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Introduction 

Variational Analysis of Ablation for 
Variable Properties’ 
The a#cation of variational and Lagrangian thermodynamics is extended to problems 
of heat conduction with melting boundaries. The physical properties of the conducting 
material are considered to be temfierature dependent. In particular, the material 

Alumina (AhOJ representing a class of ceramic materials for which the effective con- 
ductivity ksff = kphonon + kphoton is subjected to above treatment and the temperature 
distribution and the melting rate are found. The results are com$ared with the constunt- 
conductivity case. 

1 HE behavior, after the initiation of melting, of a slab 
insulated on one side and subject,ed to heat input (constant or 
varying with time) on the other, has been studied analytically by 
several workers [l, 2, 3]* in the past. Citron [4] in 1959 haa de- 
veloped the method ,of successive approximation to study this 
problem under constant physical properties. He furt,her applies 
Galerkin’s method to study the problem when the properties of 
the material vary linearly with temperature. The recent work of 
Biot and Daughaday [5] on ablation for the material of constant 
properties deals with the application, to such problems, of the 
variational and Lagrangian thermodynamics developed earlier 
[6, 71. A remarkable agreement with the exact solution of 
Landau [l] is obtained. 

The purpose of the present work is to show that the applicabil- 
ity of the Lagrangian equations is not restricted to the study of 
ablation for constant properties. The moat complex temperature 
dependency of the properties of the material, on the other hand, 
can be taken care of by this method, avoiding heavy computa- 
tional work hitherto needed in analytical solutions. The method 
also permits one to account for the heating history prior to mele 
ing. The temperature distribution and the rate of melting are 
found. A numerical example for a class of ceramic materials 
represented by Alumina (A&O& whose conductivity is com- 
prised of the phonon and photon conductivities, is solved and 
comparison is made with the constant conductivity case. 

Formulation of the Problem 
Consider one-dimensional heat conduction in a semi-infinite 

cylinder of unit cross section (Fig. 1) whose thermal conduc- 
tivity is a function of temperature and t’he heat capacity is con- 
stant. The face at y = 0 is heated at a constant rate R per unit 
area, while the face at y + ~0 behaves as an insulated surface. 
If heating continues long enough, the face at y = 0 reaches the 
melting temperature and melting commences. It is assumed that 
the liquid is removed immediately on formation. Let s(t) denote 
the position at time t of the face which was initially at y = 0, so 
that S is the melting rate of the solid. Let p(t) be the penetration 
depth up to which the heat effect due to R reaches. Time t is 
measured from the start of melting. The equations describing 
the process are 

1 The Research reported herein is a part of a Cornell Aeronautical 
Lsboratory Internal Research Project on Lagrangian methods in 
Thermodynamics. Dr. Agrawal’s work was performed while in resi- 
dence at Cornell University as a Research Associate in the Graduate 
School of Aerospace Engineering. 

f Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, Philadelphia, Pa., November 17-22, 1963, 
of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript 
received at ASME Headquarters, September 13, 1963. Paper No. 
63-WA-207. 

; k(e); = c+, II 1 s(t) < y < a, t > 0 (1) 

a8 
by = 0, t>o (2) 

,4/-m 

i(O) = $0 (3) 

&Y, 0 = e, (4a) 

R = the rate of heat flow into the slab + 
the rate of heat removal by the 

at Y = s(t) (4b) 

melted material 

Variational Procedure 
In order to apply the variational method to the foregoing 

problem; the following transformation is useful: 

where k, is the conductivity at the melting temperature 0,. 
Thii represents the physical mapping of the system by a model 
where u is the model temperature. The equations (l)-(4a) re- 
duce to 

a2U c au 
km G = f(B) -g s(t) < y < -, t > 0 (‘3) 

d(0) = &J 

cylinder in half-space 

--s(t) ~-q(ct, - 

Fig. 1 Ablation of a cylinder in half rpoce 



‘u(Y, t) = UP”, y = s(t) (9) 

The problem can now be solved as if u were the temperature dis- 
tribution, and (c/f(0)) the heat capacity per unit volume as a 
fun&ion of (U/U,), the constant thermal conductivity being k,, 
The reasons for using u are: 

(a) Even if the heat capacity c is temperature-dependent, the 
parameter c/k(B) is the only experimental function needed. It 
can be represented by one single curve. 

(b) Since the straight line is the exact t.ime-independent solu- 
tion for the steady-state nonablating case CPu/dy~ = 0, it is nat- 
ural to assume that a smooth-curve approximation for u is also a 
good approximation for the transient case. 

The equation (6) may be expressed as 

k, -!$ = d’(7) $, 1 
!(e) = F(T), I- = u/u, (6~) 

Recalling some of the general results in reference [7], we define 

h(u, u) = J=o” CF(T)dU = CU, Jo7 F(r)d7 (10) 

= the total heat acquired by the unit volume. A density func- 
tion is defined as 

E(y, h) = j=” cF(r)udu = cu,,,) so’ ~F(r)dr (11) 

The thermal potential is given by 

V = f E(Y, h)& (12) 

Lagrangian heat-flow equations are obtained in the familiar form 
I6171 

g+g=Qi 
, * 

Solution of the Problem 
Assume a cubic profile for the model temperature ZL: 

T = U/U,,, = (1 _ y)” 

or 

(13) 

The heat content h can be represented as 

h = cu.&~), (P(T) = s 
or F(T)dr 

The density function becomes 

E = CU,~‘(T), @P(T) = $d TF(T)dT 

The thermal potential is given by 

(16) 

(17) 

v- s a+q 
Edy = CU,,,~ ‘+’ %(T)dy (18) 8 s 8 

= g cu,,,aN 
2 (19) 

S 
1 1 

C*/‘+(~)d~ = 2 S T(1 - #)F(r)d~ (2o)a 
0 0 

The heat flow per unit area in the y direction is denoted by H and 
is obtained as 

H= s e+fl 
hdy = cu.,, 

?I s S+P 
4r)dv 1/ (21) 

\k(~) = ’ C*++)dr (22) S 0 
The condition H = 0 at 1~ = s + q has been used. The rate of 
heat flow is given by 

Ii = + %,Q\k(T) + $ cu,q\k(7) 

l&P =__ q d7 13.r2'V - ?“)fj + 3r2/%] 

Hence 

X(7) = 
{ 

f q’(T) + (1 - @)P(7) 
1 

The dissipation function becomes 

D = 2+ 
s 

S+P 
riady 

* 8 

where 

S 
s+q [X%p + 2x$.@ 

8 

(24) 

(27) 

= S 71 - r’/‘)F(T)d T 
0 

c%l,~ 
=- 

k c (28) 
m 

+ +W& 

Q l g-v* =- s [ 2 0 

+ QW + $ XQ@ + a X%jZ 
1 

(29) 

Therefore, 

D = ‘Fe+ [L# + L&j + L&al 

where the coefficients are 

La = f S 
1 r--=hX~& 
0 

The thermal force at the surface is 

(30) 

(31)' 

Q = &‘,= = ‘$ L, (32) 
8 

L4 = ; \k(r)j,, = 2 c 
1 

(1 - +)F(T)d7. = 2X(l) (32a) 
a Jo 

The Lagrangian equations to give a relationship between the 
velocity of movement of the melting face, i.e., d and the penetra- 
tion distance q, is 

g+a$=Q (33) 

8 Integral is evaluated numerically. 4 Numerical integration is performed after integrating by parts. 



Substituting V, D, and Q from (20), (28), and (32), we get 

q[M + 2&p] = ? (L, - N) (34)s 

The second equation relating the two variables S and q is obtained 
from the fourth boundary condition; viz., 
The quantity of heat supplied in time t 

= the heat absorbed by the body to reach the melting tem- 
perature 

+ that required to melt the distance s in time t 
+ that used to heat the body a distance q 

This gives 

Rt = (L + c&&7 + Jaa+* c&y (35) 

R = (L + ~8,)s + cO,,/jLs, L, = s o1 e/e,dc (36) For the particular case when Q0 = Qw, equation (44) reduces to 

where e/e,,, is represented as a function of u/u, and L is the 
latent heat. Simultaneous solution of the equations (34) and 
(36) gives 

qa k 

‘.a? 
[ 

l- 
L,Lsce, 

: (LI - N) 
2w + ce,) 1 

J 

= 1 (37) 

k, 1 Ls(L4 - N) 
R - cem - - 

L$L,ce, 

c !? 2L 
= S(L + ce,) I - 

C 2w+~e,) 1 
(38) 

Assuming that a steady state is achieved, we have P: = 0 at the 
steady state. Hence (37) yields 

CL4 - Iv)? (L + c&J (39) 

$4 = 
L,R 

In order to nondimensionalize the equations (37) and (38), the 
following quantities are defined: 

2La 
A=(L*-N) l C 

s =I 
!-lot 

L3Lsce, 
2L3(L -t Gem) 11 

c-w 

, 
The parameter A can always be expressed as 

2L 
A = (L, - N) 

(1 - &cd, Qw = E = ‘$ (L f”ce (41) 
a * m 

) 

where qw is the initial penetration depth, giving zero initial melt- 
ing rate (9(O) = 0) and is evaluated from the equations (34) and 
(36). The equations (37) and (38) in the nondimensional form 
become 

dQ 
A&z+&?-1)=0 

dS -= 
4 

6 Since @(T) < (p(7) we note that N < L. 

(43) 

Solution for Penetration Distance 
The solution of equation (42) is given by 

Q-1 
(Q - Qo) + log, Q. _ l = - A ‘i (44) 

where Q = Qo is the initial penetration distance at [ = 0 and can 
be obtained by the Lagrangian analysis of the period prior to 
start of melting. The solution for small times is expressed as 

Q=Qo+yt 
0 

n=qo+ 1 - qo/q.r k2 t 
Aqo c 

(45a) 

Q-1 
(Q-Qw)+logaQw_l = -A 

. ‘t (46) 

Note that the steady-state solution is represented by Q = 1. 
The physical solution must tend toward this steady state when [ 
tends to infinity. The differential equation (42) shows that this is 
possible krly if A > 0. This implies also Qw < 1. Under these 
conditions there are two possible types of solutions of equation 
(42), depending on whether the value of Q lies above or below the 
horizontal asymptote Q = 1, Fig. 2. However, if we assume that 
the rate of heating R ia the same before and after melting, the 
initial penetration depth qo will be smaller than the steady-state 
value qst and only the solutions for which Q < 1 will appear. This 
property is readily verified for the case of constant parameters and 
it seems justified to extrapolate it for variable conductivity. 
From equation (43) a positive melting rate also implies the condi- 
tion Q > QW. 

Curve (a), Fig. 2, stands for Q < l(qo < q < q,t) and the curve 
(5) for Q > l(q0 > q > qst).. The dotted portion of the curve (a) is 
not an acceptable part of the solution because thii holds for the 
negative values;of Q, which has no physical meaning. The ex- 
tended parts of the curves (a) and (5) for 6 < 0 are useful in the 
sense that the same curves may be used for different values of QO 
just by an appropriate shifting of the origin. This can easily be 
shown analytically. 

The Melting Rate 
Using equations (39) and (43) we get the nondimensional melt- 

ing rat.e 

S=-$ ($-&--$) (47) 

Fig. 2 Solution of equation (44) for the penetration distance 
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Fig. 5 

We make use of the expression (60) for the present study. For 
Alumina it is given by 

k 
16.2 

E 7’ - 125 deg K 
+ 8.5 x 10-36 x PO 

(valid up to 1800 deg C) (61) 

Curve I (Fig. 4) shows the plot of conductivity versus temperature 
up to melting temperature 2050 deg C of A1203. The dotted line 
from 1800 to 2050 deg C extrapolates an approximate behavior of 
k in this range. Curve I, Fig. 5, is the corresponding behavior of 
&,/k(0) versus u/u,, which is drawn using the values calculated 
in Table 1. 

The parabolic curve II, Fig. 5, is analogous to curve I, Fig. 5, 
and satisfies the conditions for initial, extremum, and final con- 
ductivities. It is introduced for the purpose of comparison7 
and is expressed by 

7 In many cases it is possible to represent the variations of k quite 
accurately by a parabolic approximation. 

8’0 k 

0 10946 .3334 0 

27 .09257 (394 2.714 

127 . ?589 .6196 10.037 

227 .0432 .8449 15.063 

327 .0341 1.07 18.893 

427 .0281 1. 295 21.989 

527 .024 1.520 24.386 

627 SO209 1.746 26.825 

727 .0185 1.970 28.792 

827 .0166 2.193 30.547 

927 .0151 2.414 32.133 

1027 ,0139 2.,626 33.582 

1127 .0129 2.818 34.923 

1227 .0123 2.970 36.182 

1327 .0119 3.060 37.388 

1427 .0120 3.040 38.580 

1527 .Oli7 2. 870 39.809 

1627 .0143 2. 54 41.153 

1727 .0173 2.105 42.721 

1800 .02077 1.757 44.106 

1827 .02125 1.717 44.674 

1927 .0269 1.357 47.081 

2027 .03475 1.050 50.164 

2050 .0365 1.000 50.983 

0 

.053 

. 196.8 

.2954 

.3705 

.4313 

.4822 

.5261 

.5647 

.5991 

.6301 

.6587 

.685 

.7097 

.7333 

.7567 

.7808 

,8072 

.8379 

.8651 

.8762 

.9234 

.9839 

1.000 

k 
2 = 0.3334 + ~o.~(u/u,,) - 9’54(u/u,,)” 
k(8) 

(62) 

where ZL,“~ corresponds to the melting temperature 6, and = 

S en, k( 0) 
- de. 

0 km 
The plot of conductivity versus temperature using 

equation (62) is shown by the curve II, Fig. 4. 
The integrals (20), (31), (32), and (36) are evaluated numeri- 

cally for the actual curve I, Fig. 5, for the analogous case by using 
(62) and for the constant conductivity case (k = k,). The values 
of the quantities &, 4, G, Ls, and N are obtained (Table 2). 

Actual 
curve I, 

Fig. 5 

Tablo 2 

yzPp$c 

Fig. 5 ’ 

constant 
conductivity, 

k = km 
L2 0.0904 0.3876 
L3 0.01096 0.0560 
L4 0.4840 0.9336 

H/112 

:R” 
;> 8:Ei 0.2190 114 

0.3610 1/7 



These values are used in calculating the melting rates, equation 
(47), and the penetration distances, equation (46), for the three 
different cases. 

Also, the parameters LsL,/2L3, equation (40), Qw, equation 
(41); A, equation 41; and G, equation (52) which are useful in 
obtaining results for small times are calculated for the three cases 
(Table 3). 

Table 3 

Actual ;ar;:o; constant 
curve I, conductivity, 
Fig. 5 Fig. 5 ’ k = k, 

L2LGtLa 
0.709 0.7569 11/16 
0.1307 0.1397 0.1267 

41 
2.15 2.92 1.257 
0.07036 0.1535 0.08733 

Results 
Expression (39) for the penetration distance at the steady state 

may be rewritten as 

Ld - N 
qai = --jJ-- P, B = 

: (L + c&&) 

R (63) 
2 

Ite value for the three cases is calculated and the nondimensional 
penetration distance Q is expressed as 

-conttont conductivity case 

-variable k. actual CWYO I (fig. 51 

-----.--variable k, parabolic cwveU (Fig.51 

04 =a.. -3.636 

3- -2997 

-----I.619 

-constant conductttl 

-riaMs k, curve I 

-------“&b&h,ecf.$~~ 

I IO 100 lpoo lop00 
t/t. - 

Fig. 7 Nondimensional melling rate versus nondimensional Me 

Hence, the smaller the effective conductivity, the smaller is the 
penetration distance. This is physically true, because if the effec- 
tive conductivity is the smaller, heat will penetrate only to the 
smaller distances to warm the material and more heat is absorbed 
by the surface itself. It is also expected, therefore, that the 
melting rates at finite times should be greater under this cir- 
cumstance. 

The equations (48), (44), (54), and (55) and Table 2 are used 
to calculate the melting rates for the three cases discussed above, 
for two different initial values of .!? and for a particular value of 
0.2 of the parameter m. These have been plotted in Fig. 7 
against the nondimensional time b/t,,,. Since the melting rate is 
defined as 3 = i/&t, all the curves approach unity as an asymp- 
tote. The melting’rates at definite times are arranged aa 

Soonlt&os.s < s 80 & “al* hl 1 < Sparabolic case 

the reason for which has already been explained. The constant 
conductivity case may be considered as a first-approximation 
treatment. The parabolic approximation for calculating the 
values of 3 may be accepted as a good second approximation and 
it furnishes the order of correction to the values of 3 obtained in 
the con&a&conductivity case. 

“0 0.025 0.05 
E- 

0.1 

Fig. 6 PenetraCon distance VB~SUI time 

QL&_-“- 

I 2.9978 
(actual case, Curve I, Fig. 5) (64) 

Q 
=ix$ 

(parabolic case, curve II, Fig. 5) 

P 
==p 

(constant case, k = km) 

Using equation (46) and Table 3, the values of q/P have been 
plotted against the nondimensional time 4; Fig. 6, for Qo = Qw 
and m = 0.2. It is noticed that 

at any finite time and also at the stationary state. On the other 

hand, looking at Fig. 4, we see that the effective conductivity k.ff 

( 
the effective conductivity is some kind of mean of the conduc- 

tivity, for example, it may be approximated by the quadrature 
.&We 

&?I > 
in the three cases, is also arranged in the same order, 

i.e., 

(keff)comtanteaae > (ksffhat oue > (ksff)p.rabolioeaas 

12 Malcolm McQuarrie, “Thermal Conductivity VII: Analysis 
of Variation of Conductivity With Temperature for &OS, Be0 and 
MeO.” Journal American Ceramic Societv. vol. 37. 1954. DD. 91-95. ._ II _. 
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