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Abstract: An exact treatment of the stability of 
multilayered viscous fluids in slow motion with 
large deformations leads to an analog model which 
includes the effect of gravity. A distinction can be 
made between true mechanical instability and an 
apparent instability of purely kinematic nature. A 
mechanism for concentric folding is derived, lead- 
ing to predictions in good agreement with experi- 
mental results (De Sitter, 1939). Exact equations 

Introduction 

Continuum theories of folding instability 
have been established which are rigorously ap- 
plicable if the medium is initially at rest under 
the initial stress, and for small incremental de- 
formations superimposed on this initial state. 
An exact treatment of viscous buckling of 
multilayered fluids has been developed (Biot, 
1964a) which is not subject to the aforemen- 
tioned restrictions and is applicable to large 
deformations. The theory makes a distinction 
between an apparent instability which is of 
purely kinematic origin and a true mechanical 
instability. The latter may be represented by 
an analog model where the fluid is initially at 
rest and stress-free. The model is extended to 
include gravity instability in addition to pure 
buckling. By using such a model one may be 
able to predict a type of folding with finite 
strain, referred to by De Sitter (1939) as con- 
centric folding. 

In the case of small deformations superim- 
posed on a state of flow, the analog concept 
leads to exact differential equations for the 
time history of viscous buckling and simul- 
taneous gravity instability of multilayered 
fluids undergoing a variable finite strain. We 
will discuss the exact solution numerically for 
a single viscous layer in a viscous medium and 
demonstrate the practical validity of the sim- 
plified formulas for large compressive strain. 

The present results constitute the counter- 
part for viscous fluids of the exact theories 
derived for purely elastic materials in the 
author’s earlier papers. The two theories cor- 
respond to extreme cases and provide reliable 

are obtained for the time history of viscous buckling 
of multilayered fluids for small deflections super- 
imposed upon a large variable compressible strain. 
A numerical application to the single embedded 
laver checks the oractical validitv of the simolified 
&in-laver theor; with interfacial slip. For giavity 
instability, the analog model provides a method of 
analysis applicable to very large deformations in 
salt structures. 

predictions for the behavior of actual ma- 
terials with intermediate properties. 

The physical results of the two theories 
merge in the range of significant viscous in- 
stability, and in this range the principle of 
viscoelastic correspondence is applicable for 
incremental deformations in a state of initial 
ilow. 

Kinematic AmpZiJication 

We consider a viscous, incompressible fluid 
subject to a uniform and constant compressive 
stress P (Fig. 1). The viscosity is assumed to be 
high so that inertia effects are negligible. The 
fluid is deformed at a constant uniform strain- 
rate. For simplicity we also assume that the 
deformation is two dimensional. However, as 
the author (1964a; 1965) has shown in the 
more general treatment, this assumption is not 
essential. The finite deformation is represented 
as a function of the time t, by the two extension 
ratios 

X1 = e-P.at 

X2 = ePot . (1) 

The extension ratio Xr represents the distance 
between two particles of fluid initially (t = 0) 
at a unit distance along the direction of com- 
pression, whereas Xs is defined similarly in the 
perpendicular direction. The relationship X&Z 
= 1 expresses the incompressibility of the fluid. 

The constant strain-rate is 

1 dX1 P _-= 
X1 dt *O=G? 

(2) 

where 17 is the viscosity coefficient. These re- 
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A 

Figure 1. Kinematic amplification associated with a large uniform strain 

suits are easily derived (Biot, 1964a; 1965) 
from the classical equations of fluid mechanics. 

A sinusoidal line drawn in the fluid at the 
instant t = 0 (Fig. 1A) will be compressed 
accordionwise in the direction of the com- 
pression and stretched in the normal direction 
as shown in Figure 1B. This stretching is pro- 
portional to an amplification factor Xs = 
exp (pd) . Such an increasing exponential repre- 
sents a purely kinematic effect which mathe- 
matically looks like an instability. It is not, 
however, a true instability in the mechanical 
sense. 

Analog Model for Viscous Buc&g 
with Large Deformation 

Let us imagine that in Figure 1A the portion 
of the fluid lying above the sinusoidal line is 

removed. We then have a free boundary of 
sinusoidal shape, and the homogeneous defor- 
mation will be disturbed. However the original 
deformation will remain undisturbed if we 
apply surface forces which restore the initial 
stress field. These surface forces are P sin a! per 
unit area of the sinusoidal surface, where (Y is 
the slope angle of the free surface with the 
direction of compression, as indicated in Figure 
2A. With these surface forces the deformation 
is uniform and remains the same as if the 
boundary did not exist. The boundary itself is 
deformed as in Figure 1, and the depth of the 
corrugations increases in proportion to the 
factor exp (pi$). 

The effect of the free surface is now obtained 
by superposing surface stresses which cancel the 
previously applied stresses. They are equal to 

Figure 2. Derivation of the analog model. A, Boundary stresses in the undisturbed motion; B, 
analog model 
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P sin (II per unit area and act in the opposite 
direction, as shown in Figure 2B. These stresses 
induce a velocity field in the fluid which dis- 
turbs the uniform strain-rate. The important 
property which is applied here is a principle of 
superposition based on the fact that the equa- 
tions of Navier-Stokes for the mechanics of a 
viscous fluid are linear when inertia forces are 
neglected. Hence the effect of the free surface 
is obtained by adding the velocity fields of 

A 
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The analog model is applicable to multiple 
and embedded layers by applying interfacial 
forces and leads to similar conclusions regard- 
ing the generation of concentric foldicg in 
viscous media. 

Analog Modelfor Gravity Instability 
with Large Deformation. 

Consider two incompressible viscous fluids: 
one of density po lying below the other of 

Psina 

B 

Figure 3. Application of analog model to viscous buckling with large de- 
formation, showing the tendency to “concentric folding” 

Figures 2A and B. Note that in Figure 2B 
there is no initial stress P, and the velocity field 
is entirely a result of the boundary stresses 
acting on a fluid initially at rest. The second 
velocity field may be considered an analog 
model representing the influence of the 
boundary. 

By using this model one may be able to pre- 
dict the viscous buckling of a plate for large 
deformations. A slight kink in a fluid plate, as 
shown in Figure 3A, will develop into a shape 
obtained by applying the fictitious boundary 
forces P sin CL On the bottom face these forces 
must be reversed. As the deformation proceeds 
the convex side will tend to remain smooth 
whereas the concave side will be pinched, as 
shown in Figure 3B. 

It is interesting to note that this result pro- 
vides a mechanism for the pattern of “con- 
centric folding” proposed and verified ex- 
perimentally by De Sitter (1939). 

In this discussion we have assumed that there 
is no stress in the direction normal to the com- 
pression. Such a stress component may be 
added by superposing an over-all hydrostatic 
stress on the whole medium. This, however, 
would not modify the phenomenon in any way 
since the fluid is incompressible. 

density p1 = po + Apl in a gravity field of 
potential U = gz + Const, where z equals 
altitude. Assume that the transition from po to 
p1 is continuous and occurs through a very thin 
surface S of thickness E. The density p(x, y, z) 
is then a continuous function of the coordinates. 
If the surface S is not a horizontal plane the 
fluid may be maintained in equilibrium by ap- 
plying to it a body force field -F per unit 
volume. We must satisfy the equilibrium con- 
dition 

-gradp-pgradU-F=O, (3) 

where p is the fluid pressure. This equation 
may be written 

-grad(pU+p)+Ugradp-F=O. (4) 

We choose a force F, given by 

F= Ugradp=g(z-zo)gradp. (5) 

The pressure is therefore p = -pU + const. 
The altitude zo is an arbitrary constant. In 
particular we may choose it to represent the 
altitude of the horizontal surface of separation 
of the two fluids in the initial equilibrium state 
when F = 0. 

The force F is zero except in the thin surface 
S. By integrating this force across the thickness 
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e we obtain a force FE. Its magnitude per unit representing the various densities as ps, pr = 
area is PO + API, PZ = PO + API + APZ, etc. and 

Fe = g(” - 20) F E = dz - ZO)API. (6) 

treating each term Apr, Aps, etc. as we have 
done for the single discontinuity.l 

Note that this analog model is valid for any 
This force is normal to the surface of separation incompressible material for which the deforma- 
of the two fluids, and expression (5) remains tion is independent of the hydrostatic com- 
valid for the limiting case (e = 0) of an actual ponent, since this is the only property invoked 
discontinuity. in the derivation. The interfacial forces are 

Figure 4. Analog model for a dome-shaped intrusion caused 
by a gravity instability of two fluids of different densities 
PO and PI 

These results provide an analog model as 
follows: The gravity field may be written 
-p grad U - F + F. However as we have 
seen, the first two terms generate a hydrostatic 
pressure, hence no motion, since the medium 
is incompressible. Therefore these forces may 
be cancelled, leaving only F to cause the mo- 
tion. Thus we obtain an analog model. As an 
illustration, consider a dome-shaped intrusion 
caused by a gravity instability of two fluids of 
densities po and p1 (Fig. 4). In the analog model 
gravity has been replaced by forces distributed 
normally to the surface of separation and of 
magnitude g(z - zo)(pl - po) per unit area. 
They are oriented toward the medium of 
higher density. The analog model is valid for 
an arbitrary number of fluid layers if one ap- 
plies to each discontinuity surface the pro- 
cedure just described. This is easily shown by 

identical with buoyancy forces on a submerged 
body in various fluids of densities Apr, Apa, etc. 
The total potential energy of a vertical column 
of fluid is the surface integral 

where A is the horizontal base area of the fluid, 
and zi is the altitude of the interface of dis- 
continuity Api, each measured from an arbi- 
trary origin. Equation (7) expresses the work 
done against the interfacial forces in the model, 
as can be verified by using the property 
dn dS - dz d.4, where dn is the normal dis- 
placement of an element dS of the surface of 
discontinuity. These results generalize the 
analog model derived and used by the author 

1 See also the author’s book (1965). 
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for small deformations in a series of earlier 
papers. 

Variational Methods Applied to Viscous 
Buc$ing and Gravity Instability 

Application of the principle of minimum 
dissipation suggests itself naturally for the ap- 
proximate evaluation of large deformations in 
viscous media. Of particular interest is its ap- 
plication to the determination in the analog 
model of the additional velocity field super- 

\ 7, -- PI / 

Figure 5. Fluid layer of viscosity r] embedded 
in a fluid of viscosity r]r 

posed upon the kinematic amplification. This 
velocity field is obtained by applying boundary 
and interfacial forces to a medium initially at 
rest and stress-free, with the configuration cor- 
responding to the actual deformation at the in- 
stant considered. We then evaluate the velocity 
field for which the dissipation is minimum for 
a given power input (Biot, 1955). The finite 
deformation may thus be determined step by 
step at successive instants. 

The method is of course applicable to gravity 
instability, including the case in which viscous 
buckling occurs in combination with it. 

The analog model, when used as an intuitive 
guide in the choice of approximations, is help- 
ful in the application of variational procedures. 

Viscous Bz+-&ing of an Embedded 
Layer Undergoing Finite Strain 

A fluid layer of viscosity q is embedded in a 
fluid of viscosity 71. Under uniform compressive 
strain-rate the compressive stresses in the layer 
and the embedding medium are P and Pi, re- 

spectively. (Fig. 5.) In this case the analog 
model is obtained by applying fictitious forces 
(P - Pr) sin Q! at the interfaces instead of 
P sin 01 as in Figure 3B. If this analog model is 
used, it is possible to formulate in exact mathe- 
matical terms the time history of buckling of 
the layer for large strain, provided we assume 
that the superimposed flexural deformation re- 
mains small. The thickness of the layer increases 
with time. Its initial value is ho at t = 0; at 
the time t the thickness has become h = ha 
exp (pot). An initial flexural deflection va = 
VO cos lox of wave length &a = 27r/la becomes 
v = V cos Ix after a time t. The wave length 
at this time has been shortened owing to the 
compressive strain and has become d: = 2?r/l 
= $0 exp (-pot). The author (1964a; 1965) has 
shown that the amplification of the deflection 
is 

V 
V, = A(t)ePot , 

with 

/ 

t 
log/4 = pdt, (9) 

0 

where p = P/27$ and 

I= & [Cl + 8 sinh 2y 

+ 2c cash 2y + 2(c2 - l)r] . (10) 

The parameter c = Q/V represents the ratio of 
viscosities of the two materials. The variable 
y = 7&/d: = (~lt~/J&) exp (2pd) is a function 
of time orooortional to the ratio of the in- 
stantanedus *value of the thickness h and the 
wave length C. 

In equation (8) the factor A(t) represents 
the amplification owing to the intrinsic in- 
stability. The intrinsic instability is thus sep- 
arated from the factor exp (pot) which repre- 
sents the pure kinematic amplification. For 
large viscosity contrast and large wave length 
(c << 1, y << l), expression (10) reduces to the 
approximate value 

r++;. 
This value is the same as that obtained from 
thin-plate theory neglecting interfacial ad- 
herence (Biot, 1957). The exact value (10) of 
[ and the approximate value (11) have been 
plotted in Figure 6 as functions of y for two 
values of the viscosity ratio (c = l/50 and 
c = l/100). 
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The value -rd of y for which { is a minimum As already shown (Biot, 1959) the range of 
determines the instantaneous dominant wave validity of equation (11) also coincides with the 
length, i.e. that for which the rate of amplifica- range of significant instability for viscous ma- 
tion is maximum at a given instant. It is ob- terials. Hence for such materials equation (11) 
tained by equating to zero the derivative of will generally be sufficient in practical ap- 
expression (10) with respect to 7. This yields plications. 
the equation 

2yd - tanh 2yd 2c 
Compensating Efects of Shortening 

1 - 2yd tanh 2yd =g+ (12) 
and Thickening of the Layer 

The amplification A after a time t is obtained 
The solution Td of this equation is plotted as a by integrating expression (9). The integrand p 

0.2 

c 0.1 

0 
0 > 0.3 0.4 0.5 

Y 

Figure 6. Stability diagram for the embedded layer of Figure 
5. Solid lines represent the exact equation (10) and dotted 
lines, the approximate equation (11). 

function of $y in Figure 7. The value Ed = 
$WC derived from the approximate equa- 

tion (11) is also plotted as a straight line in 
Figure 7. One can see that this approximate 
value is satisfactory for c < l/50. This corre- 
sponds to Td < 0.3, hence to wave lengths 
larger than about 10 times the thickness. 

A similar comparison of the approximate 
equation (11) has been made with results ob- 
tained from the exact theory of stability of a 
continuum initially at rest under the initial 
stress with and without interfacial adherence 
(Biot, 1959; 1964b; Biot and Ode, 1962). 
Similar conclusions were derived regarding the 
validity of the approximate equation (11). 

may be replaced by its average value p,, over 
the time interval 2. Expression (9) becomes 

log A = pavt . (13) 

The average value p,, is obtained by substi- 
tuting into { the average value of y = 
(nho/Co) exp (2pd). We may write approx- 
imately 

Y -2exp&) =2. av - (14) 

Hence the dominant wave length 6: measured 
after deformation is approximately the same as 
if there were no change of thickness (h = ho) 
and no shortening. This is the result of a 
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‘d 

Figure 7. Wave length parameter ya for the 
dominant wave length. Solid line represents 
the exact value given by equation (12) and 
dotted line, the approximate value. 

mutual compensation of these two factors 
which act in opposite directions. 

Theory of Viscous Buc@ng of 
Multilayers Undergoing Finite Strain 

One may use the same analog model to de- 
rive general differential equations for the time 
history of buckling of an arbitrary number of 
horizontal layers of viscous fluids undergoing 
a large compressive deformation (Fig. 8). The 
equations were derived in another paper (Biot, 
1964a).2 They are expressed by means of six 
coefficients: 

A = 4 (au + 611) 

S = a (a12 + bl2) 

c = t (a22 + bn3 

with 

4 cosh2 y 

D = t (au - bu) 

E = t (a12 - h?) 

F = B (a22 - b22) , (15) 

“* = sinh 2y + 2y 
bu = 

4 sinh2 y 

smh 2y - 2y 

ars = - 4Y 
sinh 2y + 2y 

blz = 4-Y 
smh 2-y - 27 

4 sinh2 y 

a22 = sinh 2y + 2y 
b22 = 

4 cosh2 y 
smh 2y - 2y . (16) 

2 Note the erratum in equations (6.6), (6.9), (6.13, 
and (6.17) of that paper, where Vj and bj must be re- 
placed by Vj+l and LQ+I; XY also the author’s book 
(1965). 

The following differential equations for the 
time history of folding were established: 

(Dj-r&-r + Ej-&_r - Ai_& + Bj-r~j)~j-, 

- P+lbj = (AiDi + BjGj - DjUj+l 

+ Ej’bj+l)rlj - Pjbj 

+ (l/Z)pj-lgbj = (Bjij + Cjkj 

- Ejlij+l + Fjbj+l)7lj + (l/l)/Jjgbj * 

(17) 

The dots represent time derivatives; each layer 
is characterized by the subscript j. The vis- 
cosity, density, compressive stress, and in- 
stantaneous thickness of each layer are re- 
spectively gj, pj, Pj, and hj. Gravity is taken 
into account, and g is the acceleration of 
gravity. The coefficient Aj is obtained from 
;qu;tions (15) and (16), replacing y by yj = 
a zj = ~j exp (2p,$), where Kj equals the 
initial value of 3 Zhj. Other coefficients are ob- 
tained in the same way. The vertical deflection 

hj I 

Figure 8. Multilayered viscous fluid. In thejth 
layer of thickness hj the viscosity is qj, the 
density pj, and the compression Pj. 

Vj of the top interface of layer j is Vj = 
bj exp (pot). Hence bj is the interface deflection 
after elimination of the kinematic amplifica- 
tion factor. The variables uj are related to 
tangential interfacial displacements. 
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