their application to geophysics and struc- 
tural geology. In this connection it is important to consider the 
behavior of fluid-saturated porous media. A general theory for 
the stability and consolidation of porous media under initial 
stress has been developed by the author [ 11. 1 However, it is im- 
portant to bring out the characteristic features for the buckling of 
porous media by using a more simplified treatment. This is the 
purpose of the present paper. 

The existence of a lower and upper buckling load for a porous 
slab is derived and discussed. The analogy with the viscoelastic 
behavior of nonporous media is shown to be a consequence of 
thermodynamic principles. 

This analogy is applied to the analysis of folding instability of 
an embedded layer. 

It is of interest to point out that the physical problem is quite 
different from that of a viscoelastic continuum since the stresses 
depend not only on the local strain, but also on the fluid pressure 
whose value is determined by solving the complete field problem. 
The simplification which leads to the viscoelastic analogy in the 
present case is due to the particular nature of the approximation 
associated with the concept of bending moment. 

Attention also should be called to the overall perspective, of the 
problem of buckling of a layered porous medium, which is pro- 
vided by the simple case analyzed in this paper. A solution is 
derived for a porous slab embedded in an impervious medium. 
However, the other extreme case of infinite permeability of the 
embedding medium is immediately obtained by applying a factor 
to the relaxation constants in the operator B(p) representing the 
bending properties of the slab. Hence an estimate can be made 
for the more complex intermediate case where the finite permea- 
bility of the embedding medium enters into play. 

Another analogy based on thermodynamics leads to the theory 
of thermoelastic buckling of a purely elastic homogeneous slab. 
In general the theory is applicable to the case of any two-com- 

1 Numbers in brackets designate References at end of paper. 
Presented at the Summer Conference of the Applied Mechanics 

Division, Boulder, Colo., June 9-11, 1964, of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS. 

Discussion of this paper should be addressed to the Editorial De- 
partment, ASME, United Engineering Center, 345 East 47th Street, 
New York, N. Y. 10017, and will be accepted until July 10, 1964. 
Discussion received after the closing date will be returned. Manu- 
script received by ASME Applied Mechanics Division, April 9, 
1963. Paper No. 64-APM-6. 

ponent material where one component diffuses through the other 
provided the same thermodynamic principles are valid. 

The results may also be used to derive a theory of thermo- 
elastic damping of plates as shown briefly in a later section of the 
paper. 

Operational Relation Between Bending Moment and 
Curvature 

In the bending of a porous elastic slab the response to the 
sudden application of a bending moment involves an instantane- 
ous elastic deformation and a delayed after effect. The time his- 
tory of the after effect depends on the fluid flow throughout the 
pores. 

In order to evaluate this effect we shall consider a plane-strain 
deformation of the slab. In particular let us analyze the behav- 
ior of a slice of unit thickness cut along a cross section, Fig. 1. 
With the z and Y-axes oriented as shown in the figure, we shall 
impose a deformation of the slab such that the longitudinal strain 
eZ2 is a linear function of the distance Y to the neutral axis. 
Hence we put 

eZ2 = KY (1) 

The bending curvature is represented by K. The faces of the slab 
are located at 

Y = *h/2 (2) 

where h is the slab thickness. The stress-strain relations in a 
porous medium are [2] 

t 
=yy=o 

h 
? 

Fig. 1 Deformation of a cross-reetionot slice of porous slab 
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Table I Comparisons of properties and susceptibility to catastrophic- 
shear as function of slrain rate 

Ratio of 
critical strain 
rate to that of 

Hard- 
B&b 

k, br/be titanium” 
ness 

Material Bhn pPcf deg F 
Bprrd;f m’ 

deg F 
rut 6 
Pal 

X-- rcT 
Mild steel SAE 

1020.. . . 120 490 0.12 29 4200 20000 1400 
Stainless SAE 

310.. . . 160 490 0.12 8 6050 27000 450 
Stainless SAE 

446.......... 160 490 0.14 
;: 

2200 30000 80 
Vascojet 1000.. . . 490 0.15 2900 125000 16 
Titanium RC-70 . . . 275 0.12 8 550 40500 1 
Titanium alloy 

RC-130-A.. . . . . . 290 0.12 8 1250 75000 1.3 
Aluminum 

2SH14....... . . . 170 0.22 120 700 8000 700 

a Average critical shearing strain rate 5/L, Fig. 1. 

machining geometry at machining speeds of the order of 1 sfm; 
mild steel behaves in a similar fashion when speeds approach 1300 
sfm. Titanium is being considered seriously for a number of 
applications subject to dynamic loading. Its high strength-to- 
weight ratio is very attractive. Dynamic loads, which might 
simply induce local stress-relieving plastic flow in aluminum or 
steel structures, might induce catastrophic shear failure in an im- 
properly designed titanium structure. Titanium will be very 
useful for space-vehicle structures if proper design criteria are 
established. 

Criteria governing the onset of catastrophic adiabatic slip 
have been presented. Accurate evaluation requires isothermal 
static stress-strain relationships which describe those deformation 
characteristics of the material which are independent of geometri- 
cal and necking conditions. A series of properly designed tests 
should be performed to obtain true stress-true strain relation- 
ships which accurately represent materials under consideration. 

The machining geometry is very useful for studying shear 
deformation. Results of ultrahigh-speed machining tests imply 
that dynamic shear strength tends to become insensitive to 
strain rate when catastrophic shear is well developed. This im- 
plication is very useful during analyses of ballistic impact. 

The thinness of adiabatic slip zones is helpful for heat-transfer 
considerations. Reasonably accurate computations of shear- 
zone temperatures can be made using a model based upon a 
plane which uniformily generates heat at a constant rate within 
an in&rite medium. 
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ffzz = 2w,, + Xe - apf 

~YY = 2w,, + Xe - apf 

Pf = -aMe+M{ 

Liz, gllu = total stress 

ez2, eyy = strain components 

e= en2: + eyU = dilatation 

Pf = pressure of fluid in pores 

I= fluid content. 

e,, = 
m (-l)n 

KY = ‘itch c - 
%=I) an2 

sh %! 
h 

(13) 

(14) 

(3) 

with 

a, = (2n + 1)7r 

The solution of equation (12) is therefore, 

where 

(4) 
a (-1),+1 p ay 

pf = BacpM,Kh c ___ - sin -K 
n=o o”e P+T, h 

(15) 

where 

r, = a$ = (2% + l)%S $ (16) Other quantities are material constants.2 The relative fluid vol- 
ume displacement w in the solid is assumed to be normal to the 
z-axis. Hence by definition 

The solution (15) satisfies the condition apf/ay = 0 at y = h/2. 
Hence it corresponds to a slab for which the pores are sealed at the 
swface. 

The bending moment is 
The fluid displacement and pressure are related by Darcy’s law 

S 
+h/2 

3X= _ h,2 azzYdd?l (17) bW k bPf _=___ 
at 11 bY 

From expression (7) using the values (1) and (15) for ezz and pf we 
derive where k is the permeability and 7 the fluid viscosity. 

From these equations we shall derive a relation between the 
curvature K and the bending moment. We shall assume u,, = 0. 

Elimination of eyy between the first two equations (3) yields 

where 

=zt = Be=. - cucppf (7) 

311 = B(p) $ K (18) 

with the operator 

B(P) = B + %zo --& B, 
n 

(19) 
B = %!b + ‘) _ E 

2l.4 + A 1 - VB 
(3) 

2lJ 1 - 2v 

(P=2n+f l-v 

and the coefficients 

B = 96 a2Q2 M 
11 1r4 (2Tz + 1)’ E 

In these expressions, E and v are, respectively, Young’s modulus 
and Poisson’s ratio of the porous medium for pf = 0; i.e., for in- 
finitely slow deformations. 

From equations (3), (5), and (6) we also derive by elimination 

We note that expression (19) is a rapidly convergent series. 
Hence using only the first term we may write the approximate 
value 

B(p) = B + p Bo 
p + ro 

(21) 

In many problems this approximation will be amply satisfactory. with 

D =kMc 
n 

Relation to Viscoelasticity and Irreversible Thermodynamics 

The particular form of expression (19) for the operator is of con- 
siderable interest here. It is found to be identical with the gen- 
eral expression derived by the author [3] from irreversible ther- 
modynamics for viecoelastic and relaxation properties. The fact 
that all terms are positive in expression (19) is a direct conse- 
quence of the thermodynamic principles. 

Note that the porous slab behaves as if it were constituted by 
an homogeneous viscoelastic material whose stress-strain relation 
in uniaxial stress would be 

@z. = B(p)e,, (22) 

Actually in the present case the thermodynamic system is com- 
posed of a large number of degrees of freedom. One of these is 
the curvature. This may be considered as a generalized coordi- 
nate whose conjugate generalized force is the bending moment. 
The other generalised coordinates of the system correspond to the 
hidden degrees of freedom of the slab. They are theoretically in- 
finite in number. They are represented by the normal coordinates 
corresponding to relaxation modes of the pore fluid over the cross 
section. Actually the quantities T, appearing in the operator 

(10) 
M, = w+x M 

2/.~ + X + aeM 

The constant D represent@ a diffusivity of the fluid in the pores. 
Putting 

b 
P’G (11) 

equation (9) may be written operationally 

(12) 

A solution of this equation is obtained by expanding ezz in a 
Fourier series. Since es2 is given by (1) we write 

* The Lame constants X and p are defined as in classical elasticity 
for zero fluid pressure (pf = 0). The dimensionless constant cy is the 
ratio f/e for pf = 0. The elastic modulus M is defined physically for 
constant volume (e = 0) 
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(19) are the relaxation constants of these hidden coordinates. 
The operator B could have been evaluated by variational La- 

grangian equations, using a potential energy and a dissipation 
function as developed in the original thermodynamic theory [3] 
and illustrated in more detail in the thermoelastic theory [4]. 

Another interesting consequence of the thermodynamic theory 
is that the particular form (19) of B(p) is valid also in the more 
general case where the porous matrix itself is viewelaetic. This is 
quite evident since it is equivalent to increasing the total number 
of hidden degrees of freedom included in the overall system. 

If only one hidden degree of freedom is taken into account the 
approximation (21) is obtained. It contains only one relaxation 
constant 70. 

The significance of this equation arises from the fact that any real 
positive root p corresponds to an instability such that the lateral 
deflection increases proportionally to an exponental function of 
time exp (pt). 

An important property of B(p) is that all terms in the series are 
positive. Hence it is an increasing, function of p. The lowest 
value of P for which instability can occur corresponds to p = -0. 
The corresponding value of B(p) is 

B(O) = B = Aa 
This yields a lower buckling load 

Creep Buckling of a Porous Slab 

Consider a slab of length L subject to an axial compressive 
stress P and pinned at both ends, Fig. 2. The total axial force is 
Ph. If we denote by v the deflection of the neutral axis, equi- 
librium requires that the bending moment %Z eatisfy the following 
equation 

m = Phv (23) 

On the other hand, with the z coordinate measured along the axis, 
the curvature is 

0% 

K=-iG 
(24) 

Combining equations (18), (23), and (24) we find the buckling 
equation 

This is the load of incipient instability. As soon as P exceeds PI 
an instability appears in the form of a creep buckling. When P 
is increased further, the rate of lateral deflection increases until it 
becomes infinite; i.e., purely elastic. The load at which this 
happens is obtained by putting p = 03 in the value of B(p). 
This upper critical load is therefore 

The value of the series is known [5], i.e. 

1+$+$+....=% 

B(p) g $$ + Phv = 0 (25) 

&is is identical with Euler’s equation for the buckling of a rod 
with the moment of inertia ha/12 of the cross section, and the 
elastic modulus replaced by the operator B(p). 

The slab buckles in a half sine wave represented by 

v = C sin w-x 
L 

(26) 

By substitution in equation (25) we find the characteristic equa- 
tion 

P = g ; B(p) (27) 

Hence 

B, = B + 2 B, = B + d$M, (32) 
n=O 

Substituting the values (8) and (10) for B, q, andyMc itcbecomes 

B = 4P(P + A,) 
c 

2P + A, 

with 

A, = h + (u2M (34) 

Hence the upper critical load is 

P, = $ $ B, 

I I 
I I 

L d 
I 
I 1 

I 
I 

7 
h I 

I 
:;:i-y.:” ;: .=.:*‘:;~.__../y.~ ::..-.:::.:i...:‘::.=::r “.::‘::~:::.:_i.~ii:! . ., . .._. . . * .:.. . . . . . . . . . ::.:*;. . . . 1 :.” : .._. *;. 

4 
. . ‘_ : a. . . . . . . , . : - -. . . . . . 

A 

(29) 

(30) 

------___ 
-I -1 

Ph _ A\ _ Ph .-._. .-.4._ -._. 

-X 

Fig. 2 Equilibrium of axial compression and bending moment during buckling 

(35) 
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Comparing the values (8) and (33) we notice that B, is obtained 
from B by substituting X, for h. The physical significance of this 
is derived from the property of the stress-strain relations (3). 
For very fast deformations the fluid has no time to flow through 
the pores and we may put { = 0. By then eliminating p, we 
derive 

uz2 = We,, + he 

uYY = 2w,, + X,e 
(36) 

We see that the stress-strain relations for fast deformation are 
obtained by substituting X, for X. 

For a compression P lying between the lower and the upper 
critical value the slab will buckle gradually as a function of time. 
When P exceeds the upper critical load the buckling is purely 
elastic. 

It should be pointed out that these buckling properties are due 
to the positive sign of the various terms in the operator B(p) and 
this in turn is a consequence of the thermodynamics. 

For the same thermodynamic reason these properties are also 
not dependent on the particular boundary condition assumed in 
the example corresponding to sealed pores at the surface. If the 
fluid is allowed to flow freely in and out of the surface the main 
effect is to change the relaxation constants r,, of the hidden de- 
grees of freedom and multiply them by a factor 4. 

Folding Instability of an Embedded Porous layer 
Consider the porous slab subject to an axial compressive stress 

P embedded in a viscoelastic medium, Fig. 3. We shall assume 
that the embedding medium is impervious. Hence we may apply 
the solution which has just been derived for the slab with a sealed 
surface. 

When the layer undergoes a sinusoidal deflection 

v = v CO8 lx (37) 

the total reaction of the embedding medium on the layer per unit 
length is 

-29’ = B,(p)lv (33) 

The minus sign is used because the deflection and the reaction are 
in opposite directions. The operator B,(p) characterizes the em- 
bedding medium and has been previously discussed and evaluated 
[6, 71. It is of the same general form as expression (19) for 
B(P). 

The theory of folding instability of the embedded porous slab 
is identical with the case of a layered viscoelastic medium which 
has been analyzed in detail in a previous paper 161. The differen- 
tial equation for the lateral deflection v of the layer is 

; B(p) g + Ph g + B,(p)Zv = 0 (39) 

Fig. 3 Porous layer embedded in cm impervious viscous or viscoelostic 
medium 

where 

B= 
S= 
c= 
P= 

excess temperature over equilibrium value T, 
entropy density 
heat capacity per unit volume 
coefficient replacing a! 
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For a sinusoidal deflection (37) we obtain the characteristic 
equation 

B,(P) P = $ B(p)12h2 + Ih (40) 

Again here the thermodynamic property that B(p) and B,(p) are 
increasing functions of p plays an important role. When 1 varies 
the value of P goes through a minimum, corresponding to the 
dominant wavelength. This dominant wavelength is 

For a given value of P this dominant wavelength is the one with 
the largest value of p, hence with the most rapid rate of increase of 
folding. The compression generating this wavelength is 

P=QB,(p) ,I$!$ 
[ 1 l/a 

e 
(42) 

As an illustration consider the case where the embedding 
medium is purely viscous and incompressible. In that case 

B,(P) = 41lP (43) 

where r] is the coefficient of viscosity of the medium. The 
dominant wavelength and corresponding compression become 

L d = & B(p) “’ 
[ 1 37lP (4) 

A relation between the dominant wavelength and the compressive 
load P is obtained by plotting a curve of ordinate Ld and abscissa 
P as a parametric function of p. For a given value of P this 
curve yields the dominant wavelength and the rate of growth of 
the folding. 

Thermoelastic Analogy 
The author has shown that the mechanics of porous media and 

thermoelastic continua are isomorphic [4]. The equations of the 
two theories are identical and may be obtained from each other 
simply by a change of notation. This is more than a purely formal 
analogy. It reflects a deeper identity of the two phenomena when 
considered from the broader viewpoint of the thermodynamics of 
irreversible processes. The thermodynamic theory of thermo- 
elastic continua was developed in an earlier publication [4]. It. 
is based on new concepts, such as a generalized free energy for 
systems with nonuniform temperature, a dissipation function 
defined in terms of entropy displacement, and a generalized ther- 
mal force. 

The theory of porous media applies immediately to thermo- 
elasticity. The temperature replaces the fluid pressure, and the 
entropy displacement is used instead of the relative fluid displace- 
ment. Equations (3) are replaced by 

Q,z = 2pe,, + Xe - @9 

uvu = 2j~,, + he - /30 

o= _Fe+T.s 
C 

(45) 



The coefficients X and p are the isothermal elastic moduli. For 
adiabatic deformation we put s = 0 in equations (45) and derive 
the stress-strain relations 

Qm! = We,, + X,e 

uYY = We,, + X,e 

with the adiabatic modulus 

A, = x + p” : (47) 

This modulus is the analog of X, defined by equation (34) in the 
case of a porous medium. 

From these considerations we conclude that the buckling of a 
thermoelastic slab involves a lower and upper buckling load com- 
pletely analogous to the values (29) and (35) for the case of a 
porous medium. The upper buckling load is 

with 

The lower buckling load Pt is given by the same expression (29). 
The buckling of the porous and thermoelastic media is therefore 
exactly the same in its basic features. The only difference lies in 
the magnitude of the effect. Since X, is very close to X the two 
buckling loads corresponding to isothermal and adiabatic buckling 
are so close together that they will be indistinguishable in 
practice. 

Thermoelastic Damping of a Plate 

The previous results are also applicable to the problem of 
propagation of thermoelastic waves in an elastic plate. The dy- 
namical equations for a plate of thickness h and density p are ob- 
tained by analogy with the purely elastic case. We write 

A normal load n(z) exp (pt) harmonic function of time is applied. 
We put p = iw where w is the angular frequency. Equation (50) 
is derived from the thin-plate theory and is valid for wavelengths 
larger than several times the thickness. If we assume that heat 
loss has no time to take place at the free surface the boundary 
condition is the same as for the porous slab in the foregoing 
analysis. Hence the operator B(p) is given by equation (19) 

where the physical constants of the porous medium are replaced 
by the corresponding quantities for the thermoelastic medium. 
We write 

B(P) = B + n$o &y B.t 
n 

with 

B = 4l.0 + A) E ZY 
2l.L + x 1 - v2 

B, = $$+G 

2i.4 1 - 2v - = 
(p=2cL+x l-v 

M = 2l.J +A Tr ~.- D 
2/.L + A, c 

(52) 

The relaxation constants T, are now 

T, = (2n + 1)%2 K+ 
I 

where K is the thermal conductivity. In the analogy the ratio 
k/q appearing in equation (6) for the porous medium must be re- 
placed by K/T,. [4]. 

Note that if the expression in equation (52) is reduced to its 
first two,terms we obtain the same type of operator as derived in 
an earlier paper [4] by the variational method for a cantilever 
plate. The value of r0 which was derived for that case is very 
close to that obtained from equation (53) by putting n = 0. 
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