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THEORY OF INTERNAL BUCKLING OF A 

CONFINED MULTILAYERED STRUCTURE 

Abstract: A simplified theory is derived for in- 
ternal buckling of a multilayered structure. The 
layers, alternately competent and incompetent, 
are subject to a horizontal compression and con- 
fined between two rigid straight boundaries whose 

vertical separation varies with the amount of hori- 
zontal compressive strain. For purely viscous ma- 
terials. the dominant foldine wave length is ex- 
pressed in terms of the viscozty ratio, tl& number 
of layers, and their thickness. 

Introduction 

The existence of internal buckling of a 
laminated medium with rigid confinement was 
brought out in a recent paper by Biot (1963a). 
In three other papers (Biot, 1963b; 1963~; 
1964) an exact theory of buckling of multi- 
layered continuous media has been developed 
that is applicable to viscous, elastic, and visco- 
elastic materials. 

terials of elastic mod&, pi and /.~a, respectively 
occupying fractions czr and CX~ of the total thick- 
ness (Fig. 2). The medium behaves as an aniso- 
tropic continuous medium. An average vertical 
strain e,, requires a vertical stress uzly = 4Me,,, 
and an average shear strain cp requires a hori- 
zontal tangential stress cozy = Lq. The de- 
formation is assumed to be one of plane strain. 
We have referred to L as the “slide modulus.” 

From these theories emerges the present 
simplified analysis which brings to light the 
controlling factors in buckling of multilayers. 
When this analysis is applied to internal viscous 
buckling it yields the striking result that the 
buckling wave length is about 20-60 times the 
layer thickness and is extremely insensitive to 
the viscosity contrast. This result provides an 
explanation for one of the predominant 
features of geological structures. 

Internal Buc&zg 

Shear Threshold 

For H = 00 the confinement disappears and 
equation (1) reduces to 

A typical buckling pattern of a confined 
laminated medium under a compression P 
parallel to the layers is shown in Figure 1. The 
critical value of the compression (Biot, 1963a) 
is 

P=L. (3) 

This is also the minimum value of the buckling 
load that occurs at a vanishing wave length for 
a confined medium. We shall call it the “shear 
threshold” since it defines a lower value of the 
compression below which internal buckling 
cannot occur in a laminated medium. For com- 
pressions above the threshold, equation (1) 
yields the approximate value 

P = 4M$s + L(l-,$*)s. (1) 

The parameter ,$ = C/(2H) represents the 
ratio of the wave length C to twice the confine- 
ment distance H. The two elastic coefficients 
defining the property of the laminated medium 
are 

P= L+4M(‘. (4) 

The term L represents the sliding of one 
layer over the next. 

L= 
Pli-42 

w-42 + ~2I-41 
(2) 

M = PICQ + ~2~x2. 

Of considerable interest is the physical sig- 
nificance of the term 4M[’ which corresponds 
to the resistance to the vertical movement of 
folding. It is due to the confinement and the 
influence of the over-all vertical rigidity of the 
laminated medium represented by the modulus 
M. The effect of the finite thickness of the 
layers is represented by two major factors, 
bending stiffness and interstitial flow. 

The laminations are composed of alternating 
layers of two types of incompressible ma- 
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Bending S@ness of the Layers 

The thickness of a pair of layers is denoted 
by 2h (Fig. 2). Hence h is the average thick- 
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ness. We shall assume that the material of 
modulus nl is appreciably more rigid than the 

Because of the presence of the last term, which 

other. If it were free the buckling of this layer 
is due to the bending stiffness, the compression 

would require a compressive stress. 
P now goes through a minimum value when 
plotted as a function of the wave length, 

PI = $ /.L&Ph2 . (5) Apparent Compressibility and Interstitial Flow 

This is the classical formula for buckling of a 
thin plate of thickness 2~xlh in a sinusoidal wave 

When one type of layer is very soft in com- 
parison with the other, an apparent compressi- 

////////////L///L///////, 

H 

Figure 1. Internal buckling of a multilayered medium under rigid confinement 

of wave length d: = 21rjl. The compression PI 
when averaged over the total thickness be- 
comes 

P = alPI = $ ,ulq3Z2h2 . (6) 

The total buckling load of the medium is ob- 
tained by adding the values of equations (4) 
and (6). We obtain 

P = L + 4Mt2 + &u,a1312h2 (7) 

We put 

y=#=; (8) 

H 
Tl=-. 

h 

The parameter n is the total number of con- 
fined layers and r/r is the ratio of the average 
layer thickness to the wave length. With these 
parameters equation (7) becomes 

P = L + ($)” y + ~Irlc&~ * (9) 

bility sets in at the shorter wave lengths. In 
regions of higher vertical pressure the soft ma- 
terial tends to be squeezed out toward regions 
of lower pressure. This causes an interstitial 
flow of the soft material along the direction of 
the layers. (Fig. 3). The effect amounts to an 
apparent decrease of the vertical rigidity A4 by 
a factor which is wave length-dependent. 

The effect may be evaluated as follows. The 
vertical stress LJ on the soft layer and the corre- 
sponding thickening 2V are distributed sinu- 
soidally along the layering with a wave length 
6: = 27r/Z (Fig. 3). The relation between q and 
Vwas derived in a previous paper (Biot, 1963b). 
It was found that 

V 
q = lp2b22V = 2T/t2b22h. (10) 

The coefficient 622 is given by equations (86) of 
the quoted paper (Biot, 1963b): 

bzz = 
4 cosh2 y2 

sinh 272 - 2y2 ’ (11> 
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where 72 = a& = 2azy. The elastic modulus 
of the soft layer is ~2. When the soft layer is 
thinner than about one tenth of the wave 
length, the value of 7s is small enough so that 
equation (10) may be written approximately as 

2v = $ &y*qh. 

The total thickening of a pair of layers is 

2v= (&+$Gv) 4h. (13) 

The first term represents the thickening in the 
absence of interstitial flow, while the second 

Figure 2. Details of multilayered structure and 
definition of the average coefficients L = a,,/cp 
and M = a,,/4e,, 

term represents the additional effect due to 
this flow. Equation (13) shows that the ap- 
parent compressibility is measured by a 
modulus 

M, = M6, (14) 

obtained by applying a correction factor 6 that 
is written 

K = ; E (1123, (15) 

Replacing M by M, the buckling load (9) be- Figure 3. Deformation of the soft layer and as- 

comes sociated interstitial flow represented by u 

P= I,+ (f)*M$+$m3Y2. (16) 

The minimum of this expression as a function 
of y determines the critical compression P and 
the wave length for internal buckling. The re- 
sult is applicable to either viscous, elastic, or 
viscoelastic media by the principle of corre- 
spondence. 

Internal Viscous Buc&ing 

We shall discuss the case of purely viscous 
layers of viscosities, 11 and 72, where the ratio 
q1/tj2 is large (YJ~/~z > 50). We must put 

Pl = r]lP cl2 = qzp . (17) 

With this coefficient p, the amplitude of the 
viscous buckling is proportional to the ex- 
ponential function e.rp @t) of the time t. We 
also assume the layers to be of equal thickness, 
i.e. cxl = ff2 = 3. Since P = 3 PI, L S 2q2p, 
and M s 3 qlp, equation (16) becomes 

&-=;+ ( ;)2$+w, (18) 

with 

1 __=1+f+. 
6 

(19) 

The value of y for which expression (18) is a 
minimum yields the dominant wave length 
.A&. The ratio _-f&/h is a function of the viscosity 
ratio r]r/q2 and the number n of confined layers. 
It is plotted in Figure 4. The striking result is 
that Cd/h is almost independent of the vis- 
cosity ratio. The horizontal portions of the 
curve on the left side of the diagram are well 
approximated by the very simple expression 

cd = 1.90h 2/;; = 1.90 d/‘zH. (20) 

It is obtained by neglecting the interstitial 
flow, putting 6 = 1 in equation (18). The 
ascending portion of the curves on the right of 
the diagram corresponds to large interstitial 

t v=viTosLx 

2a,h- 

flow. In this case we write approximately 
6 = 3~/(~ry’). This leads to the simplified 
formula 

(21) 

It is represented by the dashed curves in 
Figure 4. 

The folding represented in Figure 1 corre- 
sponds approximately to the case of a hundred 
layers with a viscosity ratio 111,‘~ = 1000. 

The same plot yields the buckling wave 
length in the purely elastic case when the 
abscissa represents the rigidity ratio. 
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Discussion 
appear gradually with amplitudes distributed 

Attention is called to the significance of the 
sinusoidally along the vertical in a half wave 

confinement for the case of purely viscous 
of length H vanishing at the top and bottom 

layers. The compression generates a constant 
confining walls. The variation of H during 

flow rate producing a thickening and a gradual 
folding is small, and the initial value may be 

increase in the distance H between confining 
used without much error. This is justified by a 
fundamental result showing that significant 

t 

& 
h 
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Figure 4. Wave length $d of viscous buckling with all layers of equal thickness h. 
The number of confined layers is n = H/h, and the ratio of viscosities of two 
adjacent layers is r]i/vs. Dashed curves represent equation 21. 

walls. Geologically these confining walls corre- 
spond to the presence of thick competent 
layers on top and bottom of the multilayered 
structure that participate in the over-all com- 
pressive flow. Strictly speaking perfect slip is 
assumed at the rigid wall, but the presence of 
adherence introduces only a secondary correc- 
tion. If perfect slip is assumed the compressive 
flow may be restricted to the multilayered 
structure alone. 

During this process folding of the layers will 

folding will occur under these conditions with 
the emergence of the dominant wave length 
(Biot and others, 1961) if the viscosity contrast 
is sufficiently large. The conclusion is derived 
from a numerical evaluation of the time his- 
tory of folding originating with local imperfec- 
tions in the geometry of the layers. 

The present results also include what might 
be called “self-confinement,” where the multi- 
layered medium is of infinite extent vertically 
and folding occurs with amplitudes distributed 
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sinusoidally along the vertical with a wave 
length 2H as illustrated in an earlier paper 
(Biot, 1963a). 

As pointed out, internal buckling tends to 
take place with the minimum wave length 
compatible with the microstructure. This wave 
length is therefore controlled primarily by the 
correction term for bending rigidity intro- 
duced in equation (7). The additional correc- 
tion for interstitial flow is required only for 
cases where the value of equation (21) is larger 
than the value of equation (20); that is, if 

; > 3.4 n . (22) 

A theory of viscous buckling of multilayers 
was already developed earlier (Biot, 1961) as an 
extension of the single-layer problem (Biot, 
1957). The result is applicable to many geo- 
logical cases of similar folding with large vis- 
cosity contrast and “weak confinement.” 
Under these conditions the incompetent layers 
act primarily as lubricant, and the dominant 
wave length is the same as if only the com- 
petent layers were present. Further justifica- 
tion is provided by the results obtained in the 
present paper that show that a similar situa- 
tion prevails for internal buckling. 

More elaborate theories of multilayered 
viscous folding may be derived by direct ex- 
tension of the approximate methods used by 
this writer to take into account interfacial 
adherence (Biot, 1959). However it has been 
found preferable to develop the second phase 
of this investigation dealing with anisotropic 
and multilayered media by following different 
procedures along two distinct lines of approach. 

One procedure is an analysis of collective 
behavior that uses a simplified formulation for 
the whole system that involves only the sig- 
nificant parameters as exemplified in the pres- 
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ent treatment. The other, developed ex- 
tensively in three separate papers (Biot, 1963b; 
1963c; 1964), is an exact procedure that 
turns out to be relatively simple and leads to 
routine digital computational schemes. This 
opens the way to the treatment of a large 
number of layers of various thickness with 
viscous, elastic, or viscoelastic properties, 
isotropic or anisotropic, including the effect of 
gravity. No restrictions are imposed on the 
thickness to wave length ratio, and it is not 
necessary to distinguish between competent 
and incompetent layers. 

The present theory of internal buckling is 
fundamentally different from a recent dis- 
cussion of folding of multilayered structures 
(Ramberg, 1963) that assumes all deflections 
to be the same and requires the system of 
multiple layers to be separated from the rigid 
walls by two thick slabs of soft material and 
does not provide an expression for the dom- 
inant wave length. This latter problem is very 
close to the case of similar folding of a multi- 
layered structure embedded in a soft medium 
already analyzed previously by a simple 
method (Biot, 1961) that brings out the con- 
trolling parameters. While Ramberg refers to 
“fluid dynamics” his discussion does not 
signify an essential departure from earlier 
methods that are based on approximations in 
the framework of viscoelastic correspondence, 
and lead to results applicable to either viscous 
or elastic materials by a simple change of lan- 
guage. By contrast a genuine and exact theory 
of viscous buckling of multilayered fluids based 
exclusively on fluid mechanics (Biot, 1964) 
leads to equations of a quite different type and 
provides a criterion for the range of validity of 
viscoelastic correspondence when applied to a 
fluid under initial stress undergoing initial 
flow with large deformations. 
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