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Introduction

HE behavior, after the initiation of melting, of a slab
insulated on one side and subjected to heat input (constant or
varying with time) on the other, has been studied analytically by
several workers (1, 2, 3]2 in the past. Citron [4] in 1959 has de-
veloped the method of successive approximation to study this
problem under constant physical properties. He further applies
Galerkin’s method to study the problem when the properties of
the material vary linearly with temperature. The recent work of
Biot and Daughaday [5] on ablation for the material of constant
properties deals with the application, to such problems, of the
variational and Lagrangian thermodynamics developed earlier
[6,7]. A remarkable agreement with the exact solution of
Landau [1] is obtained.

The purpose of the present work is to show that the applicabil-
ity of the Lagrangian equations is not restricted to the study of
ablation for constant properties. The most complex temperature
dependency of the properties of the material, on the other hand,
can be taken care of by this method, avoiding heavy computa-
tional work hitherto needed in analytical solutions. The method
also permits one to account for the heating history prior to melt-
ing. The temperature distribution and the rate of melting are
found. A numerical example for a class of ceramic materials
represented by Alumina (Al,0:), whose conductivity is com-
prised of the phonon and photon conductivities, is solved and
comparison is made with the constant conductivity case.

Formulation of the Problem

Consider one-dimensional heat conduction in a semi-infinite
cylinder of unit cross section (Fig. 1) whose thermal conduc-
tivity is a function of temperature and the heat capacity is con-
stant. The face at y = 0 is heated at a constant rate B per unit
area, while the face at ¥y — « behaves as an insulated surface.
If heating continues long enough, the face at y = 0 reaches the
melting temperature and melting commences. It is assumed that
the liquid is removed immediately on formation. Let s(¢) denote
the position at time ¢ of the face which was initially at y = 0, so
that § is the melting rate of the solid. Let g(¢) be the penetration
depth up to which the heat effect due to R reaches. Time ¢ is
measured from the start of melting. The equations describing
the process are

1 The Research reported herein is a part of a Cornell Aeronautical
Laboratory Internal Research Project on Lagrangian methods in
Thermodynamics. Dr. Agrawal’s work was performed while in resi-
dence at Cornell University as a Research Associate in the Graduate
School of Aerospace Engineering.

2 Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division and presented at the
Winter Annual Meeting, Philadelphia, Pa., November 17-22, 1963,
of THE AMERICAN SocieTY oF MECHANICAL ENGINEERS. Manuscript
received at ASME Headquarters, September 13, 1963. Paper No.
63—WA-207.

distribution and the melting vate are found. The results are compared with the constant-

Variational Analysis of Ablation for
Variable Properties

The application of variational and Lagrangian thermodynamics is extended to problems
of heat conduction with melting boundaries. The physical properties of the conducting
material are considered to be temperature dependent.
Alumina (AL0s) representing a class of ceramic materials for which the effective con-

In particular, the material
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R = the rate of heat flow into the slab +
the rate of heat removal by the
melted material

at y = s(¢f) (4b)

Variational Procedure

~ In order to apply the variational method to the foregoing
problem, the following transformation is useful:
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where k,, is the conductivity at the melting temperature 6.
This represents the physical mapping of the system by a model
where v is the model temperature. The equations (1)-(4a) re-
duce to

(5a)
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Fig. 1 Ablation of a cylinder in half space
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y = s(t) (9)

The problem can now be solved as if 4 were the temperature dis-
tribution, and (¢/f(8)) the heat capacity per unit volume as a
function: of (u/u,,), the constant thermal conductivity being k,,.
The reasons for using u are:

(a) Even if the heat capacity ¢ is temperature-dependent, the
parameter ¢/k(6) is the only experimental function needed. It
can be represented by one single curve.

(b) Since the straight line is the exact time-independent solu-
tion for the steady-state nonablating case d%/dy* = 0, it is nat-
ural to assume that a smooth-curve approximation for u is also a
good approximation for the transient case.

The equation (6) may be expressed as
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Recalling some of the general results in reference [7], we define

My, u) = fou cF(t)du = cu,, j:)r F(r)dr

WY, 8) = Up,

k = cF(r) %:—, T = u/u, (6a)

(10)

= the total heat acquired by the unit volume.
tion is defined as

A density func-

By, h) = fo ¥ F(ryudu = cuy? fo Frydr  (11)
The thermal potential is given by
V = SE(y, h)dy (12)

Lagrangian heat-low equations are obtained in the familiar form
(6, 7]
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Solution of the Problem
Assume a cubic profile for the model temperature u:
— 3
T = ufu, = <1 -4 8) (14)
q
or
T=1{ §=(1—y—s) (15)
q
The heat content k can be represented as
b= ounelr),  pr) = [ R (16)
The density function becomes
E = cu®(r), B(r) = fo " rF(r)dr (an)
The thermal potential is given by
' + +
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The heat flow per unit area in the y direction is denoted by H and
is obtained as

+q +
H= f; hdy = cu,,.j: qgo('r)dy

3 Integral is evaluated numerically-.
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The condition H = 0 at ¥ = s + ¢ has been used. The rate of
heat flow is given by

H= —;— cun gV (r) + —; Climq ¥ (1) (23)
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The dissipation function becomes
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The thermal force at the surface is
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L4=

[ RS

1
Y(7)|yms = 2 f (1 — r'/9F(r)dr = 2X(1) (82a)
0

The Lagrangian equations to give a relationship between the
velocity of movement of the melting face, i.e., § and the penetra~
tion distance g, is
dV oD
T+ =0

33
og od (33)

4 Numerical integration is performed after integrating by parts.



Substituting V, D, and Q from (20), (28), and (32), we get

k
glLs$ + 2Lsg] = f (Ls — N) (34
The second equation relating the two variables § and ¢ is obtained
from the fourth boundary condition; viz.,
The quantity of heat supplied in time ¢

= the heat absorbed by the body to reach the melting tem-
perature

+ that required to melt the distance s in time ¢

-+ that used to heat the body a distance ¢

This gives

Rt = (L 4+ ¢0,)s + f:-'_q cldy (35)

1
R o= (L+ )8+ cbile Lo = [ 0/0.d5 (30)
where 8/0,, is represented as a function of u/u,, and L is the
latent heat.  Simultaneous solution of the equations (34) and
(36) gives
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Assuming that a steady state is achieved, we have ¢ = 0 at the
steady state. Hence (37) yields

= ¥L + ¢b,,) I:l

L= 521 4 o0, (39)

Qst = Lz R

In order to nondimensionalize the equations (37) and (38), the
following quantities are defined:

A = 2L3 [1 _ LstcB,n ]
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The parameter A can always be expressed as
2L3 Qoo L2L5 00,,,
A=—"—(0 — Qu), = s 22 m (4
- T = T Tt Y

where gq 18 the initial penetration depth, giving zero initial melt-
ing rate (3(0) = 0) and is evaluated from the equations (34) and
(36). The equations (37) and (38) in the nondimensional form
become

10% L e-n=0

p (42)
ﬁ _ (Ls — N) _ ;Q_Q
4 " Il = Q) (1 Q) (43)

5 Since ®(7) < ¢(7) we note that N < L.

Solution for Penetration Distance
The solution of equation (42) is given by

Q-1 1
(Q—QoH-log,Qo_1 =7

£ (44)

where @ = @, is the initial penetration distance at £ = 0 and can
be obtained by the Lagrangian analysis of the period prior to
start of melting. The solution for small times is expressed as

L 1-
Q= Q-+ 40, £ (45)
- 1 — qo/gm ke

q=q + Ag . t (45a)

For the particular case when @y = Qu, equation (44) reduces to

-1 -1
@~ Qu+log o7 = =

(46)

Note that the steady-state solution is represented by @ = 1.
The physical solution must tend toward this steady state when £
tends to infinity. The differential equation (42) shows that thisis
possible only if A > 0. This implies also Qy < 1. Under these
conditions there are two possible types of solutions of equation
(42), depending on whether the value of @ lies above or below the
horizontal asymptote @ = 1, Fig. 2. However, if we assume that
the rate of heating R is the same before and after melting, the
initial penetration depth g, will be smaller than the steady-state
value ¢ and only the solutions for which @ < 1 will appear. This
property is readily verified for the case of constant parameters and
it seems justified to extrapolate it for variable conductivity.
From equation (43) a positive melting rate also implies the condi-
tion Q > Q.

Curve (a), Fig. 2, stands for @ < 1(q, < g < gst) and the curve
(b) for @ > 1(go > g > gat). The dotted portion of the curve (a) is
not an acceptable part of the solution because this holds for the
negative values-of ¢, which has no physical meaning. The ex-
tended parts of the curves (a) and (b) for £ < 0 are useful in the
sense that the same curves may be used for different values of Qo
just by an appropriate shifting of the origin. This can easily be
shown analytically.

The Melting Rate

Using equations (39) and (43) we get the nondimensional melt-

ing rate
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Fig. 2 Solution of equation (44) for the penetration distance
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The initial melting rate is given by
: Qn 1]
S0) =1+ —— - =
O =140 60 [1 @ (49
and from equation (47)
Smin = Oy Q = QOO (50)

The Melting Rate for Small Times

Using the equation (45), the melting rate for small times is ob-
tained as

$ = 1 _ qoo/qo
(1 — Quw) 1+ (I — qo/gus)(km/c)? t T (cO)?
Agy? tm 4 R?

(51)

where the time ¢ has been nondimensionalized with ¢, (t,,. =
T km (c0n)*
4 ¢ R?

of constant conductivity to its melting temperature.
If Qo = Quo, the expression (51) reduces to

Landau [1]) the time required to bring the material

1 1
S=—— W - (52)
(1 — Qu) 1+Gt‘t‘

m

where

G = 7I'L3/2L52(L4 - N)

Relation Between /A and ¢/¢,,

Equations (39), (40), and the definition of ¢,, are used to find
the relation between £/4 and ¢/1,,.

t_cgd £
tn Ky tn A
_ 8Ly(Ly — N)

— <1 +5) (1= QuiE/a (53)

where the quantity m is defined as

m = ﬁ 0_0._,, (Landau) [1]

2 L (64)

Numerical Example

The previous analysis is applied to carry out investigations for
the material Alumina (Aly0;) which represents a class of dielec-
tric materials. The temperature dependence of phonon condue-
tivity in dielectric solids is given by

4

B+T (55)

kphonon =
It has been noticed, however, that in addition to the vibrational
energy in solids, a much smaller fraction of the energy content
results from higher frequency electromagnetic radiation energy.
This fraction, while usually negligible, becomes important at
high temperatures because it is proportional to the fourth power
of temperature. The energy per unit volume of the black body
radiation at temperature 7' is given by

E; = 40n3T4/c (56)

The volume heat capacity corresponding to the energy necessary

O

Spectral absorption coefficient a, (cm™)

o'O|0 i 2 3 4 5

Wavelength ()

Fig. 3 Absorption coefficient for single crystals (Al;O;) at different
wavelengths and temperatyre levels.

to raise the temperature level of this radiation is

oF

- = a3 57
&= Sr 160n3T3/c (57)

where o is the Stefan-Boltzmann constant (1.37 X 10~12 cal em ™2
sec~ ! deg K—*), c is the velocity of light (3 X 10% ¢cm sec™!), n the
refractive index, and the velocity of this radiationise = ¢/n. The
radiant energy conductivity or the photon conductivity is ob-
tained as

1 16
k, = — cpvl, = 3 onT¥, =

1
— 2Ts, —
3 3 on®T p

(58)¢
where [, is the photon mean free path and « the absorption co-
efficient, which depends on the temperature and the wavelength.
The expression (58) may also be derived by using Rosseland ap-
proximation for the radiant flux vector explained in reference [9].
The combined conductivity of a dielectric material is, therefore,
given by

A 160n2T3.
B+ T 3a

k= kphonau + kphown = (59)

Lee and Kingery [10, 11], in recent years, have performed many
experiments to study the behavior of conductivity with respect to
temperature, of many ceramic materials. The study on thermal
conductivities of Al,0;, BeO, and MgO by Mecquarrie [12] in
1954, predicts a correlation

A

k= — -5 10 %6 110
T——125degK+8 X 107% X

(60)

The second term on the right-hand side denotes an increase in the
phonon conductivity by the passage of radiant energy through
the translucent specimen and differs from the theoretical expres-
sion (59) which depends only on the third power of the tempera-
ture. However, for practical purposes, the above correlation
may be very useful until further, more accurate, experimental
results are made available.

The validity of the concept of thermal conductivity to represent
radiative energy transfer in solids depends on the magnitude of
the photon mean-free-path (I, = 1/a) as compared with the dis-
tance over which the temperature varies appreciably. According
to Wien’s law the major part of the energy at 2000 deg K lies in a
range of wavelength around 1p — 2u. Fig. 3, Lee and Kingery
[8], shows that for Alumina the photon mean-free-path in this
range is of the order of 0.1 em. Hence the use of the thermal
conductivity coefficient for this case appears to be justified.

¢ For detailed description see reference [8].
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We make use of the expression (60) for the present study. For =2 = 03334 + 10-2(u/tms) — 9+ 5%/ Um, ) (62)
Alumina, it is given by k(8)

16-2

k= —7""——
T — 125deg K

+ 8-5 X 107% x T
(valid up to 1800 deg C) (61)

Curve I (Fig. 4) shows the plot of conductivity versus temperature
up to melting temperature 2050 deg C of AL;O;. The dotted line
from 1800 to 2050 deg C extrapolates an approximate behavior of
k in this range. Curve I, Fig. 5, is the corresponding behavior of
k../k(8) versus u/u,, which is drawn using the values calculated
in Table 1.

The parabolic curve II, Fig. 5, is analogous to curve I, Fig. 5,
and satisfies the conditions for initial, extremum, and final con-

ductivities. It is introduced for the purpose of comparison’
and is expressed by

7In many cases it is possible to represent the variations of k¥ quite
accurately by a parabolic approximation.

where m, corresponds to the melting temperature 8,, and =

0m
f If]%o—) df. The plot of conductivity versus temperature using

[1] m
equation (62) is shown by the curve 11, Fig, 4.

The integrals (20), (31), (32), and (36) are evaluated numeri-
cally for the actual curve I, Fig. 5, for the analogous case by using
(62) and for the constant conductivity case (k = k,,). The values
of the quantities Ly, Ls, L4, Ls, and N are obtained (Table 2).

Table 2
Actual Parabolic Constant
curve I, curve II, conductivity,
Fig. 5 Fig. 5 k= km

Ly 0.0904 0.3876 11/112
Ls 0.01096 0.0580 1/56
Ly 0.4840 0.9886 1/2
L; 0.1720 0.2190 1/4
N 0.2132 0.3610 1/7



These values are used in calculating the melting rates, equation
(47), and the penetration distances, equation (46), for the three
different cases.

Also, the parameters L,L;/2L;, equation (40), Qu, equation
(41); A, equation 41; and @, equation (52) which are useful in
obtaining results for small times are calculated for the three cases
{Table 3).

Table 3
Actual Parabolic Constant
curve I, curve II, conductivity,
Fig. 5 Fig. 5 k= kn
LoLy/2Ls 0.709 0.7569 11/16

Qoo 0.1307 0.1397 0.1267

(e] 2.15 2.92 1.257

A 0.07036 0.1535 0.08733

Results

Expression (39) for the penetration distance at the steady state
may be rewritten as

kc—"' (L + cbn)
61 [3 = R

Its value for the three cases is calculated and the nondimensional
penetration distance Q is expressed as

(63)

ductivity case
variable k, actual curve I (Fig. 5)
-------- variable k, parabolic curvell (Fig.5)
Qo #Qoo —e3636
~—s2997
----=1619
Fig. 6 Penetration distance versus time
Q = £ _ d (actual case, curve I, Fig. 5) (64)
Qst 2.9978
= —1—5@ (parabolic case, curve II, Fig. 5)
= g (constant case, & = k)
3.6368

Using equation (46) and Table 3, the values of g/8 have been
plotted against the nondimensional time £, Fig. 6, for Qo = Qu
andm = 0.2. Itisnoticed that

g £ q
< ;3 )conlunt case > ( ﬂ )actual case > ( B )pa.rabolic case

at any finite time and also at the stationary state. On the other
hand, looking at Fig. 4, we see that the effective conductivity ket

the effective conductivity is some kind of mean of the conduc-

tivity, for example, it may be approximated by the quadrature
Jk(8)df
b

ie.,

in the three cases, is also arranged in the same order,

(kAfl)comtantcne > (keff)wtual onse > (koff)pnnbolic case

08" y mx/_zi Cn = 0:2
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Fig. 7 Nondimensional melting rate versus nondimensional time

Hence, the smaller the effective conductivity, the smaller is the
penetration distance. This is physically true, because if the effec-
tive conductivity is the smaller, heat will penetrate only to the
smaller distances to warm the material and more heat is absorbed
by the surface itself. It is also expected, therefore, that the
melting rates at finite times should be greater under this cir-
cumstance.

The equations (48), (44), (54), and (55) and Table 2 are used
to calculate the melting rates for the three cases discussed above,
for two different initial values of S and for a particular value of
0.2 of the parameter m. These have been plotted in Fig. 7
against the nondimensional time ¢/¢,. Since the melting rate is
defined as S = §/5y, all the curves approach unity as an asymp-
tote. The melting rates at definite times are arranged as

Soonltenc case < Sactun,l sase < Sparabolic cage

the reason for which has already been explained. The constant
conductivity case may be considered as a first-approximation
treatment. The parabolic approximation for calculating the
values of $ may be accepted as a good second approximation and
it furnishes the order of correction to the values of S obtained in
the constant-conductivity case.
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