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THEORY OF GRAVITY INSTABILITY WITH VARIABLE OVERBURDEN 
AND COMPACTIONt 

M. A. BIOT* AND H. ODE$ 

The gravitational instability of a simple two-layered medium resting on a rigid base has been treated in terms 
of the analog model of Biot. In order to avoid complications of purely mathematical nature which are unrelated 
to the physics of the process of instability and do not affect the results significantly, the analysis is presented for 
the two-dimensional case? It is shown that such a system is unstable if the density contrast Ap between the top 
layer (overburden) and the bottom layer (salt) is positive. The physically important parameters of the instability 
are the viscosity ratio and the thickness ratio between overburden and salt and the relative density contrast Ap/pl. 
These parameters determine the amplification rate of a given initial sinusoidal perturbation of wavelength L of 
the overburden-salt interface. For the purpose of isolating the role of each parameter and to rovide an under- 
standing of the underlying mechanics, several tables are presented which show the influence of eat 1 of these parame- 
ters as well as the wavelength of maximum amplification rate (dominant wavelength) and the time in which a 
thousandfold amplification is obtained (characteristic time). This form of presentation of results is well suited to 
geological problems including the variable time dependence of the overburden due to gradual sedimentation. The 
influence of either an additional surface layer of water or a nonrigid base of high viscosity is small. The special con- 
dition of keeping the surface of the upper layer flat while the volume is held constant, termed “redistribution,” 
leads to an increased rate of growth and slightly longer dominant wavelength. 

The geologically more significant case of an instability with time-dependent thickness and compaction of over- 
burden is solved by introduction of an effective density ps of the overburden. The characteristic times and’dominant 
wavelengths of salt structures in a salt layer of initial thickness of 1,000 m and viscosity of lOIT poises overlain by 
sediment of viscosity of 1WOpoises are in excellent agreement with observed facts. 

1. INTRODUCTION 

It is now generally accepted that many of the 
large salt structures discovered so far in several 
areas of the world owe their existence to the up- 
ward driving force of buoyancy. The first to pro- 
pose this theory was Arrhenius (1912), but it was 
not until 1934, when Nettleton demonstrated the 
mechanism convincingly with a model of viscous 
liquids of contrasting color and different den- 
sities, that it became widely accepted. The scaling 
factor of this viscous model was shown to corre- 
spond to the approximate salt viscosity and to 
the geological time scale (Hubbert, 1937). Re- 
cently, experiments with tar and heavy mud 
(Parker and McDowell, 1955), whose properties 
were chosen to obtain some degree of dynamical 
similitude, have shown the correctness of Ar- 
rhenius’s hypothesis. 

So far little analytical work has been done to 
estimate the geometry and the rate of deforma- 
tion of the interface between the two media. In 
the present paper a simple theory of the instabil- 
ity of a two-layered medium resting on a rigid 
base is presented. It is an application of the 
stability theory for a medium consisting of visco- 
elastic layers, which was recently published by 
Biot (1963a, b), and contains preliminary numer- 
ical solutions for salt-structure instability. In the 
latter paper it was shown that the formulation of 
the problem is greatly simplified by replacing the 
layered medium by an analog model in which 
gravity is accounted for by surface forces acting 
at the free surface and at the interfaces between 
layers. An outline of the method is given in Sec- 
tion 2. In the general stability equation for the 
two-layered model appear two operators &, and 
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213 



214 Biot and Od6 

02, which, if we are dealing with purely viscous 
materials, represent the expressions qlp and r]$, 
q1 and 712 being the viscosities of the two layers, 
respectively, and p=d/dt. The rate of growth of 
an initially present sinusoidal perturbation of the 
interface is amplified with an exponential rate 
ept. 

The results of the present theory can be ap- 
plied immediately to the problem of salt tec- 
tonics; of course, the theory applies equally well 
to other materials with appropriate properties. 
The top layer in our model represents the layer of 
sediments (overburden) overlying the second 
layer, which represents the salt. The assumption 
that salt and overburden can be regarded as New- 
tonian fluids is questionable. At best it is possible 
to ascribe to these materials only an “equivalent” 

viscosity, which will be a function of confining 
pressure, differential load, temperature, presence 
of liquids, etc. For salt an approximate value of 
an equivalent viscosity can be obtained from 
measurements on the steady-state creep. A sur- 
vey of available data has been made (OdC, 1962), 
and a reasonable estimate for the equivalent salt 
viscosity appears to be 101’ poises. The informa- 
tion concerning its values for materials constitut- 
ing the overburden is exceedingly flimsy, and in- 
deed trustworthy data are nonexistent. Never- 
theless we have tentatively assumed that the 
equivalent viscosity of the overburden is about 
two or three orders of magnitude larger than that 
of salt, and we have adopted a value of 102” 
poises. 

The stability analysis for the two-layered struc- 
ture is worked out in Section 3. It is found that 
the resulting stability equation is quadratic and 
has a positive root if the density of the top layer 
exceeds that of the second layer. This shows that 
in that case there is instability. Of particular in- 
terest is the time t, in which the amplitude of an 
originally present perturbation of the interface is 
increased one thousand times. We have called 
this the characteristic time, which is useful for 
expressing the rate of amplification. The rate at 
which an initially present perturbation of wave- 
length L is amplified is found to be a function of 
three parameters: the viscosity ratio r&s, the 
thickness ratio hi/hs, and the relative density con- 
trast (p1--p~)/pr, the subscripts 1 and 2 indicating 
upper and lower layer, respectively. The influ- 
ence of each of these parameters on the rates of 
amplification is shown in several tables. For the 

original thickness of the salt we have adopted the 
value of lo5 cm. This value appears to be of the 
right order of magnitude for the northwest 
European and Gulf Coast basins. 

For completeness, a brief analysis is included 
of the influence of water on top of the system and 
of the presence of a nonrigid but viscous base. 

In Section 4 we consider the instability with 
the additional complication that the upper sur- 
face is kept flat by various geologic processes 
such as wave action or erosion. High spots are 
supposed to be leveled, and the eroded materials 
are supposed to be deposited in the low areas. 
This process we term “redistribution of surface 
ms.terial.” Its effect is to introduce nonuniform 
loading at the upper boundary of the top layer, 
which speeds up the instability. 

The assumption that the three parameters re- 
main constant during the development of the in- 
stability is geologically unrealistic. Sediments 
slowly build up an overburden of increasing thick- 
ness over the salt layer and increase in density by 
compaction. First there is a period in which the 
density of the overburden is less than that of the 
salt, but after sufficient time the density of the 
overburden reaches and then exceeds the salt 
density. Given the rate of sedimentation and com- 
paction, it is possible to estimate the character- 
istic time of any wavelength. In Section 5 this 
estimate has been made. Here the advantage of 
the analog model representation is clearly demon- 
strated by the introduction of an effective density 
pe(t) for the overburden. 

2. GENERAL STABILITY EQUATIONS 

General equations for the stability of a layered 
continuum under initial stress have been derived 
in previous work (Biot, 1963a, b). For a medium 
composed of horizontal layers of incompressible 
materials, where the initial stress is reduced to a 
hydrostatic field in equilibrium with the gravity, 
forces, the problem leads to a simplified formula- 
tion as follows. 

It was found that the system is equivalent to 
an analog model which is weightless. In this model 
gravity has been replaced by surface forces acting 
at the free surface and at the interfaces between 

layers. These surface forces are analogous to 
elastic forces proportional to the vertical dis- 
placement and to the density discontinuity. 

The problem can then be formulated by first 
considering a weightless layer of thickness h. The 
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u,,v,, =,,q 

“,t v,, =*, q, 

Fro. 1. Coordinates and variables for the single layer. 

y axis is chosen vertical and normal to the layer. 8 representing the viscoelastic stress-strain rela- 
The deformation is assumed to be parallel with tions. 

the x, y plane and to be sinusoidal along x (Figure The result is obtained in the following form: 

1). 
The z and y components of the displacements rr 

can therefore be written 41 u = u sin lx, 

v = v cos lx, II 1 

72 

(1) Q2 

where U and V are functions of y. The tangential A B -D E’ 

and normal components of the stress on a plane B C-E F 
normal to the y axis arising from the incremental = 10 

forces acting per unit initial area at the boundary D E-A B 

can similarly be written -E -F B -C. 

fl.v4 = 7 sin lx, 
(2) 

The matrix coefficients are 

(Juu = q cos lx. 
1 1 

- UI 

Vl I 1 u2 * 
(3) 

I’2 

We denote by Ur, VI, rl, and q: the values of U, 
V, T, and q at the top of the layer and by UZ, V2, 
TV, and q2 the values of the same variables at the 
bottom. Thus rr and ql are the stress amplitudes 
at the top of the layer, and TZ and q2 are the stress 
amplitudes at the bottom of the layer. 

It is a simple problem to derive the relation be- 
tween the stress components applied at the two 
faces and the normal and tangential displace- 
ments at these faces. If the medium is assumed to 
be isotropic, the solution is formally the same as 
in the classical theory of elasticity. of isotropic 
media. Since we also assume incompressibility, 
the solution contains a single elastic coefficient, 
namely, the shear modulus p. For a viscoelastic 
medium the solution is formally identical, except 
that the shear modulus is replaced by an operator 

A = $ (all + buj, D = 2 (au - h), 

B = 1 (al2 + b12), E = f (a12 - hz), (4) 

C = f (~22 + bzz), F = f (a22 - b22). 

The six distinct quantities aij and bii in these co- 
efficients are functions only of 

(5) 

The parameter y is inversely proportional to the 
ratio of the wavelength L to the thickness h of 
the layer. The six functions aij and bij are 



216 Biot and Odi 

4 cosh2 y 
all= 

sinh 2-y + 2y ’ 

4 sinh2 y 
bll= 

sinh 27 - 27 ’ 

47 4-/ 
a12= - J J 

sinh 27 + 27 
blz= 

sinh 2y 
(6) 

- 27 

4 sinh2 y 4 cosh2 y 
a22= 

sinh 2y+2y ’ 
b22= 

sinh 2y- 2y 

Until now the layer has been assumed weightless. 
Let us introduce a gravity field of acceleration g 
acting perpendicularly to the layer in the negative 
y direction. The mass density of the layer is 
assumed to be constant and is denoted by p. 

It was shown (Biot, 1963b) that the effect of 
gravity can be introduced quite simply by using 
the result for the weightless case. ?‘he initial stress 
is assumed to be the same as that in a fluid in 
equilibrium with the gravity field and with the 
same density distribution as the medium. On a 

horizontal plane the initial tangential stress is 
zero, and the normal component is the negative 
pressure of the initial hydrostatic field. After de- 
formation the horizontal plane becomes a corru- 
gated surface with sinusoidal amplitude. We de- 
note by Tw and Tyy the tangential and normal 
stress increments on a deformed surface which is a 
horizontal plane in the initial state. The values of 
these increments were shown to be (Biot, 1963a) 

Tzy = r sin lx, 

T,, = (Q + PgV) cos Ix, 
(7) 

where r and q are the same as evaluated for the 
weightless case by equation (3), and p and V are the 
density of the plate and the vertical displacement 
amplitude of the interface considered, respec- 
tively. 

Consider now the condition at the interface be- 
tween two layers. Let us designate by prime 
quantities the variables in the bottom layer. 
Since the normal and tangential stress increments 
acting along the interface are continuous at any 
moment, we can write 

72 = 71’, 

42 + Pgv = qr’ + P’gv. 

The second equation of (8) is also written 

q2 = 411 + (P’ - p)gT/‘. 

(8) 

(9) 

This shows that the effect of gravity is analogous 
to the weightless case with the addition of an 
interfacial force of magnitude (p’-p)gV per unit 
area and acting positively downward. If the bot- 
tom layer is denser (p’ >p), an upward displace- 
ment V produces a downward force analogous to 
an elastic restoring force and hence is stabilizing. 
If the top layer is denser, the surface force is up- 
ward and thus is destabilizing. 

As already mentioned, 0 denotes an operator 
which defines the viscoelastic properties of the 
layer. There are two extreme cases of particular 
interest. For a purely elastic medium the operator 
is identical with the shear modulus 

& = /A. 

If the layer is purely viscous of Newtonian visco- 
sity q, we put 

0 = VP, 00) 
where p denotes the operation of differentiation 
with respect to time, 

p=$ 

In that case the right-hand side of equation (3) is 
expressed in terms of first-order time derivatives 
of the displacement amplitudes Ui, Vd. 

In stability problems involving viscoelastic 
laye?s we are seeking solutions proportional to an 
exponential factor exp(pt). In this case the sym- 
bol p in the operator may be treated as an alge- 
braic quantity representing the coefficient p in 
the exponent. 

3. STABILITY ANALYSIS OF A TWO- 

LAYERED STRUCTURE 

We shall consider the two-layered horizontal 
structure represented in Figure 2. The material is 
assumed to be purely viscous. The bottom layer of 
thickness hp, density pa, and viscosity qz lies with 
perfect adherence on a rigid horizontal base. The 
top layer of thickness hl has a viscosity q1 and a 
density p1 greater than ~2. The materials are in- 
compressible and under the action of a uniform 
gravity field g. 

Geologically this may be looked upon as a 
simplified model representing a salt layer of 
density pz and an overburden of density pl. 

We shall derive the stability equations for this 
system assuming a plane strain deformation kith 
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FIG. 2. Two-layered structure resting on a rigid base. 

a displacement field in a vertical plane (2, y). We 
denote by Ur, Vr the displacement of the top 
layer at the free surface. The common displace- 
ment of the two adhering layers at the interface is 
denoted by UZ, VZ. The bottom displacement of 

the lower layer is zero, since the lower layer is 
assumed to adhere to a rigid base. 

The stability equations are obtained by express- 
ing that the stresses vanish at the free surface 
(Tw= Tw=O), that they are continuous at the 
interface [equation (S)], and that the displace- 
ments vanish along the rigid base (lJa= Va= 0). 
Applying the general equations (3) of the previous 
section and equations (8), we obtain 

O=Z&(AIUI+BIVI-- DIU~+EIVZ) 

O=Z~1(B1U1+ClVl--E1Uz+FlVz+plgVl 

l&(&Uz+ BJd 01) 

=@I(DIUI+EJ+ AIU~+BIVS) 

l&(&Uz+CzVd 

We put, according to equation (lo), 

&I = mp 

02 = q2p. 
(12) 

The coefficients AI, BI, etc., are obtained from 
equations (4) and (6) in which y is replaced by 

1 
YI = Y 1121. (13) 

They are functions only of yl. Similarly A 2, Bs, C2 
are functions only of 

yz = + lhn. (14) 

The stability problem is solved by equating to 
zero the determinant of equations (11). This 
characteristic equation is written in the form 

au2 + bu + c = 0, (15) 

where a, b, and c are functions of the following 
nondimensional parameters: 

?“= viscosity ratio, 
12 

h 
k= thickness ratio, 

2 
06) 

AP PI-~2 
- = - = relative density contrast, 
Pl Pl 

1 

y2=T h2z* 

The unknown p is contained in the parameter 

~ = (Pl - P2M2 

mP 
(17) 

By a previously proved (Biot, 196313) theorem, 

the roots p are real; hence u is also real. For given 
values of the parameters vr/r]s, hr/hz, and Ap/pr, 
the variable u can be plotted as a function of ~2. 
Note that according to equation (5), yz is propor- 
tional to the ratio of the thickness 122 to the wave- 
length L. Such a plot therefore represents in non- 
dimensional form a relation between p and the 
wavelength. For each wavelength L=I~& there 
is a sinusoidal solution along the horizontal direc- 
tion in which the amplitude increases exponentially 
with time in proportion to the factor exp(pt). The 
stability equation (15) is quadratic and therefore 
has two roots. A negative root means that the 
amplitude of an initially present perturbation of 
the interface is damped out in time and thus will 
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disappear. In contrast, a positive root signifies 
that the amplitude will grow and thus is the sig- 
nificant one in the evaluation of the interfacial 
instability. In the present case of two layers we 
find that one root is positive and one root is nega- 
tive. In the following discussion we shall denote 

the positive root by 6. In general it can be shown 
that in a multilayered system the number of roots 
is equal to the number of nonrigid interfaces, in- 
cluding the top surface. 

The positive root (r is a function of p, and the 
coefficients a, b, and c of equation (15) are func- 
tions of ~2. Hence a graph of (r versus yz will show 
the rate of growth of given wavelengths. For very 
small and very large wavelengths the rate of 
growth of the amplitude is vanishingly small 
(a+ m), but for a certain wavelength it reaches a 
maximum, or in other words, u has a minimum. 
This wavelength is called “dominant” (Biot, 
1961) because it will stand out more and more 
clearly as deformation proceeds. Although any 
wavelength of an initially present irregularity of 
the interface is being amplified at any moment, 
the dominant wavelength grows so fast that its 
amplitude becomes greater and greater with re- 
spect to the amplitudes of all others. Thus, in an 
initial perturbation of arbitrary shape the domi- 
nant wavelength will become the wavelength 
finally observed, and this is the reason it is called 
“dominant.” We denote it by Ld. 

As a measure of the rate of growth of the domi- 
nant wavelength a “characteristic time” tC is 
introduced. This is the time in which the original 
amplitude of the dominant wavelength at t=O 
is amplified one thousand times. The exponential 
factor of amplification 

A = ePt (1% 

is called the amplification factor by Biot (1961). 
By equations (17) and (18), putting A = 103, we 
have for the characteristic time 

t, = 

37li~min(ln 10) 

(Pl - dgh2 

(19) 

The minimum value of u, when plotted against 
72, is denoted by umin. 

Given the values of ~~1,112, hr, h2, pr, and px, it is 
possible to compute Ld and t,. In the present 
discussion the following values have been chosen 
for the second layer: 

72 = 1Or7 poises; hz = lo6 cm; 

p2 = 2.2 g/cm3. (20) 

This second layer thus represents a layer of salt 
of 1,000-m thickness. The properties of the top 
layer are specified by means of the parame- 

ters (16). To assess the influence of a change in 
these parameters on Ld and to, three tables are 
presented, each of which is computed by varying 
one of the parameters only and keeping the other 
two constant. 

a) Dependence on the viscosity ratio VI/Q 

In Table 1 the ratio Ld/hz and the time te, ex- 
pressed in years, are tabulated for varying &z, 
with the values in equation (20) used for the 

physical constants. 

Table 1 

h AP 
Case - = 1 ; - = 0.1 

h Pl 

dlz Ld/h tc (years) 
~____- 

1 3.14 0.0104x106 

1:: z: 
0.046X106 
0.36X106 

1,000 8172 3.36X106 

In Figure 3 we have shown the curves u versus 
yz for r]]/~z= 1, 10, 100, and 1,000, with hJhz= 1, 
and Applpr = 0.1. These results mean that when the 
viscosity of the upper layer is increased (72 is 
considered fixed), the dominant wavelength in- 
creases, and the rate of amplification decreases. 

b) Dependence 0% the thickrtess ratio 

In Table 2 the ratio Ld/ht and the time &, ex- 
pressed in years, are tabulated for varying 
hl/h2, with 71~/772=1,000, and Ap/pr=O.l; the 
values in equation (20) are used for the physical 

constants. 
The curves u versus ~2 for this case are plotted 

in Figure 4. The case hJh2= 00 corresponds to an 
infinite overburden. This case was discussed in 
more detail by Biot (1963b). It is also obtained 
from equations (11) by putting yr = 00, which re- 
sults in considerable simplification and a linear 
equation for u. A further discussion of the case of 
the infinite overburden will be included at the 
end of this section. 

Examination of Table 2 and Figure 4 shows 
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-0 I 2 3 

- y, =h21/z 

FIG. 3. CT versus y2 for hl/ht= 1, Ap/pl=O.l, and 
varying viscosity ratio. 

clearly that for a thin top layer the short wave- 
lengths are more strongly amplified than the 
longer ones. For indefinitely large thickness of the 
upper layer, the dominant wavelength tends to a 
limiting finite value. However, when the upper 
layer is thin, the characteristic time tC becomes 
very large, indicating that the deformation takes 

Table 2 

Case ” AP - 1,000; - = 0.1 
92 Pl 

0.1 1.61 32.92X108 
1.0 8.72 
5 19.63 z:: :: 

20 27.32 0:63X106 
00 27.6 0.63X106 

a long time to build up. The plot of g versus yz 
also shows that the minimum of c is very flat for 
the case of a thin overburden (see case hJh* =O.l 

of Figure 4). The rate of emergence of the domi- 
nant wavelength from a randomly perturbed in- 
terface is expressed by the selectivity; this has 
been discussed by Biot (1961). The flatness of the 

minimum of CJ shows a lack of selectivity for a 
thin top layer. 

Of particular interest is the rapid decrease of 
the characteristic time tC for hl >hs. We conclude 
that the rate of growth of the deformation will 
become significant for overburden thickness from 
one to five times the thickness of the layer. The 
corresponding dominant wavelength will be in the 
order of 10 to 20 times the salt layer thick- 
ness. This result appears to be compatible with 
the observed range of distances between initial 
salt structures. 

c) Dependence on the relative density contrast 

It has been found that the dominant wave- 
length is quite insensitive to changes in Ap/pr. 
However, as can be expected, tc is extremely 
sensitive to such changes. For large hl/hz an 
accurate estimate for the rate of amplification of 
the dominant wavelength can be made by assum- 
ing that (T remains constant for varying Ap/pi. 
This is brought out in Table 3, in which amin is 
tabulated for various values of the parameters 

AP/PI and hJh2. 

Table 3 

Dependence of gmin on Ap/p~ and ItJhs 
for case q1/t)2= 1,000 

h&z 
AP/PI 

0.1 1 5 20 - 
-~- 

0.01 39.6 4.35 1.00 0.69 

8:; 
36.1 3.68 0.95 0.69 
32.1 3.29 0.90 0.69 

The characteristic times tc are given by equa- 
tion (19), which shows that tc is proportional to 
ami,/‘(pl-pp). Since for thickness ratios in excess 
of 5, rmrn is insensitive to changes in the relative 
density contrast, tc is inversely proportional to the 
density contrast. 

d) Surface submerged under water 

The case in which a fluid of density pf lies above 
the free surface is included in the analysis. In this 
case, instead of a density contrast p1 at the 
surface, we have a contrast pl-pf. This means 
that in the second equation (11) the density p1 
must be replaced by pl-pf, and the relative 
density ratio becomes Ap/(pl-pf). Because the 
value Of U&n, as shown by Table 3, is insensitive 
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to the relative density ratio, the characteristic 
times t0 will not be appreciably changed by a 
layer of water overlying the top layer. Similarly 
the dominant wavelength, which is also insensi- 
tive to changes in Ap/pr, will hardly be changed. 

e) Iqkence of a nonrigid base 

Finally some remarks can be made concerning 
the influence of a nonrigid base. Biot (1963b) 
has analyzed the case of a single layer of viscosity 
ql between two identical infinite half-spaces of 
viscosity qz. We shall compare this result with the 
case in which the bottom half-space is replaced by 
a rigid support. As already pointed out, this last 
case is obtained by putting hl= m in the previous 
analysis. The value of (r versus 72 is plotted in 
Figure 5 for a rigid base (dashed curves) and for a 
viscous base (solid curves). Nonrigidity of the 
basement does not affect results significantly for 
77r/72 > 100. The increase in dominant wavelength 
is affected by a factor less than 1.4. The charac- 
teristic time is slightly shorter for the viscous 
base, but for 17&z> 100, this effect is not more 
than about 10 percent. 

4. INSTABILITY WITH REDISTRIBUTION AT THE 

FREE SURFACE 

In the preceding discussion it was assumed that 
the overburden has a free surface which deforms 
into a corrugated surface of sinusoidal shape and 
an increasing amplitude as the unstable deforma- 

tion proceeds. It is of some interest to investigate 
what happens if the surface of the overburden re- 
mains flat. It is assumed that this flatness is ob- 
tained by any high spot on the upper surface being 
scraped off and the scraped-away material being 
deposited in the adjacent low spots. In this pro- 
cess the average thickness of the overburden re- 

mains the same. Such a procedure corresponds 
more or less to erosion of the upper surface by 
various geologic agents. We shall term it “re- 
distribution.” It should be noted that this surface 
condition is completely different from the condi- 
tion by which the upper surface is kept flat by 
means of a weightless rigid plate. 

Redistribution is simply accounted for by 
omitting the term plgVl in the second of equa- 
tions (11). If we assume that the forces per unit 
area acting on the upper free surface are propor- 
tional to the height of the column of material 
added or removed, the contribution of gravity 
to Tw in equation (7), which is plgV1, is exactly 
balanced by the force due to the redistribution, 
which is -plgV1 (Figure 6). Another way of look- 
ing at this problem is to consider equations (11) 
as defining the velocities dU&t, dV@, etc., as 
functions of the instantaneous values of Vr and 
V2. For “redistribution” we put VI equal to zero, 
at all instants, with the top surface remaining 
free. In terms of the analog model, redistribution 
implies the omission of the stabilizing 
force plgVl at the upper free surface. 

surface 

FIG. 4. D versus yz for V~/VQ= 1,000, Ap/pl=O.l, and varying thickness ratio. 
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FIG. 5. Stability curves for infinite overburden and rigid base (dashed) and infinite overburden 
and viscous base (solid). 

The stability equation similar to (15) is now a manner as before, u can be plotted versus yz. 
linear instead of a quadratic one, Figure 7 shows such curves for varying ql/qa 

but constant hr/h~( =l) and relative density 
a’a + b’ = 0, (21) contrast Ap/pr ( = 0.1). For short wavelengths the 

curves of Figures 3 and 7 are almost identical, but 
where a’ and b’ are, as before, functions of the for wavelengths of the order of and longer than 
three nondimensional parameters. In the same the dominant wavelength, there is considerable 
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FIG. 6. Force applied to upper surface, 
equivalent to “redistribution.” 

difference, consisting of a longer dominant wave- 
length and, most important, a quite significant 
reduction in time tc. The latter is not surprising. 
The extra surface force attendant with the process 
of “redistribution” acts exactly in a way to 
accelerate the instability. In Table 4 the ratio 
Ld/hz and the time t, are tabulated for the case 
shown in Figure 7, computed for values given in 

Table 4 

Redistribution case hI/hz= 1; 
Ap/pl=O.l 

w/m Ld/hz tc (years) 

3.92 
5.76 
8.37 

12.20 

0.007X106 
0.012x106 

E8:: :: B 

equation (20). As shown by comparison with 
Table 1, the reduction in t, is particularly obvious 
for high viscosity ratios. It is to be expected that 
the greatest changes in tc will occur for very thin 
upper layers. This is shown by comparing Table 
2 with Table 5, in which the ratio Ld/t& and the 
time t, are tabulated for constant TJ~/~z( = 1,000) 
and Ap/pl(=O.l) but varying hr/hz. This com- 

Table 5 

Redistribution case qt/rlz= 1,000; 
Ap/p~=O.l 

h/h L&z tL (years) 

0.1 4.03 0.009x106 
1.0 12.20 0.059x108 
5 26.18 0.268X108 

20 0.622%10s 
m 0.63x106 

parison shows that redistribution does not sig- 
nificantly alter the dominant wavelength. How- 

ever, for this overburden the characteristic time 
is shortened drastically. The dependence of tc on 
the overburden thickness is also completely re- 
versed. With redistribution it increases toward a 

limiting value as the overburden thickness tends 
to infinity. 

5. INSTABILITY WITH TIME-DEPENDENT THICKNESS 

AND COMPACTION OF OVERBURDEN 

So far we have considered only cases in which 
all parameters remained constant. Actually these 
conditions are not fulfilled. Compaction of sedi- 
ments during geologic time will increase the 
density contrast Ap, and lithification of the over- 
burden will increase its viscosity. Of special 
relevance is the case in which the thickness of the 
overburden increases during development of the 
instability. Then the dominant wavelength is no 
longer constant but increases with increasing 
thickness of overburden. Changes in growth rates 
of individual wavelengths with increasing thick- 
ness of overburden, and the consequent shift in 
dominant wavelength, are brought out in Figure 
8, in which the quantity l/u, proportional to p 
according to equation (17), versus the thickness 
ratio hr/hz for a number of wavelengths in the 
case Ap/pr=l/lO and ?,+$r=l,OOO is shown 
graphically. 

The figure shows that initially, i.e., for small 
thickness of overburden, short wavelengths grow 

161. 

16 -, 

14- 

IZ- 

FIG. 7. Redistribution. CT versus 72 for 
hl/hz= 1, Ap/pl=O.l. 
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faster than iong ones and soon reach a constant 
rate. With increasing thickness of overburden, the 
rate of growth for longer wavelengths continues to 
increase, whereas it stops for the shorter wave- 
lengths. This results in a crossover of curves in 
Figure 8 as, for example, the curves for L = 10 km 
and L=30 km. For very long wavelengths 

(L >30 km), the curves will rise slowly and do not 
reach as high a value of l/u as those for L in the 
neighborhood of the dominant wavelength. The 
fastest growing wavelength at any value of hr/hz 
is the one for which l/u has the maximum value; 
it is clear from Figure 8 that this wavelength 
shifts to higher values with increasing hl/hz and 
approaches some maximum constant value for 
the dominant wavelength. 

In this section we shall consider in some detail 
the influence of changes in density p1 and the 
thickness ratio during the instability. Let it be 
assumed that hl increases linearly with time and 
that hz( = lo5 cm) remains constant: 

hl t 
-=-) 

h2 to 
(22) 

where t, represents the time in which the over- 
burden reaches a thickness equal to that of the 
salt layer. The thickness ratio is then a measure of 

time. At any moment the overburden, whose 
density varies in the y direction, can be thought to 
be composed of a large number of layers, each 
with a density pi. It was shown in Section 2 that 
the effect of gravity is analogous to the case of a 
weightless layer with the addition of an interfacial 
force of magnitude (p’-p)gV per unit area and 
acting downward. Each thin layer contributes 
such a force. The idea is to replace the total over- 
burden by a single layer having an “effective” 
density pe so that its behavior approximates that 
of the sum of the discrete layers. 

It was shown by Biot (1963b) that equations 
(11) corresponding to a multilayered case could be 

written formally as 

dT 
- = 0, 

a(T + G) = 
dlJi avi 

0, (23) 

in which the function T is an invariant cor- 

responding to the potential energy of the whole 
system, and G is an invariant from which the 
interfacial force due to gravity is derived. G is 
given for an a-layered medium by 

G = $ g (Pi+1 - pi)gd+1. (24) 
1 0 

The overburden is now replaced by a single layer 
of effective density pe so that G remains un- 
changed; that is, 

G = ;[P&~ - (Pe - PZkV22J. (25) 

Equating (24) and (29, one obtains 

--P,gv12 + (Pe - P2)gv22 

= g (P; - pi+&&+r. (26) 

If we denote the density of the overburden by pI 
at the top and by pn at the bottom, we can write 
in the limit, when m+m, 

+ J-1 $ V2(Y)dY, (27) 
, 

in which dp/dy<O for density increasing with 
depth. In the evaluation of pe from equation (27) 
we use the relation between density and depth of 
sediments determined by Nettleton (1934) for the 
Gulf Coast region. This relation is shown by curve 
A in Figure 9 and can be approximated by the 
function 

p(y) = 2.49 - 0.59e”g - ayeBy, (28) 

in which 

QI = 0.59 X 1O-6 cm-‘, 

p = 1.6 X 1O-6 cm-l, (29) 

a = 5 X lo-” g/cm2, 

and -y is the depth expressed in cm. The curve 
representing equation (28) is shown as B in 

Figure 9. 
The amplitude of the displacement at any 

depth y, V(y), can be expressed as a function of 
y, VI, and V2 by means of the solution employed 
in any one layer of the medium which is of the 

type 

V(y) = klezv+k2e-zy+K3yezY+K4ye- . lu (30) 
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L=lOkm 

L=Skm_ 

I_=1 km 

1 I , , I I I 
I 2 3 4 5 6 7 

” v IN THOUSANDS OF METERS 

FIG. 8. Instantaneous rate of amplification of various 
wavelengths L as function of thickness of overburden. 
No redistribution, Ap/p~ = 0.1, q1/q2 = 1,000. 

The constants k; are determined by the conditions 

1) V(y) = VI for y=O, 
2) V(y) = V’S for y= --hl, and 
3) The incremental stresses T,, and Tw are 

zero at the free surface y = 0. 

We find that the integration constants ki can be 
simply expressed as linear functions of VI and VZ. 
Noting that equation (27) is homogeneous in VI 
and VP, we can eliminate these amplitudes once 
the ratio ‘VI/V2 is known. In principle this is 

possible by means of equation (11). However, a 
simpler result is obtained by putting V1=O. This 
is permissible because the ratio VI/V2 is quite 
small, as can be checked for various wavelengths 
and the parameters T&JZ= 1,000, Ap/pl=O.l by 
means of equation (11). Consideration of the 
analog model shows why this should be so. At the 
bottom of the overburden the rate of energy in- 
put by the interfacial force into the system is 
proportional to 

(P1 - pz)gVzdl/‘z, 

and at the free surface it is proportional to 

-PlgVldT/‘l. 

Since energy is dissipated in the system, 

(Pl - /Jz)gV’zdl/z > PlgVldVl; 

‘thus 

Vz > Vl. 

For VI=0 we obtain 

V(Y) = 
-1y cash ly 

2y1 cash 2~~ 
v2. (31) 

The effective density is therefore given by 

O 
pe = Pn + S 

y2 cosh21y dp 
- dy. (32) 

_-hl h12 cosh2 lhl dy 
Equation (32) shows that for short wavelengths 
(Z+=J) pe tends to pn, but that for long wave- 

2 IO 

a 

A: NETTLETON’S DENSITY DISTRIBUTION 

6: CURVE USED IN COMPUTATION IEPUATION 261 

200 

I .900 I I I I I 
I 2 3 4 5 

- km 

FIG. 9. Density-depth relation for Gulf Coast sediments. 
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2.45 - 

2.40- 
L = 500 METERS 

2.35- 

2.30- 

- DEPTH dF OVERBURDEN (h,), KILOMETERS 

FIG. 10. Effective density for L=f, 10, and 30 km. In insert is shown the depth of overburden at 
which a given effective density is reached for wavelengths up to 30 km. 

lengths pe <p,. In Figure 10 the effective density 
is shown for various wavelengths as a function of 
hl/hz. The instability will start as soon as the 
effective density pe exceeds ~2, the salt density. 

An estimate of the time dependence of the 

instability of the salt can now be made as follows. 
First the depth at which pe exceeds the density of 
the salt is computed. This depth is slightly de- 
pendent on the wavelength, as shown in the in- 
sert of Figure 10. The time TV, which we call delay 
time, corresponding to this depth depends on the 
rate of sedimentation. Various geologists (Murray, 
1952; Shepard, 1953; Kay, 1955) have made esti- 
mates of the following magnitudes: 

50 cm/lo3 years (fast), 

20 cm/lo3 years (intermediate), (33) 

10 cm/lo3 years (slow). 

In equation (22) these rates correspond (for 
hz=106 cm) to &=6.3X1013, 1.6X1014, and 
3.15X 1014 set, respectively. 

From the instantaneous amplification rates, as 

shown in Figure 8, p(L, t) can be estimated as a 
function of depth of overburden and hence of 
time t and wavelength L. The amplification A at 
time t of a specified wavelength L is given by 

(34) 

that is, essentially, by the area underneath the 
curves of Figure 8 in which the horizontal scale is 
converted into a time scale by means of the given 
rates (33). The crossover of the curves in Figure 8 
indicates that the time required to obtain a given 
amplification reaches a minimum for some wave- 
length close to 20 km. 

The integrand in equation (34) can be written 
as 

.&to 
p(_L, t)dt = - 

1 hl 

71 
(Pe - p2)--d 7 * 

u 0 
(35) 

2 

An estimate of the amplification time t is made by 

assuming that l/u does not vary with the density 

contrast pe-~2. 
Then since pe-p2 and l/u are known as func- 

tions of hr/h~, A can be estimated graphically by 
means of equation (35). The result for the inter- 
mediate rates of sedimentation (33) is shown in 
Figure 11. 

The characteristic time tC corresponds to the 
curve for which A = 103. The wavelength L which 
is at some time t amplified most will, in general, 
not be the wavelength which at that moment is 
being amplified at the fastest rate. Hence, we 
must make a distinction between two types of 
dominant wavelength-the instantaneous domi- 
nant wavelength and the physically dominant 
wavelength, that is, the wavelength amplified the 



226 Biot and OdiS 

4 

2 
.iTIME AT WHICH pe REACHES 

SALT DENSITY 

OO 
I , 1 I ! 
5 10 I5 20 25 30 

WAVELENGTH iL1, KILOMETERS 

FIG. 11. Time t required to obtain a given amplifica- 
tion factor A under conditions of variable compaction 
and thickness of overburden (rate of sedimentation 
20 cm per 108 years). The curve for A = lo8 corresponds 
to the characteristic time t.. 

most at the time t. It is the latter which is indi- 
cated in Figure 11. 

The rate of sedimentation makes some differ- 
ence in the final Figure 11. If this rate is small, 
the time t, will be larger and the dominant wave- 
length will be somewhat shorter than indicated in 
Figure 11. If the rate of sedimentation is fast, 
the observed dominant wavelength will be some- 
what longer than is indicated, and the times will 
be shorter. Whatever the rate of sedimentation 
may be, the time history can be described as 
follows: First there is a period in which the effec- 
tive density of the sediment is increased to that of 
the salt. Only then does the instability set in. This 
time is shorter for fast rates than for slow rates. It 
is probable that in many salt basins the initial 
rates are relatively slow, and thus several million 
years are needed for the instability to start. After 
that initial stage, the sediment density slowly 
builds up. During this time the density contrast 
is small, and the dominant wavelength is rela- 
tively short, but the rate of growth of any wave- 
length also remains small. This period might be 
described as the “incubation period” of the salt 

structure. Finally, in the third period enough sedi- 
ment has accumulated to create sufficient density 
contrast, the dominant wavelength has increased 
to a wavelength of the order of 15-20 km, and the 
accompanying rates have grown so large that the 

instability starts growing rapidly. It is now that 
the salt structure takes shape and finds its ex- 
pression in a series of well-defined undulations of 
the overburden-salt interface. In Figure 11 a ten- 
fold increase in amplitude for the dominant wave- 
length is attained in the order of only one million 
years, which shows that all the important strati- 
graphical relationships observed around the 
emerging salt structure possibly originated in a 
relatively short time as compared with the total 
lifetime of the instability. The curves in Figure 11 
are based on the assumption of a uniform rate of 
sedimentation throughout the basin. This assump- 
tion is only very approximately true. The precise 
time dependence of sedimentation rates through- 
out a given basin has an important bearing on the 
growth of certain groups of structures and the 
relative quiescence of others in the same basin. 
However, this subject is beyond the scope of this 
paper. 

Figure 11 shows a rather broad minimum, 
which means that the amplification is not very 
selective. Initial perturbations on the overburden- 
salt interface are probably of short extent. This 
means that they are not much amplified, but that 
in the presently observed interface only wave- 
lengths longer than 10 km are likely to be ob- 
served. Moreover the shape of the curves of 
Figure 11 is not particularly sensitive to the 
values of the initial thickness of the salt (hz), the 
viscosity ratio between overburden and salt, and 
the relative density contrast. These values, rather, 
determine the length of the “incubation time” of 
the structure. This may explain the somewhat 
uniform appearance of many salt structures in 
various basins in the world. 

We must also emphasize that the present theory 

covers only the initial phase of the growth of salt 
structures. The vertical ascent of salt in pillars or 
“chimney”-like structures, so well known in the 
Gulf Coast Basin of the United States of America, 
represents a later phase in the process of instabil- 
ity, which we do not discuss here. 
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