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The equations of fluid mechanics are applied to the problem of small perturbations upon a finite 
initial strain-rate of a viscous fluid. The magnitude of the viscosity is such that inertia forces are 
negligible. General solutions are developed for the time history of buckling of a fluid with an arbi- 
trary number of layers of different viscosities under finite compressive deformation. The effect of 
gravity is taken into account. Numerical solutions are derived for the single layer. Results are com- 
pared with values obtained from the theory of elasticity and viscoelasticity. The interest of the 
theory lies in its applicat,ion to problems of folding of geological structures. 

1. INTRODUCTION 

T HE theory of stability of multilayered continua 
has been developed by the writer in several 

papers. In particular, for an incompressible medium 
the problem was treated extensively for the em- 
bedded layerl” and for the system with an arbitrary 
number of 1ayers.3’4 Slow motion is assumed so that 
inertia forces may be excluded. The theory is 
rigorously applicable to elastic and viscoelastic 
media initially at rest. Its application to a viscous 
fluid which is initially in a state of flow involves 
an approximation which is valid provided the total 
deformation remains small. 

The purpose of the present paper is to develop 
a theory of stability for incompressible viscous fluids 
which is rigorously valid for a large compressive 
deformation. We assume, therefore, that a small 
perturbation is superposed upon an initial state of 
flow with arbitrary finite strain. 

Sections 2 and 3 derive the time-dependent finite 
strain in a viscous fluid under uniform constant 
stress, and bring out the existence of an apparent 
instability of purely kinematic origin. In Sets. 4 and 
5 it is shown how a perturbation field of a fluid plate 
initially in a state of flow may be evaluated by 
introducing fictitious tangential stresses at the 
boundary. The viscous buckling of an isolated plate 
as a function of time is evaluated numerically. 
In Sec. 6 these results are applied to formulate the 
general differential equations for the time history 
of buckling of a multilayered viscous fluid. The 
effect of gravity is included. The equations are 
applied to the case of a single layer embedded in 
an infinite medium. It is also pointed out that the 
equations are applicable in the general case where 

1 M. A. Biot, Quart. J. Appl. Math. 27, 185 (1959). 
2 M. A. Biot and H. Ode, Quart. J. Appl. Math. 19, 351 

(1962). 
3 M. A. Biot, J. Franklin Inst. 276, 128 (1963). 
’ M. A. Biot, J. Franklin Inst. 276, 231 (1963). 

the initial strain-rate is three-dimensional and time- 
dependent. 

While the mathematical form of the equations is 
fundamentally different from those derived for the 
corresponding theories of elasticity and visco- 
elasticity it is found that the numerical solutions 
become the same as those for the viscous fluid 
when the instability is of significant magnitude. 

The interest of the present theory resides in its 
application to a large class of problems of tectonic 
folding of stratified geological structures. 

2. CONSTANT STRAIN-RATE IN A 
VISCOUS FLUID 

Consider the plane motion of an incompressible 
fluid of high viscosity q. We assume the motion 
to be slow so that the inertia forces are negligible. 
The velocity components v, and v, in the (x, y) 
plane satisfy the NavierStokes equations. 

rlvS, + da/dx = 0, llv%, + aa/ay = 0, (2.1) 
where (r is the negative pressure. Incompressibility 
is expressed by the equation 

av,/ax + av,/ay = 0. (2.2) 
Assuming Newtonian viscosity the stress components 

=zz, uy., and uzU are related to the velocity gradients 
by the equations 

~zz - u = 211 av,/ax, uvv - c = % aday, (2.3) 

CZU = ?7(aa,/ax + aa,/aY). 

A state of uniform constant stress, czz = S,,, 

fl,U = S 221 czs = 0, produces constant strain-rates. 
Combining Eqs. (2.2) and (2.3) these strain-rates 
are found to be 

-av,/aX = av,/ay = p, (2.4) 

with 

PO = p/411, P = s,, - s,,. (2.5) 

Consider x and y to be the coordinates of a fluid 
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FIG. 1. Kinematic instability due to a uniform 
strain-rate. 

particle and i, 9 their time derivatives. Equations 
(2.4) may be written 

--k/x = g/y = p,. (2.6) 

Hence by integration 

x = xoeVPot, y = yOep”“, (2.7) 

with x0, y. representing the particle coordinate at 
t = 0. Considering this flow from the viewpoint 
of finite strain we may define two extension ratios, 

X1 = x/x, = e-pot, XZ = y/y0 = ePot. (2 .S) 

The value P of the stress is the “effective” compres- 
sion. Without loss of generality we may put Szz = 0. 
This is a consequence of the fact that we may always 
cancel S,, by adding or subtracting an over-all 
hydrostatic pressure without altering the mechanics 
of the deformation. 

3. KINEMATIC INSTABILITY 

An interesting consequence of the foregoing result 
is an apparent instability which is of purely kine- 
matic origin. Consider the case of a fluid undergoing 
a plane-strain deformation under a uniform compres- 
sion P = -XI,. A rectangular region of this fluid 
at t = 0 is shown in Fig. 1 (a). We imagine a sinusoidal 
line to be drawn in the fluid along the direction 
of P. After a time t the fluid has been squeezed in 
this direction and the corresponding compressive 
strain is measured by the extension ratio X, = 
exp (-pot). In the direction normal to the com- 
pression the expansion measured by the extension 
ratio XZ = exp (pot). The sinusoidal line has followed 
the motion of the fluid particles and is now com- 
pressed accordionwise in the direction of the com- 
pression and has been stretched in the normal 
direction as shown in Fig. l(b). The stretching is 
proportional to the increasing exponential function 
of timeXa = exp (pot) and exhibits the mathematical 
features of an instability. 

BIOT 

Such instability is of course spurious and of purely 
kinematic nature. It requires a considerable amount 
of compressive strain before it becomes significant. 

4. BOUNDARY CONDITION 

Consider again a plane strain deformation under 
the constant compression P. Let us consider the 
wavy line in Fig. 1 as a bounda;y where the fluid 
medium lies in the region below this line. In order 
to maintain an undisturbed steady flow we must 
apply tangential and normal stresses at the boundary 
as shown in Fig. 2. The x axis is oriented in the 
same direction at the compression P. The ordinate 
of the boundary is denoted by u, and its slope 
o( = du,/dx is assumed to be small. Hence the 
boundary stresses are 

u12 = P du,/dx, Is22 = 0. (4.1) 

Let us superimpose an instantaneous velocity field, 
of components v, and v, at the boundary. This 
produces additional boundary stresses ?I2 and cZ2. 
The total stresses are 

u12 = z12 + P au,/ax, (T22 = L?'22. (4.2) 

The important point about these additional stresses 
is that they are determined entirely by substituting 
the additional velocity field into the Navier-Stokes 
equations (2.1)-(2.3). This is a consequence of the 
fact that these equations are linear and therefore 
the stresses a,, and aza may be evaluated as if the 
fluid were initially at rest and unstressed. 

Consider the x axis to represent a plane of fluid 
particles in the undisturbed steady state. We assume 
the disturbance to be sinusoidally distributed along 
x. The shape of the deformed boundary is 

u, = v cos lx 

and the boundary stresses are written 

(4.3) 

g12 = ~sin lx, ?I2 = ?sin lx, 
(4 *4) 

u22 = qcoslx, a22 = Q cos lx. 

Equations (4.2) become 

- 7=7 

FIG. 2. Normal and 
tangential stresses at 
the boundary. 

PlV, q = 4. (4.5) 

--- 
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The velocity disturbances at the boundary are also 
distributed sinusoidally and written 

v, = U’ sin lx, v, = V’ cos lx. (4.6) 

We now use an important kinematic relation for 
the time derivative 4, of u,. The quantity ti, rep- 
resents the velocity of the fluid particle at the 
boundary measured relatively to the moving x: axis. 
This velocity isequal to 

ti, = IJ, + P,U,. (4 -7) 

The term p,,u, represents the additional velocity 
due to the initial strain rate (2.6). By substituting 
into Eq. (4.7) the sinusoidal distributions (4.3) ‘and 
(4.6), we obtain 

V’ = V - pov. (4.8) 

5. VISCOUS BUCKLING OF A FLUID PLATE 

We now apply the foregoing results to a viscous 
fluid plate undergoing a plane-strain deformation 
under a compressive stress P acting along the axis 
of the plate. The initial thickness of the plate at 
the time t = 0 is h,. (Fig. 3). At the time t the 
thickness has become 

h = h e”“” II * (5.1) 

Consider the plate to have a slight initial waviness 
which is the same on top and bottom and is sinusoi- 
dally distributed along x. This corresponds to a 
plate deformation of the flexural type, hence anti- 
symmetric with respect to its axis. The initial 
wavelength of this deformation is L,. At time t 
the wavelength has become 

L = LOe-*“. (5.2) 

FIG. 3. Buckling of a viscous fluid plate. 

determined by the surface stresses 7 and 4. They 
are obtained by solving the Navier-Stokes equations 
(2.1) for a fluid plate of thickness h initially at 
rest and with the boundary stresses given by (5.4). 

This problem is the same as for an elastic plate 
of incompressible isotropic material free of initial 
stress. The displacements are replaced by the 
velocities and the elastic modulus by the viscosity 
coefficient. The problem was solved in an earlier 
paper.3 For antisymmetric deformation the solution 
is written 

i/q1 = aIIUf + a,,V’, Q/q1 = aIzU’ + a2,V’. (5.5) 

The coefficients are 

a 
4 cash’ y 4r 

I1 = sinh 2y + 2y ’ a12 = -sinh 2~ + 2y ’ 
(5.6) 

a 
4 sinh’ y 

22 = sinh 2-r + 27 ’ 

with a nondimensional wavelength parameter 

y = +lh = ?rh/L. (5.7) 

According to Eqs. (5.2) and (5.3) it is a function 
of time. We write 

The deformation of the upper surface of the plate 
is represented by the sinusoidal distribution (4.3) 

y = &pot, K = ?rh,/L,. (5 3) 

of the ordinate u, of the surface with By introducing the values (5.4) and substituting 

1 = 2?r/L. (5.3) 
P/T = 4p0, Eqs. (5.5) become 

Both V and 1 are functions of time. The z axis 
a,,U’ + aIzV = 4p0V, aIzU + az2V = 0. (5.9) 

is chosen to coincide with the moving but un- We eliminate U’ from these two equations and 

deformed plane boundary of the plate in the initial substitute the value (4.8) for V’. This yields the 

state of steady flow. ordinary differential equation 

The surface in this case is assumed to be free. 
Hence the boundary condition is 7 = q = 0. With 

v/V =’ 4yp,,/(sinh 2y - 27) + pO. (5.10) 

these values Eqs. (4.5) become Since y is a function of time, the integral is obtained - . , 

5 = PlV, cj = 0. (5.4) 
by quadrature. We write 

The stresses ? and d are the stresses due to the 
V/V, = A(t)e”“’ (5.11) 

perturbation velocities at the top boundary. These with 
velocities are sinusoidally distributed and expressed 
by Eqs. (4.6). The values of U’ and V’ are completely s t log A = 4’~” dt 

,, sinh 2y - 2y * 
(5.12) 
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FIO. 4. Stability parameter for a plate derived from 
(1) viscous fluid theory, (2) thin elastic plate theory, and 
(3) the theory of elasticity. 

The initial value of V at t = 0 is denoted by V’, 
[see Fig. 31. 

The amplification factor A(t) represents an 
intrinsic instability. It is superposed on the kinematic 
instability represented by the factor exp (pot). For 
the purpose of comparison with other theories it is 
useful to put 

ACtI = exp (1’ P dt). (5.13) 

We may then write 

2Po p +‘p=211p=2y 1 (sinh 2y - 2~). (5.14) 

The quantity p represents an instantaneous rate 
of amplification of the plate deflection. 

For wavelengths which are sufficiently large in 
comparison with the thickness the value of y is 
small and we may write approximately 

l = &“. (5.15) 

This value is the same as obtained from the Euler 
theory of buckling of a thin elastic plate by re- 
placing the elastic modulus by the corresponding 
operator ~p.~.~ 

The exact value (5.14) of { is plotted as curve 1 
in Fig. 4. The approximate value (5.15) is plotted 
as curve 2. We have also plotted the value of !: 
derived in an earlier paper4 from the exact theory 
of stability of an elastic continuum under initial 
stress and applying the principle of viscoelastic 
correspondence (curve 3). 

It is seen that all three values are practically 

identical for y < 0.3 hence for wavelengths larger 
than about ten times the thickness. 

The intrinsic amplification A(t) may be obtained 
by evaluating the integral (5.12). Since dr = 2po-y dt 
we may use y as variable of integration. We derive 

log A = & F(2K) - $ F(2r) (5.16) 

with 

R4 = +x2 lrn ;*y_ c; , (5.17) 

K = rho/Lo . (5.18) 

The parameter K is the initial value of y. Numerical 
values of the function F(x) are given in Table I. 

TABLE I. Values of P(z) from Eq. (5.17). 

X F(x) X F(x) 

0.10 0.9960 
0.2 0.9868 ::: 

0.8297 
0.7802 

:.: 
0.9739 1.4 0.7297 

0:5 
0.9582 0.6793 
0.9403 ::: 0.6295 

0.6 0.9206 2.0 0.5810 
0.7 0.8994 3.0 0.3694 

0”:: 
0.8770 

::: 
0.2200 

0.8537 0.0410 

Intrinsic Surface Stability of a Viscous Fluid 

The foregoing results may be applied to a viscous 
plate of infinite thickness. In this limiting case the 
probIem becomes one of surface stability of a viscous 
half-space. This case is obtained by putting y = a, 
in Eq. (5.12). We derive 

log A = 0. (5.19) 

Hence when inertia and body forces are neglected 
there is no intrinsic first order instability of the 
surface of a viscous fluid. The amplification in this 
case is reduced to the factor exp (pot), which rep- 
resents a purely kinematic effect. 

This is in contrast with the case of an elastic 
medium or a medium approximately at rest initially 
and purely viscous for incremental deformations. 
In the latter case, which resembles plastic behavior, 
it was shown by the writer that surface instability 
is present? and will cause surface wrinkling. 

6. VISCOUS BUCKLING OF A MULTILAYERED 
FLUID 

We first consider an isolated layer of thickness h. 
We again assume a deformation sinusoidally dis- 
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tributed along the axis but this time it is not re- 
stricted to the case where it is antisymmetric across 
the thickness. Hence both flexure and variation in 
thickness of the layer are taken into account. 

We must consider values at both top and bottom 
surface of the plate for the applied stresses r and p, 
the perturbation stresses Y and g, the perturbation 
velocities U’ and V’ and the normal displacement 
V. We attach a subscript 1 to the variables at the 
top face and a subscript 2 for the variables at the 
bottom face. 

The four perturbation stresses +I, ql, ?2, and & 
are due entirely to the perturbation velocities U:, V:, 
Vi, and V; at the two faces. The relation between 
these quantities has been derived in a previous 
paper in the‘ context of the theory of elasticity.3 
It may be immediately extended to the case of a 
fluid by replacing the elastic modulus by the viscos- 
ity coefhcient and the displacements by velocities. 
We must introduce the six coefficients 

A = +<a,, + L), D = +(a,, - b,,), 

R = 4(%2 + b,,), E = +(a,, - b,,), (6.1) 

c = +(a,, + L), F = +(a,, - b,,). 

The values of a 11, alz, and uz2 were already given 
by Eqs. (5.6). The other three coefficients were 
derived earlier.3 They are 

b 

11 
= .4sid2r 

smh 2-y - 2y ’ 
b,, = 7 4r 

smh 2y - !& ’ 
(6.2) 

b 22 = _ 4 cosh2 Y 

sinh 27 - 27’ 

We also introduce a quadratic function I of the 
four perturbation velocities. We write 

I = $A(U:’ + U;“) - DU:U: 

+ $C(ly + Vi”) + Iv:v: 

+ B(U:V: - U:V:) + E(U:V; - U:.V:). (6.3) 

Relations between perturbation stresses and veloc- 
ities may then be expressed in very compact form, 
as shown in some previous papers.3’4 These relations 
are 

aI 
7, = 17)--i, 

aI 
au, .f2= -lr]-7, 

au2 
(6.4) 

QJ = 1T $i , 
1 

q2 = -l/17 gi. 
2 

From Eq. (4.5) the applied stresses are 

FIG. 5. System of n fluid layers with initial 
compressive stress Pi. 

7’1 = I~$$- PlVl, T2 = -117 $$i - PlV,, 

1 2 (6.5) 

Q2 = 17 $$i , qz = -17 
1 

-$. 
2 

Consider now a system of n layers (Fig. 5). The 
layer numbered j has a thickness hi, a viscosity vi, 
and an initial stress Pi. We denote by the subscript 
j the values of velocities and stresses at the top 
face of this layer and by the subscript j + 1 the 
values at the bottom face. The quadratic function 
Ii attached to the layer j is obtained from Eq. (6.3) 
by writing subscripts j and j + 1 instead of 1 and 
2, and replacing y by yi = +lhi in the values of 
the coefficients. We now equate the stresses T and 
q in two adjacent layers j and j + 1 at an interface. 
We find 

If the layers are embedded between two viscous 
half-spaces we consider them as layers of infinite 
thickness denoted by the subscripts 0 and n + 1. 
Putting y = ~0 the quadratic functions representing 
the halt-spaces are drastically simplified to 

I, = 2(U:” + V:“), I,,, = 2(U:2,, + Vi”,,) (6.7) 

Still more compact expression for the equation are 
obtained by using the total quadratic form 

(6.8) 

Equations (6.6) are then written 

aojau;,, = (Pi+, - Pi)Vj+, %/aV:+, = 0. (6.9) 

From Eq. (4.8) the value of V; is 

v: = P, - p,vj. (6.10) 

By substituting these values into Eqs. (6.9) they 
become a system of 2n + 2 linear differential 
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equations with the time derivatives v’i for the 
2n + 2 unknown Vi and Vi at the n + 1 interfaces. 

The case where the stack of layers is free at one 
end or both is derived by putting either q,, = 0, 
or r],,+, = 0, or both, in the equations. 

Note that by Eq. (2.5) we may also write 

pi+1 - Pi = 4PO(Vi+l - Vi)* (6.11) 

Integration of the linear system (6.9) yields the 
time history of viscous buckling of the multilayered 
fluid. The coefficients of the equations are those 
of the quadratic functions Ij. They are functions of 
time through the variables 

yi = $lhi = Ki$Pot, (6.12) 

where ~~ represents the value of &lhj at the time t = 0. 
The effect of gravity on the stability may be 

added by using exactly the same method as in the 
case of elastic media which amounts to using an 
analog model, replacing the effect of gravity by 
interfacial buoyancy forces.4 If 
gravity forces, Eqs. (6.9) become 

$7 = (pj+l - Pj) Vi+_, * + 
!+I 1+1 

we include these 

89 ~ = 0, (6.13) 
al/-j+, 

where 

(6.14) 

pi is the density of jth layer, and g is the acceleration 
of gravity. Further simplification of these equations 
is obtained by introducing variables ;j bi through 
the relations 

Vi = bjePot, ui = fijepof. (6.15) 

We derive 

V: = JYcii - pOVj = &e”‘*. (6.16) 

By substituting these values in equations (6.13) the 
factor exp (pot) cancels out. They become 

83’ 
- = (Pi+1 - pi)&+, _d”’ = --. 6’ 
d&+1 dbj+l %+I 

(6.17) 

The quadratic form 4’ is obtained from g by replacing 
U; and Vi by ii and ii. Similarly $j’ is obtained 
from $j by substiOuting bj instead of Vi. The new 
variables ui and bi represent the intrinsic instability 
since the factor exp(p,t) corresponding to the 
kinematic effect has been eliminated. 

Analog Model 

Attention is called to the physical significance 
of Eq. (6.17). They correspond to an analog model 

where the interfacial velocities ii and ii are the 
same as for a fluid at rest in a given instantaneous 
configuration under the action of tangential and 
vertical forces represented by the right side of 
Eqs. (6.17). 

Single Embedded Layer 

As an example consider a single layer of thickness 
h viscosity q and stress P embedded between two 
fluid half-spaces of viscosity q1 and stress P,, (Fig. 6). 

h 

FIG. 6. Layer embedded in an infinite 
medium. 

The buckling is of the flexural type. Gravity forces 
are neglected. Using Eqs. (4.5) with the values (5.5) 
for ? and q we derive for the stresses at the top 
face of the layer 

7 = ql(allU’ + al*V’) - PIV, 
(6.18) 

q = ql(a,,U’ + azaV’). 

On the other hand the stresses in the upper half-space 
at the interface are obtained by considering the 
bottom surface of a layer of infinite thickness. This 
amounts to putting y = ~0 and changing the sign 
of q and U’ in Eq. (6.18). We derive 

i-= -2rj,lU’ - P,lV, q = -27,lV’. (6.19) 

Equating the values (6.18) and (6.19) for the stresses 
at the interface we find 

(rich + 2dU’ + rlalpV’ + (PI - P)V = 0, 
(6.20) 

v&u + (11um + 277,)V’ = 0. 

As in Eq. (6.15) we put 

V = benot, U’ = fie”Q” (6.21) 

Substitution in Eq. (6.20) yields 

(w%, -I- 2~)it + vu,& i- (PI - P)b = 0, 

rlwi + (wk + 277dl; = 0. 
(6.22) 

By eliminating u we derive the value of the intrinsic 



VISCOUS BUCKLING OF 

amplification factor A. We write the result in the 
form 

r = P/%P p = b/t, = ii/A (6.23) 

The stability parameter is 

r = 2y(l 
1 
_ n) [(l + n2) sinh 2r 

+ 2n cash 27 + (n2 - 1)2-y]. (6.24) 

It is a function of y = +lh and of the ratio of vis- 
cosities 

n = P/P = v1/q2. (6.25) 

For large viscosity contrasts and large wavelengths 
(n << 1, y < 1) we find the approximate value 

l = h” + n/r (6.26) 

This is the same as the value derived by applying 
the Euler theory of buckling of thin elastic plates 
neglecting interfacial friction and replacing the 
elastic moduli P and P, by the corresponding op- 
erators up and q,p.ls5 

The value of y for which p is a minumum defines 
the “dominant” or buckling wavelength. It is 
defined as the wavelength whose amplitude increases 
at the fastest rate.’ 

For large compressive strain we derive 

log A = S,‘pdl = ly$ (6.27) 

This expression yields the intrinsic amplification A 
as a function of time. 

6 M. A. Biot, Proc. Roy. Sot. (London) A242, 444 (1957). 
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Generalization to Three-Dimensional and 
Variable Initial Strain-Rate 

In the foregoing analysis it was assumed for the 
sake of simplicity that the initial strain-rate is 
constant and two-dimensional. However the results 
may be readily extended to more general conditions 
provided we retain the assumption that the perturba- 
tion remains two-dimensional. 

For three-dimensional initial strain-rate in the jth 
layer we write 

Pi = 822 - As% = 2TL(p, + pg, 

where the finite strains are 

(6.28) 

X1 = ew [-I’ r-d(t) dt], 1, = exp,[ J,’ p&> dt]. 
(6.29) 

The strain-rates p, and pA may now be arbitrary 
functions of time. The value of yi is 

yi = K&X;’ = Ki eXp 

[I 
ot f& + ~6) dt 1 (6.30) 

and expression (6.11) is replaced by 

Pi+1 - pi = %%+I - %xPo + P@, (6.31) 

which is now a function of time. 
With these definitions the differential equations 

retain the same form as for the case of two-dimen- 
sional and constant initial strain-rate. 

In the absence of gravity forces, attention is called 
to the possibility of simplifying the differential 
equations by using X,X;’ as independent variable 
instead of the time. This was already illustrated 
by Eqs. (5.16) and (6.27). 
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