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ABSTRACT: The internal instability of anisotropic viscoelastic media under initial stress 

is investigated in analogy with the phenomenon of internal buckling in elasticity by 

applying the author’s principle of viscoelastic correspondence. The spreading of a dis- 

turbance in a medium of infinite extent is analyzed. A numerical solution is derived which 

describes the time history of an initial perturbation in a purely viscous anisotropic 

medium in compression and confined between parallel boundaries. It is shown that the 

system acts as a high-pass filter on perturbations of various wavelengths. In the range 
of significaat instability the solution obtained by viscoela.stic correspondence from the 

theory of elasticity is found to be applicable as an approximation to a viscous anisotropic 

jluid initially in a state of jlow. An exact and independent treatment of the latter case is 

derived for comparison. 

1. Introduction 

In a previous paper (1) we have shown that an elastic medium confined by 
rigid boundaries and under initial stress may exhibit an instability referred to 
as internal buckling. It was established that there are two types of internal 
buckling which we have proposed calling internal instability of the first and 
second kind (2). The former may occur only in a material of intrinsic anisotropy. 
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A similar internal instability is to be expected in viscoelastic media. In 
particular we are concerned here with a phenomenon analogous to the internal 
instability of the first kind. Hence we consider a viscoelastic medium of ortho- 
tropic anisotropy under an initial compression acting along one of the axes of 
symmetry. 

The problem is analyzed by applying the principle of viscoelastic corre- 
spondence first established by the author in 1954. By this principle the elastic 
solution is applicable to viscoelasticity. This correspondence is rigorously valid 
when the undisturbed medium is at rest under the initial stress (2). 

In the next section the elastic solution is briefly recalled. The viscoelastic 
medium of infinite extent is analyzed in section 3 showing the existence of a 
fan-like region of characteristic directions wherein disturbances spread out 
gradually. 

A different type of phenomenon is examined in section 4 by considering a 
medium confined between two rigid boundaries parallel to the direction of the 
compression. An initial disturbance of simple distribution is assumed and the 
redistribution and amplification is evaluated as a function of time. The analysis 
has been carried out numerically for the particular case of a medium which is 
purely viscous for incremental deformations and may be considered as repre- 
senting a certain type of plasticity. If the medium is at rest when undisturbed 
under the initial stress, the principle of viscoelastic correspondence applies 
rigorously and the analysis is exact for this case. However, the result also 
provides a good approximation where initial flow is present. It may be par- 
ticularly applied to an anisotropic viscous fluid and the analysis is carried in the 
context of this approximation. The validity of the approximation is confirmed 
by an exact analysis of the anisotropic fluid in section 5. 

The problem of internal instability of a viscous medium between rigid 
boundaries brings out a physical feature of particular interest. Because of the 
confinement, disturbances of large wavelengths are restrained and the ampli- 
fication will be restricted to the shorter wavelength components. The system 
therefore behaves as a filter. Hence in a qualitative way we may speak of a cut- 

off wavelength. The gradual appearance of an oscillation in the unstable dis- 

turbance is typical of such filtering and shows up in the numerical analysis in 

section 4. 

As an example of anisotropy we also consider a thinly laminated medium 

constituted by an alternation of hard and soft layers. However, to treat this 

material as a continuous medium is an approximation valid only if the layers 

are very thin compared to the wavelength of the disturbance. Further elabora- 

tion on this problem will be found in (2) and (3). 

2. General Equations 

Consider an homogeneous incompressible medium of orthotropic sym- 

metry. The deformation is restricted to one of plain strain defined by two dis- 

placement components u and v in the 2, y plane. The strain is defined by 

66 Journal of The Franklin Institute 



Internal Instability of Anisotropic Media 

and the local rotation by 

_;(g_$). (2) 

Incompressibility is expressed by the condition 

e,, + eyll = 0. (3) 

The x and y directions are assumed to be axes of symmetry for the physical 
properties. The medium is under initial stress with principal stresses along 
x and y equal to Xii and i&z. The deformation Eq. 1 generates stress increments 
SIX, ~22 and 512 referred to local coordinate axes which are rotated with the 
medium through the angle w. The equilibrium conditions for the incremental 
stresses are (1, 2) 

with 
P = s22 - &I. 

(4) 

(5) 

If Sz2 = 0, a positive value of P represents a compression in the x direction. 
For an elastic medium we have shown (1, 2) that the stress-strain rela- 

tions are 

811 - s = 2Ne,, 

822 - s = 2Neyy 63) 
s12 = 2&e,. 

In previous work (1) we have also considered two other elastic coefficients 
defined as 

M=Nf$P 

L = Q + +P. (7) 

The physical significance of M is obtained by considering an initial compression 
P along x and an incremental tensile force t 11 in the same direction per unit 
initial area. Then 

h = 4Me,,. (8) 

The other coefficient L which we have called the slide modulus, is derived by 
considering tangential forces Azv applied on the free faces of a strip of material 

Vol. 279, No. 2. February 1965 67 



M. A. Biot 

cut along x. The shearing deformation is given by 

A,, = 2Le,,. (9) 

For a viscoelastic medium the stress-strain relations are formally identical to 
those of the elastic medium and are obtained by replacing the elastic coeffi- 
cients by operators. The general validity of this correspondence principle for 
isotropic and anisotropic media was derived by the author in 1954 in the con- 
text of thermodynamics. It was also shown that suitable elastic coefficients 
must be chosen in order to satisfy thermodynamic principles (2, 4). In this 
case suitable coefficients are M and L. The corresponding operators are written 

jp= 
/ 

m P - M(r)& + M + pM’ 
0 P+r 

i;= J O” P - L(r)& + L + pL', 
0 PST 

(10) 

where all quantities M(T), M, M’ and L(r), L, L’ are non-negative. The symbol 
p denotes the differential operator 

d 
p=dt’ (11) 

where t is the time variable. The significance of these operational expressions 
is illustrated by the simple example 

P 
p+’ ezz = I t r(t-T)dezz(7) 

0 e- (12) 

which represents an exponential heredity function. We may also put p equal 
to a real or complex quantity. In this case the operators become algebraic 
quantities and correspond to solutions proportional to the factor exp(pt). 

In the discussion of internal instability for the elastic case (l), we investi- 
gated solutions represented by a displacement field of the type 

u = CKsin lxsin S 
lh h 

v = c cos lx cos Ty 
h' 

This identical solution is given in Eq. 7.3 of (1) except for the trivial difference 
resulting from a translation along x. The displacement field Eq. 13 contains an 
arbitrary amplitude factor C, and satisfies condition Eq. 3 of incompressibility. 
This was found (1, 2) to satisfy Eqs. 1, 2, 4 and 6 provided 

The variable .$Y is 

P = Lt4 + 2(2M - L)12 + L. (14) 

d: p=;=2h. 
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The field Eq. 13 may be looked upon as a mode of internal buckling of wave- 
length b: along x and wavelength 2h along y. It may represent the behavior of a 
medium of infinite extent along characteristic directions as discussed in section 
3 or the case of a confined medium between two frictionless rigid walls sepa- 
rated by a distance h as discussed in section 4. In both cases the medium is 
under an initial compression P in the x direction. 

For a viscoelastic medium the same solution is valid except that the con- 
stant C must be multiplied by the exponential factor exp(pt). By viscoelastic 
correspondence the characteristic Eq. 14 becomes 

P = L$4 + 2(2iiz - _E)k2 + E. (16) 

This is a relation between the wavelength G and the parameter p. Hence it 
determines the exponential rate of growth of the displacement field U, v for 
any given wavelength. 

An anisotropic continuous medium may be considered to approximate the 
properties of a material constituted by thin layers of alternating rigidity. The 
limitations of this approximation were discussed in (2, 3). The approximation 
is valid if the layers are sufficiently thin relative to the wavelength of the 
deformation field. The elastic coefficients for a thinly layered elastic medium 
were derived in (1). The result is immediately extended to viscoelastic media 
by the correspondence principle. Assume the layers are made of two different 
materials, one characterized by the operators i@,E, and occupying a fraction 
cy1 of the total thickness, the other characterized by the operators a&n and 
occupying a fraction a2 of the total thickness. By definition we have the 
relation 

(Y1 + (Y2 = 1. 

The operators of the composite medium are then 

M = ff1Ml-t c&f2 

(17) 

&-_L 
F + y‘ 

1 2 

(1% 

Specific examples of composite media will be discussed. The initial compressive 
stresses in a direction parallel to the layers are denoted by PI and PZ respec- 
tively in each material. Hence, 

P = CQP, + CizPp 

is the average initial stress in the composite medium. 

(19) 

3. Internal Instability of a Viscoelastic Anisotropic Medium 

We shall discuss the instability for a particular type of viscoelastic me- 
dium. Let the material be made of thin laminations, the layers being alter- 
nately elastic and viscous. Assume that the layers are extremely thin, rela- 
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tive to the wavelengths of the deformation field, so that the material behaves 
as a continuous medium of anisotropic properties. The initial stress is carried 
entirely by the elastic layers. We denote the elastic material by the index 1 
and the viscous material by the index 2. Hence PZ = 0 and the average com- 
pressive stress in the composite medium is 

P = culP1. 

The moduli of the elastic layer are denoted by MI and L,. Hence, 

(20) 

iif1 = M, 

11 = L1. 
(21) 

The properties of the viscous layers are assumed to be those of a Newtonian 
fluid of viscosity 7 represented by the operators 

ii?, = z, = qp. (2% 
Applying Eqs. 18, the operators for the composite medium are 

M = %Ml+ azvp 

LW.-L.-. 

Ql 
L+g 

(23) 

Let us put 

Hence, 

(~&?1= M 
azq = M’ 

Lll~l = L, 
(YZLI 
- = T. 
fflll 

a = M + M’p 

L = --E- L,. 
?J+r 

(24) 

(25) 

The operators D and z represent respectively a Kelvin type and Maxwell 
type model. 

Write the characteristic Eq. 16 in the form 

1 
4iiz _- p42 - 

(1 _ 4”)2 = 4. (26) 

After inserting expressions Eq. 25 for ii? and z and assuming f is given, Eq. 26 
determines the corresponding value of p. The properties of the roots p are 

easily derived by plotting both sides of Eq. 26 as a function of p. The right 
hand side is a hyperbola with vertical and horizontal assymptotes represented 
by curve (a) in Fig. 1. The left hand side is a straight line (b) with a negative 
slope which always intersects the hyperbola at two points A and B. Hence the 
two roots for p are real in conformity with a general theorem established 
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I r I 

‘(a.1 

FIG. 1. Graphical construction for the roots p of Eq. 26. 

in (2, 5). Figure 1 shows that there is never more than one positive root. 
However, there may be no positive roots. The limiting case is obtained by 
putting p = 0 into Eq. 26. This yields 

or 

1+2=0 (27) 

P Pl 
E2=qnl=m (28) 

This result is interpreted as follows: as already shown in (l), 5 determines a 
characteristic direction. The existence of characteristics is also illustrated by 
writing the solution Eq. 13 as a sum of trigonometric functions. For example, 
we write 

cos lx cos y = 4 cos Z(x + .$y) + 4 cos Z(x - Ey). (29) 

Hence Eq. 28 determines two limiting directions .$ = =t $dP,/Ml of the 
characteristics in which the rate of growth of the deformation vanishes. In 
other words, the deformation can only propagate with characteristics whose 
angle in the normal direction of the layers is smaller than 

B = tan-‘[$zjP1/M1]. (30) 

An initial disturbance will spread only inside a sector area limited by two 
characteristic directions with an inclination of angle 8, as illustrated in Fig. 2. 

Examine the value of p for a characteristic direction which is normal to the 
layers. This value is obtained by substituting f = 0 in Eq. 26. The equation 
becomes 

P = L. (31) 
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/ \. t 

1/ 
FIG. 2. Spreading of a disturbance due to internal instability of a 

viscoelastic anisotropic medium. 

Solving this equation for p yields 

This normal characteristic direction will generally correspond to the maximum 
value of p. In this case a disturbance will tend to propagate in a direction 
normal to the layers. 

It is theoretically possible for p to be maximum in characteristic directions 
which are oriented symmetrically relative to the normal direction. This occurs 
when the left hand side of Eq. 26 increases with 5 in the vicinity of i =O, 
i.e., if 

4&?/P < 2. (33) 

This inequality may be written 

2M + 2M’p < P. (34) 

Since the elastic modulus M is generally larger than P the inequality Eq. 34 
will be verified only in exceptional cases. 

We have analyzed here a particular example illustrating internal instability 
of a viscoelastic medium. However, the qualitative features derived from this 
example will also be exhibited by viscoelastic media of a more general type. 
This is due to the property of expressions Eq. 10 for the operators J7 and L of 
being increasing functions of p. This property is a consequence of thermody- 
namic principles. 

4. Internal Instability of a Viscous Anisotropic Medium 

The general equations are rigorously applicable to a medium which is at 
rest when undisturbed under the initial stress, and purely viscous for incre- 
mental deformations superimposed in this initial state. Such a case may be 
considered to approximate certain types of creep and plastic behavior. The 
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corresponding operators are 

&! = M’p 

L= L’p. 
(35) 

These represent a particular case of the general operators Eq. 10 in which only 
purely viscous terms are retained. The coefficient M’ is a viscosity coefficient 
for an incremental tensile stress tn in the 5 direction. In this case the stress- 
strain relation Eq. 8 becomes 

t =~M’de,, 
11 

dt ’ (36) 

Similarly, the stress-strain relation Eq. 9 becomes 

A 
al 

= 2L’ d+ 
dt * (37) 

Hence L’ is a viscosity coefficient for a tangential stress parallel to the x 
direction. 

As previously stated, substitution of the operators into the characteristic 
Eq. 16 provides an exact solution for internal instability if the undisturbed 
medium is initially at rest. 

However, the results in this case are also applicable as an approximation 
to an anisotropic viscous fluid where the undisturbed initially stressed state 
is one of uniform flow, and the fluid is of such high viscosity that the inertia 
forces are negligible. Therefore, we shall treat the problem in the context of 

the anisotropic fluid. The validity of this approximation will be discussed in 
the following section by comparison with an exact treatment for the case of a 
fluid. 

An anisotropic fluid may also be considered as representing approximately 
the properties of a medium constituted by very thin alternating layers of 
viscous isotropic fluids of different viscosities. As established in preceding 
sections, this approximation is valid only for layers which are very thin in 
comparison with the wavelengths of the deformation field. The viscosities of 
the alternati ng layers are denoted by q1 and v2 and we assume that they occupy, 
respectively, fractions 011 and a2 of the total thickness. In this case operators 
for the two materials are 

El = iv, = q1p 
E, = iiz, = qzp. 

(3% 

Applying Eqs. 18, the two viscosity coefficients of the composite material are 
derived by 

M’ = ~~171 + a2772 
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This yields the coefficients in the operators Eq. 35. Substituting Eq. 35 into 
the characteristic Eq. 16, we obtain 

gp = 54 + 2 2M’ (L’ ++1. (40) 

This is a relation between p and E. 
Before proceeding further consider carefully the physical significance of this 

result. Since we are discussing a viscous fluid under a compressive stress P the 
medium is initially undergoing a deformation with uniform strain-rate, see 
Fig. 3. While being shortened in the x direction it is expanding laterally by the 
same amount. At a certain instant t = 0 the distance between the parallel 
boundaries is h. If the deformation remained uniform there would be a dis- 
placement field corresponding to this deformation but no incremental stress. 
The field Eq. 13 of the present theory represents the perturbation superposed 
upon the uniform strain-rate solution. The amplitude of this perturbation is 
proportional to the amplification factor exp(pt). According to relation Eq. 15 
the value of 5 in Eq. 40 defines the wavelength along 2 of an initial perturba- 
tion. The amplitude of this perturbation will grow exponentially at a rate de- 
fied by the value of p as determined by Eq. 40. In the numerical analysis it is 
convenient to introduce a nondimensional time scale. Consider an interval of 
time such that the overall shortening in the x direction is about 10 per cent. 
The time tl required for this amount of shortening is determined by the 
equation 

where we put 

Hence 

Ptl = - 4iWe,,, 

e,, = - 0.1. 

(41) 

(42) 

tl = 0.4 g = 0.4R ;, 

where 

(43) 

(44) 

is a measure of the viscous anisotropy. Using Eq. 40 and introducing the 
reference time tl we derive 

,t=z; (45) 

with 

Z= 
0.4Rz4 

24 + 2(2R - l)?r2z2 + r4 

s=lh=21:-2A 
t- C’ 

(46) 

The amplification factor at time t for any initial disturbance sinusoidal along 
x is exp(pt) = exp(Zt/tJ. 

The exact theory is based on the assumption of a constant value of h and 6:. 
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When applying the theory to a medium in a state of initial flow, h and d: will 
vary slightly during the deformation. To take this into account we may re- 
place .$ by an average value. As shown in the next section this amounts to using 
for h the initial value and for d: the final value. 

Consider the case R = 10. For small wavelengths the value of z tends to 
infinity and 2 takes the limiting value 2 = 4. _4t the time t = tl, i.e., for an 
overall compressive strain of about 10 per cent the amplification factor for 
small wavelengths is, 

exp(2) = exp(4) = 54.6 (47) 

which increases very rapidly for t > tl. 

For large wavelengths the value of x tends to zero and the amplification 
factor tends to unity. Therefore the system acts as a high pass filter with a cut- 
off wavelength proportional to the distance h between the two rigid boundaries. 
In addition this cut-off wavelength also depends on the anisotropy and tends 
to become smaller when R = M’/L’ is increased. 

In order to bring out the filtering effect we shall evaluate the internal 
folding by considering a medium which is initially disturbed from perfect 
uniformity. The initial disturbance is assumed to be a vertical displacement 
field 

b 
v= 

1+ z 0 
2 cos z 

h (43) 

This initial disturbance is illustrated schematically in Fig. 3. We introduce the 
Fourier integral representation 

v = ba cos g 
/ 

m 
h o 

exp (-la) cos lx dl. 

Y 

(49) 

FIG. 3. Initial disturbance in viscous anisotropic medium under an initial 
compression P between confining boundaries. 
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As can be seen this expression represents a superposition of solutions of the 
type Eq. 13. After a time t each elementary solution is multiplied by exp(pt). 
Hence, the time history of the displacement v on the x: axis (for y = 0) is 
given by 

v&r) = ba 
/ 

co 
exp (Pt - la) cos lx dl. (50) 

0 

This integral may be written 

(51) 

It is a function of x/h which contains three parameters t/tl, a/h and R. At the 
origin (x = 0) the displacement ~~(0) is given by 

(52) 

Since b is the maximum initial amplitude of the disturbance (at x = 0 and 
t = 0) the ratio v,(O)/b represents the amplification at the time t. 

Four numerical cases have been evaluated. These cases and the corre- 
sponding values of the amplification v,(O)/b are shown in Table I. 

TABLE I. Amplification factor v0 (0)/b of the disturbance at x = 0. 

a/h R t/t, v. (0)/b 

Cme 1. l/25 5 1.0 3.75 
Case 2. l/25 10 1.0 13.2 
Case 3. l/25 15 1.0 52.3 
Case 4. l/25 10 1.5 68.8 

Significant amplification appears only for Cases 3 and 4. This indicates that 
internal folding will not become appreciable unless the degree of anisotropy 
is sufficiently large. This requires the value of R to be larger than about 10 to 15. 

The shape of the folding is given by Eq. 50 and is represented in Fig. 4 for 
the four cases listed in Table I. The initial disturbance represented by the 
bell-shaped curve is transformed into an oscillatory folding which is consider- 
ably sharper. This is to be expected since the system acts as a high-pass filter 
and tends to amplify the shorter wavelengths. 

5. Internal Instability of a Viscous Anisotropic Fluid Undergoing 
Finite Strain 

The previous analysis is rigorous when the medium is at rest in the state 
of initial stress. When this is not the case the result is still applicable as an 
approximation. In order to examine this point and establish the range of 
validity of the correspondence principle we shall derive a rigorous treatment 
for the case of an anisotropic fluid under initial stress. It is assumed that the 
fluid is incompressible and of sufficiently high viscosity that inertia forces may 
be neglected. 
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FIG. 4. Curve i = shape of initial disturbance (t = 0) given by the equation v/b 
= l/Cl + (~/a)~]. Curves 1, 2, 3, 4 = shape of the folding for the corresponding cases of 
Table I. 

As an example of fluid anisotropy consider again the case of a laminated 
medium constituted of very thin alternating layers of two different isotropic 
fluids of viscosities q~ and 72 occupying respectively fractions (~1 and (~2 of the 
total thickness. In directions parallel to the laminations the properties of the 
fluid are defined by two viscosity coefficients given by Eqs. 39, 

As previously indicated such a layered material behaves as a continuous 
anisotropic medium only under the assumption that the layers are very thin 
compared to the wavelength of the deformation field. 

Consider first a particular instant where the layers are oriented along the x 
direction, and denote by vz and vy a two-dimensional velocity field at that 
instant. The stress is given by 
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(54) 

Incompressibility implies the additional equation 

Em + t&y = 0. (55) 

For constant principle stresses Sll = czz, A& = cVU, (CT~ = 0) the strain-rate 
is constant and uniform 

- E,, = E,, = s224; AL = g_ = p,* 
n n 

The velocity field corresponding to this uniform strain rate is now per- 
turbed by a small additional velocity jield which we denote by the same notation 
v, and v,. The perturbed strain-rate components are 

&z = - PO + 2 

6 uu =p.+$ (57) 

2& =s+dv, 
ZY ax ay * 

The layers have also rotated through a small angle cp. Let x’, y’ be a coordinate 
system rotated through the same angle and denote by uzz’, uUU’, azy’, E,,‘, 
& yy’, ET*’ the stress and strain-rate components referred to these rotated axes 
see Fig. 5. To the first order in cp we write for the strain-rate components 

and for the stresses 

ox. = uzz 
, 

~YY = U’YY 
I (59) 

czy = (um’ - UII,‘) $0 + uzy’. 

On the other hand Eqs. 54 remain valid for the rotated axes, hence 

I 
uzx - u = 271,Ezz’ 

%Y’ - u = 2?l,EW’ 

uzy’ = 2?ltEzu’. 
(60) 
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FIG. 5. Stresses in an anisotropic fluid referred to rotated axes. 

From Eqs. 58, 59 and 60 we derive 

uzz - Is = 2%&z 

Gull - g = 2%&&J, (61) 

flzu = 2(% - 17t)(L - EYJP + 2qtkW 

Note that in the last equation by using the values Eqs. 57 we may write ap- 
proximately to the same order, 

(Em - bQ P = - 2p,(P. (62) 

Equations 61 relate the stress to the strain-rate in terms of components re- 
ferred to fixed axes x and y. 

In addition we must satisfy the condition of equilibrium of the stress field 
namely 

while the condition of incompressibility Eq. 55 is verified by putting 

w vx = ay 
w 

II,= --. ax 

(63) 

(64) 

It is easy to eliminate all variables except # and cp between Eqs. 61, 63 and 64. 

Vol. 279, No. 2, February 1965 79 



M. A. Biot 

Keeping only first order terms we find 

This equation may be expressed in terms of v, by taking its partial derivative 
with respect to x and taking into account Eqs. 64, we obtain 

Note again that this equation governs the distribution of the velocity com- 
ponent v, and of the slope cp at any particular instant as functions of Jixed 
coordinates x, y. Consider now the unperturbed finite flow of the fluid under the 
stresses &I, Szz. With a suitable choice of origin a fluid particle originally of 
coordinates X, Y at t = 0 will acquire at time t the coordinates 

x = Xe-Pot 

y = YePot. 
(67) 

When the system is perturbed, the y coordinate of a particle may be repre- 
sented as 

yl = [Y $ v(X, Y, t)]ePot (6% 

its x coordinate is denoted by x1. The component ~~(2, x, y) of the perturbation 
velocity at the point xlyl and the time t is 

vu (t, 21, ye) = QI - p,yl = tiepot. (69) 

The dot denotes the partial derivative with respect to the time for X and Y 
constant. To the first order the perturbation velocity at the point xlyl is the 
same as the perturbation velocity vu(t, x, y) at the point xy. Hence 

vY(t, 2, y) = tiepot. (70) 

Also to the first order the slope cp at the point xy is 

av 
Pot 

‘P=dxe * 

Substitution of Eqs. 70 and 71 into Eq. 66 yields 

(71) 

+ 4P0(% - lit) 
> 

= 0. (72) 
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Assume a sinusoidal distribution of incremental displacement analogous to 
expression Eq. 13, namely 

Y 
v = b cos 1,x cos n- - = b cos lx cos % 

ho h (73) 

This corresponds to a confined medium illustrated in Fig. 3 with 1 = I, exp (pot) 
and h = h, exp (pot). We derive 

b = il cos lx cos ny 
h’ 

Substitution of Eqs. 73 and 74 into Eq. 72 yields 

with 

(74) 

(75) 

Note that ,$ is a function of time, hence also p. Therefore, a simple quadrature 
yields the time history of the small perturbation b while the medium undergoes 
any amount of jinite compresive strain. Actually when the compressive strain 
is not too large, say 10 per cent, the value of 4 may be replaced by a constant 
average value 

(77) 

Hence we may use the initial value h, of h and the final wavelength d: = 2n/l 
at time t in order to describe the result in terms of constant parameters. 

We put L’ = qt and M’ = qr and assume that the anisotropy is large 
enough for significant instability to occur, hence we assume qn/qt > 10. In 
that case the values of p given by Eqs. 40 and 75 are approximately the same. 
The factor 1 - (qt/qn) corresponds to a slight correction in the time scale. 
This verifies our assumption that the numerical solution of section 4 is valid 
as an approximation for a viscous fluid if the instability is significant. 

It is interesting to note that according to Eq. 75 the perturbation is stable 

for i > 1, i.e., for characteristic directions which lie at an angle less than 45” 

with the x direction. It also means that the large wavelengths are stable. This 

behavior is not shown by Eq. 40. However, the difference occurs only in the 

range of small values of p where it does not appreciably affect the result. 

Note that for an isotropic fluid (qn = qt) the instability vanishes, as should 

be. Equation 75 is also valid in the complete range of the ratio qn/qt and may 

be discussed in analogy with the elastic problem as developed in (1, 2). 
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