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THEORY OF SIMILAR FOLDING OF THE 

FIRST AND SECOND KIND 

Abstract: It is shown that in the initial phase there 
are two basic types of similar folding of multi- 

other. The dominant wave length obtained in fold- 

layered structures, referred to here al folding of 
ing of the second kind is the same as derived 

the first and second kind. denending on the oreva- 
pr&iously (Biot, 1961) assuming the incompetent 

lence of over-all flexure or hear. K simple Lory 
layers to act as lubricants. In folding of the first 

brings to light the underlying mechanics and the 
kind the system behaves approximately as a single 

controlling parameters which govern these two 
layer (Biot, 1957; 1961). The same theory solves 

types of folding and the transition from one to the 
at the same time the problem of folding of a single 
anisotropic layer. 

Introduction 

A structure composed of alternating compe- 
tent and incompetent layers exhibits a collec- 
tive behavior when undergoing folding. In the 
present analysis we shall consider similar fold- 
ing defined by the property that approximately 
the folded layers differ only by a vertical trans- 
lation (Van Hise, 1896). In the initial phase of 
the deformation two types of similar folding 
may be distinguished. In one type where the 
viscosity contrast between layers is small the 
structure behaves like a single anisotropic plate 
in bending; in the other type the incompetent 
layers tend to act as lubricant and the collective 
deformation resembles a shear buckling. These 
two types are referred to here as similar folding 
of the first and second kind, respectively. As 
indicated in the last paragraph they are not re- 
stricted to small deformations. 

We have considered the folding of a multi- 
layered structure embedded in a soft medium. 
The questions which naturally arise are: what 
are the controlling parameters that determine 
the type of folding? How does the transition 
occur from one type to the other, and what are 
the significant parameters which govern the 
dominant wave length in each case? Our pur- 
pose is to answer these questions quantitatively 
and develop a simple theory which brings to 
light in intuitive form the fundamental me- 
chanics underlying the characteristic behavior. 

Similar folding of the second kind of multi- 
layered structure was already analyzed in a 

previous paper (Biot, 1961), and a very simple 
expression for the dominant wave length was 
obtained which is in complete agreement with 
the present more sophisticated analysis. 

The results presented here developed in the 
context of multilayered structure are equally 
applicable to the folding of a single anisotropic 
layer. The folding of such a layer is governed 
by the approximate equation (11). It is in ex- 
cellent agreement with the exact theory de- 
veloped in a previous paper (Biot, 1963b). 

Equilibrium Equations for the Collective 
Buc@ng of a Multilayered Structure as a 
Single Plate 

Consider a plate of thickness h under axial 
compressive stress P and a normal load q per 
unit length. The normal deflection is denoted 
by v (Fig. 1). The x axis coincides with the 
axis of the plate. Equilibrium of a deformed 
cross-sectional element of thickness dx implies 
the following equations: 

dbnl 
-_=y( 

dx 

(1) 

where 311 denotes the bending moment and x 
the total shear over the cross section. Equations 
(1) are immediately derived by inspection of 
Figure 1. They have also been derived as a 
rigorous consequence of the general mechanics 
of continuous media under initial stress (Biot, 
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1965). The first of equations (1) expresses the tained earlier (Biot 1963a, p. 318; 1963b, p. 
equilibrium of moments about an axis normal 244). They are 
to the figure. The second of equations (1) ex- 
presses the equilibrium of forces in the vertical 4a = wl1+crzrlz 

direction. 717s 
7lt = 

Average Anisotropic Stress-Strain Relationships Wl2+a241 
(3) 

in a Multilayered Structure We shall assume a deformation such that the 
We shall consider a purely viscous incom- vertical displacement is the same over the cross 1 

pressible medium composed of a superposition section whereas the horizontal displacement is 

Figure 1. Equilibrium diagram for a vertical slice of thickness 
layered structure 

dx of the multi 

of alternating competent and incompetent 
layers. They are respectively of viscosities q1 
and q2, and occupy fractions CQ and ~(2 of the 
total thickness (Fig. 2). By averaging stresses 
and strains such a structure behaves approx- 
imately as a continuous viscous plate with an- 
isotropic viscosity. The normal stress uxx along 
the axis and the shear bZr, satisfy the following 
stress-strain relationships: 

UZZ = 4m&z, 

uzy = 27lt& , (4 

where tiZZ and &, are the time derivatives of 
the two strain components indicated in Figure 
2. The two viscosity coefficients defining the 
anisotropic viscous properties are derived by 
viscoelastic correspondence from results ob- 

a linear function across the thickness (Fig. 2). 
We write 

v = U(X) , u = yz4&). (4) 

Note that the horizontal displacement is the 
average value after smoothing out the fine 
structure due to the heterogeneity of the layer- 
ing. With the displacements (4) the stresses (2) 
become : 

fde. \ 
= qt \z+“l) ’ (5) * 
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For the bending moment no and total shear x with 
we derive 

A=l!.Q2 
,h 3qt . 

(8) 

J 
-- 

3X= _; a,,ydy = f qnh3 % 

z 

By assuming a sinusoidal deflection along x we 

Put 
Y = B cos Ix , q = p cos Ix . (9) 

51 =J! u&y = 71th ($+h) . The wave length is d: = 27r/Z. Equation (7) be- 
(6) comes1 

Ph(AZ2 + 1)Z2u + (AZ2 + 1)q = AhZ4qtB . (10) 

Figure 2. Deformation and stresses in a multilayered structure 

We have neglected the tangential stress act- 
ing at the top and bottom of the multilayered 
structure since it was shown previously that its 
influence is not significant (Biot, 1959; Biot 
and Ode, 1962). Whereas the analysis was car- 
ried out for an isotropic layer the conclusion is 
even more valid for a multilayered structure, 
since such a structure will tend to fold with less 
horizontal displacement at the top and bottom 
faces. 

Buc@ng Equation for an Embedded 
Multilayered Structure 

Substituting the values (6) for %X and LX into 
the equilibrium equations (1) and eliminating 
?-ii we derive 

d4ti 
= Ahrtz4 (7) 

u = u, y 

Solving for P we find 

p= -4+ 
/$pv -gg& (11) 

The normal load q may be considered to repre- 
sent the reaction of a large variety of lateral 
constraints. For example consider the case 
where the multilayer is embedded in an iso- 
tropic medium of infinite extent. (Fig. 3A). It 
was shown (Biot, 1959; 1961) that for a sinu- 
soidal deflection of wave length 2x/l the value 
ofqis 

q = - 4q18. (12) 

By substituting this value into equation (11) 
and puttingp = C/V 

1 Note that in this case we may substitute d2u/dx2 = 
-l’%, 8q/dx2 = 49, eic. The cc~mmcm factor cos lx 
drops out. 
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we find 
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unfolded state tend to remain normal to the 

(13) 

layers after folding has occurred. 
Folding of the second kind occurs at the 

smaller wave lengths, and the over-all deforma- 
This may be considered a differential equation tion of the multilayered structure resembles a 
for v. If the right side is independent of time pure shear buckling (Biot, 196313, p. 235). In 
the solution v is proportional to exp (pt) where this case the average cross section tends to re- 
p is a constant (gee last paragraph). The ac- main vertical, as illustrated in Figure 3C. An 
curacy of the approximate equation (13) has adequate treatment of this case requires the ’ 

Ph - 

FIRST KIND 

- Ph 

A 

C 

Figure 3. (A) Multilayered structure embedded in an infinite medium of viscosity 7; (B) 
Similar folding of thefirst kind; (C) Similar folding of the second kind 

been verified by comparing it with the exact 
theory of buckling of the anisotropic plate de- 
rived in another paper (Biot, 1963b). The two 
results are in excellent agreement. 

Similar Folding of the First and Second Kind 

A discussion of equation (13) leads to the 
establishment of two fundamental types of fold- 
ing which will be referred to as similar folding 
of the first and second kind. 

Folding of the first kind occurs at the larger 
wave lengths and is characterized by a deforma- 
tion of the multilayered structure which re- 
sembles pure bending of a homogeneous plate 
as illustrated in Figure 3B. In such a case cross- 
sectional planes which are vertical in the initial 

introduction of an additional term into equa- 
tion (11) in order to account for the bending 
stiffness of the individual competent layers 
which enters into play at the shorter wave 
lengths. 

In the analysis which follows we shall de- 
termine the parameters which determine the 
preponderance of one or the other of these two 
types of folding and the transition from one to 
the other. 

Similar Folding of the First Kind L 
For this kind of folding to occur the value 

(13) of { plotted as a function of I must have a 
minimum which is appreciably smaller than I 
unity, as illustrated in Figure 4, and is located 
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near the origin. Hence Al2 << 1 and equation 
(13) may be simplified to 

This condition also implies AP >> 1. The fold- 
ing in this case is of a different type, described 
heretofore as a folding of the second kind. The 
plot of expression (13) for t in this case is repre- 
sented by curve 3 in Figure 5. The value of < 
is greater than unity, and the system of multi- 
layers tends to behave as an anisotropic plate 
buckling in pure shear. 

(14) 

This equation is identical with that obtained 
for the folding of an embedded layer of iso- 
tropic viscosity qIn whose deformation is a pure 
bending. Hence this case corresponds to a fold- 
ing of the first kind. Equation (14) has been 
discussed extensively in earlier papers (Biot, 

An additional limitation must be put on the 
ratio ~/qt which must not be large; otherwise 
the embedding medium acts as a strong con- 

1, 5=ep -___ C=l 
------- 

jg-_ 

Figure 4. Stability diagram for similar folding of the fir~i kind as given 
by equation (13). Curves 1 and 2 represent respectively the first and 
second terms of equation (13). 

1957; 1961). The dominant wave length was 
found to be 

6: = ‘; = 2& 05) 

This wave length for which P/p is a minimum 
corresponds to the maximum rate of growth of 
the amplitude of folding. 

Folding of the first kind will take place if the 
first term in equation (13) is appreciably smaller 
than l/2 at the point where AZ2 = 1. This is 
expressed by the condition 

;<<0.2 . 
4 

I! 
% 

(16) 

As shown earlier significant folding requires that 
ln be at least 50 to 100 times larger than 7. 
This condition should also be kept in mind 
when applying the inequality (16). 

Similar Folding of the Second Kind 

By reversing the inequality (16) we obtain 
.- 

(17) 

finement which prevents similar folding and 
will tend to generate internal buckling (Biot, 
1963a; 1964a). 

As can be seen, equation (13) yields a plot 
(Fig. 5, curve 3) from which the minimum 
associated with the existence of a dominant 
wave length has disappeared. This is because we 
have treated the layered structure as an aniso- 
tropic continuum which tends to buckle in 
pure shear at the shorter wave lengths. This as- 
sumption neglects the bending resistance of the 
competent layers which also enters into play at 
the shorter wave lengths. This effect may be 
taken into account by adding a correction term 
to equation (13) as follows. Owing to this bend- 
ing resistance, the buckling of competent layer 
of thickness h1 requires a compression2 Pb = 
i ~Il”h12ti/u. If there are n, competent layers 
they contribute a total compressive stress 
Pbn,hl/h = $ nCQ(hl”/h)(fi/u). The correc- 
tion due to bending resistance is obtained by 

2 See equation (4.9) of an earlier paper (Biot, 1961). 
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adding this term to expression (11). Hence 

(18) 
For a layer embedded in an infinite medium 
we substitute the value (12) for 4 and write 

+&=~$+A-+f..;&. 

(1% 

the values (20) into the equilibrium equations 
(1) and eliminating ~1 as before we derive 
equation (18). 

In folding of the second kind we have as- 
sumed AZ” >> 1. Hence equation (19) is simpli- 
fied to 

Ph 7th -= 
w&p nch 1 

-$+fwfzh12. (22) , 

The expression on the right side is the same as 
for a single layer of thickness ItI of viscosity 11 ’ 

l---- 
Figure 5. Stability diagram for similar folding of the second kind. 

Curve 3 represents equation (13) as the sum of two terms (curves 
1 and 2). Curve 4 is obtained by adding a correction term for the 
bending rigidity of the competent layers as given by equation 
(1% 

This intuitive result may also be derived more 
rigorously by adding corrective terms into ex- 
pressions (6), i. e., 

where 
d2v 

3111 = - f n,hr3qrz2 (21) 

represents the additional moment due to the 
bending resistance of the individual competent 
layers. Note that it is important to include a 
term dmr/dx in the second of equations (20) 
because of the shear which is required in order 
to equilibrate the moment ml. By introducing 

embedded in a medium of viscosity 7/nc. The 
dominant wave length is 

This result was already obtained in an earlier 
paper (Biot, 1961)3 by assuming that the in- 
competent layers act primarily as Zu6Aznt. 
Equation (22) shows that this assumption is 
essentially correct for evaluating the dominant 
wave length in similar folding of the second 
kind. The effect of the sliding friction between 
layers is represented by the constant term 
~Jz/n,ltr in equation (22) which corresponds to 

3 Note that the notations 7 and ~1 have been inter- 
changed in the 1961 paper. 
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with an additional term including the sliding 
friction between competent layers: 

The thickness, viscosity, and compressive stress 
of this layer are respectively hi, vi, and Pi. The 
total vertical force per unit length acting on 
the layer is qi. Owing to the sliding friction in 
the incompetent layers there is a clockwise 
moment per unit length which may be written 

the shear threshold (see discussion, further on). 
It is independent of I and therefore does not 
affect the dominant wave length but reduces 
the over-all rate of folding. 

i Elastic Materials 

By viscoelastic correspondence the present 
solution is also immediately applicable to the 

? buckling of elastic multilayers. We put ~1 = 
asp, ~2 = 72~~ p = rip respectively for the 
elastic moduli of the two layered materials and 
the embedding medium. This defines aniso- 
tropic elastic moduli M = 7~ and L = qtp 
by equations (3). Similar buckling of the first 
and second kind will be governed by the same 
equations, and the dominant wave length be- 
comes the buckling wave length. 

Shear Threshold and Incipient Internal Buc&g 

It is interesting to bring out the significance 
of the constant term in equation (22). Without 
bending stiffness and without the restraint 
owing to embedding the right side of the equa- 
tion vanishes. Hence the equation for P be- 
comes 

P= q$J = L. (24) 

This value of the compressive stress has been 
discussed previously and referred to as the shear 
threshold (Biot, 1964a). Physically it repre- 
sents a pure shear buckling. Hence as already 
mentioned the constant term qth/n,hl in equa- 
tion (22) is a result of the sliding resistance 
between layers. 

Note that the shear threshold corresponds 
to !: = P/vtp = 1. As seen from Figure 5 sim- 
ilar folding of the second kind occurs above the 
shear threshold. According to previous results 
(Biot, 1963a; 1964a) a value { > 1 implies in- 
cipient internal buckling. The amount of 
internal buckling superimposed on the similar 
folding and the magnitude of the correction 
required may be evaluated by applying the 
previous analysis (Biot, 1964a). 

Similar Folding of the Second Kind with 
Competent Layers of Unequal Thickness 

Similar folding of the second kind for com- 
petent layers of unequal thickness was already 

8 analyzed in a previous paper (Biot, 1961). It 
was shown that the dominant wave length is the 

1. same as for a single equivalent layer. This re- 

P sult was obtained by considering the equation 
of folding of a particular competent layer 
designated by the subscript i. It is written here 

f-& = f&d”. 
dx 

We add equations (25) for all competent layers 
and assume a sinusoidal deflection along x of 
wave length d: = 27r/l. We also substitute 
zqi = -4qZti for the total reaction of the 
embedding medium according to equation (12). 
We obtain 

This is basically the same type of equation as 
(22). By minimizing the right side with re- 
spect to I we derive the dominant wave length 

3 i 
c = 2?r 

21 
z qifv 
7’ (28) 

This result is the same as obtained earlier (Biot, 
1961). For equal thickness it reduces to equa- 
tion (23). The additional term ZKi in equation 
(27) represents the sliding resistance acting 
tangentially on the layers. This term is wave- 
length-independent and corresponds to what 
we have called the shear threshold. It only 
affects the over-all rate of folding. 

Values of the coefficients K; are easily ob- 
tained. Denote by T[ and hi’ the viscosity and 
thickness respectively of the incompetent 
layer lying on top of the competent layer i. 
We find 

& = thipr (h&$5) 

+$i+l (=)I * (29) 

Numerical Discussion 

The transition of similar folding of the first 
to the second kind is controlled by the relative 
magnitudes of the three viscosity coefficients 
71, 72, and 7, respectively, of the competent 
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layer, the incompetent layer, and the embed- 
ding medium. In order to obtain some estimate 
of the orders of magnitude involved consider 
the case of layers of equal thickness (cxl = 
QZ = 4). Assume q~/vl = l/IO and q/q2 = 
l/100. In that case we find vt/qn z 2/5 and 
v/vt z l/200. Hence the inequality (16) is 
verified. The folding will be of the first kind. 
Note that the condition s/?ln < l/100 required 
for significant folding (Biot, 1961, p. 1611) is 
also fulfilled. On the other hand let us assume 
a large viscosity contrast between competent 
and incompetent layers, say v2/v1 = l/1000, 
and an embedding medium of same viscosity 
as the incompetent layer 11 = ~2. In this case 
qt/qn G l/250 and r]/qt g 3, and the in- 
equality (17) is verified. Hence the folding is 
now of the second kind. For intermediate 

values of the viscosities the folding will be of a 

mixed type and may be analyzed by using the 
complete equation (19). 

Characteristic Transition Wave length 

It follows from the foregoing analysis that 

the relationship Al” = 1 corresponds to a 

characteristic wave length 

(30) 

which determines the region of transition from 
one type of folding to the other. Note that 
&/h depends only on the ratio qn/vt which is 
a measure of the average anisotropy. 

Application to Large Deformations 

The present results are applicable to large 
compressive strains. In this case the thickness 
and the wave length are functions of time. The 
coefficients in the differential equation (13) be- 
come time-dependent (Biot, 1964b). 

Beam-type equations as applied here are not 
restricted to small deformations. They provide 
the foundation for an analysis of the later phase 
where steep slopes and the influence of plasticity 
must be considered (Biot, 1961). Whether the 
character of similar folding is retained in this 
later phase will be discussed in subsequent 
papers. 
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