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FURTHER DEVELOPMENT OF THE THEORY OF 

INTERNAL BUCKLING OF MULTILAYERS 

Abstract: The approximate theory of internal 
buckling of multilayers is obtained by a direct 
method and generalized to nonsinusoidal deforma- 
tions. The numerical discussion includes the case of 
unequal thickness of competent and incompetent 
layers. Simple expressions are derived for the domi- 
nant wave length for rigid confinement or self- 

Zntroduction 

For geological applications it is important to 
supplement exact theories of buckling of multi- 
layered structures by simplified approximate 
treatments which bring out the essential mech- 
anics and lead to simple formulas. For internal 
buckling of confined multilayers, such an ap- 
proach was initiated in two previous papers 
(Biot, 1963; 1964a). In this paper the equations 
that govern internal buckling are derived in a 
different and more direct way. They are also 
expressed in more general form, as a set of field 
equations with two unknowns: the vertical 
deflection and the vertical stress. These field 
equations are not restricted to sinusoidal de- 
flections. 

Values of the dominant wave length were 
given earlier (Biot, 1964a) for competent and 
incompetent layers of equal thickness. In this 
paper we have extended the numerical dis- 
cusssion to layers of unequal thickness and 
obtained results quite similar to those of the 
previous analysis, showing that the thickness 
of the competent layer, as well as the confine- 
ment thickness, is a significant parameter. 

Internal buckling may be caused by rigid 
confinement or by self-confinement when oc- 
curring in a medium of infinite extent. Either 
case follows from the same analysis. The theory 
is presented in the context of viscous media and 
is derived in two different ways: from solid and 
fluid mechanics. Both methods lead to equa- 
tions which for all practical purpose are identi- 

confinement showing the influence of interstitial 
flow. The theory is presented in the context of 
viscous media using both solid and fluid mechanics 
and is valid for large compressive strain and mod- 
erate slopes. Its applicability to elastic and visco- 
elastic media is indicated. 

cal. The results are valid for large compressive 
strain with variable thickness of the layers. 

As will be pointed out further on, equations 
applicable to elastic and viscoelastic media are 
immediately obtained by viscoelastic corres- 
pondence. 

Equilibrium Equations For Plate Buc&ng 

Consider a plate of thickness 2/r under an 
average compressive stress P along its axis (Fig. 
1). We will assume plane strain in the x,y plane 
of the figure. When the plate is deformed with 
moderate slopes, a compressive stress approxi- 
mately equal to P continues to act along the 
deformed axis (Fig. 1). At the same time the 
deformation generates a bending moment x 
and a total shear z acting over a cross section. 
This cross section is assumed to be of unit width 
in the direction perpendicular to the x,y plane. 
Hence X and X have the dimensions of a 
moment and force per unit width. Also per 
unit width and per unit distance along the axis 
we apply a vertical load q and a clockwise 
moment m. The equilibrium conditions of these 
forces for the deformed plate with moderate 
slopes are approximately 

The vertical deflection is denoted by v. Except 
for the additional external moment m, these 
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Figure 1. Forces and stresses on a composite plate containing one competent layer 

equations are the same as those considered in 
the previous theory of similar folding (Biot, 
1965a). Elimination of X yields 

a2m -=- 
a.2 

q--f&+2&‘/@! 
ax2 (2) 

A derivation of this equation is also given in an 
earlier paper dealing with the effect of inter- 
facial adherence on viscous and viscoelastic 
folding (Biot, 1959). It can be shown that 
equation (2) is a consequence of the general 
mechanics of initially stressed media (Biot, 
1965b, p. 127). 

Y 

4- X 

Buck$ing Equation for a Competent 
Layer in a Multilayered Structure 

Consider a multilayered structure of viscous, 
incompressible material. Competent layers of 
thickness hr alternate with incompetent layers 
of thickness hs (Fig. 2). The system may be 
regarded as a stacking of plates, each plate being 
composed of a competent layer sandwiched be- 
tween two incompetent layers of thickness 
h2/2. The total thickness of the composite 
plate is denoted by 2h = hr + hs. We shall 
apply equation (2) to this composite plate. We 

Figure 2. Structure of composite plate containing one competent layer 
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assume that the bending moment is generated 
entirely by the competent layer of viscosity 
r] 1. This bending moment is1 

where ti is the time derivative of the vertical 
deflection of the axis. 

Tangential stresses uzy’ and uzy are also 
acting on top and bottom of the composite 
plate. They generate an external moment 

m = h (uzy’ + a&. (4) 

the vertical stresses uyy’ and uV2/ at the top and 
bottom of the composite plate (Fig. 1). Hence, 

q = t_~~~’ - uyy s 2h &EL. 
dY @I 

In this expression the vertical stress uyy is as- 
sumed to be distributed continuously along the 
vertical axis y. With the values obtained from 
equations (3), (6), and (8), equation (2) be- 
comes 

+ qlh13 !?! + 2ph & _ 2h,,$! 
an4 a2 ax2 

The tangential stress may be written approxi- 
mately 

-2h!%$=O. 
(9) 

ae u,y’ G’Uzy = ?jt - . 0 
This equation contains two unknowns, v and 

ax ug2/ Another equation will now be derived by 

1 
CrYY 

Figure 3. Interstitial flow in the incompetent layer 

Hence, 

m = 2hr]$+ . ax 

The average tangential viscosity coefficient of 
the multilayer is (Biot, 1963; 1964a) 

17t = ll(e7lf azls2) 9 (7) 

where 712 is the viscosity of the incompetent 
layer, whereas al = h1/(2h) and a2 = h2/(2h) 
represent the fractions of the total thickness 
occupied respectively by the competent and 
incompetent layers. 

The vertical force q is the difference between 

‘This moment acts only in the competent layer of 
thickness hl. A derivation of equation (3) was given 
previously (Biot, 1961). 

considering the average vertical compressibility 
of the multilayered structure. 

Vertical Compressibility and Interstitial Flow 

Again we regard the multilayered structure 
as a stacking of composite plates. However, this 
time the composite plate is made up of an in- 
competent layer sandwiched between two 
competent layers, each of thickness 121/2 (Fig. 
3). Under a vertical stress ully this composite 
plate will exhibit a vertical strain rate. If the 
strain is assumed to be the same in the two 
materials the rate of change of the total thick- 
ness is 

. h 8’ - v = - ul/v. 
&h 

(10) 

In this expression ti’ and d are the time deriva- 
tives of the vertical displacements on top and 
‘bottom of the composite plate, and qn is the 
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average vertical viscosity coefficient of the 
multilayered structure (Biot, 1963; 1964a), 

?In = al.71 + wvz. (11) 

Note that z, represents the vertical displacement 
of the center line of a competent layer. 

As already pointed out in a previous analysis 
(Biot, 1964a) an additional vertical strain may 
become important owing to the occurrence of 
interstitial flow in the incompetent layer. This 
flow is represented by a horizontal velocity 
distribution 4, approximately parabolic across 
the thickness of the incompetent layer (Fig. 
3). We write this velocity distribution 

ti= (l+Jjw. (12) 

In this expression we have assumed the x axis 
to coincide with the center line of the incompe- 
tent layer. Since the layer is incompetent the 
two normal stress components, cZZ and uyy, 
inside the layer are approximately equal. Hence 
we put uZZ = gVzl With this assumption the 
equilibirum condition for the stresses becomes 

C!!CX+!?C%,. 
aY 

(13) 

The shear stress uZy in the layer is 

PTbining equations (12), (13), and (14) we 
n 

f(x) = g2 9. (15) 

Because of incompressibility the local rate of 
increase of thickness of the incompetent layer 
due to interstitial flow is 

s $i hz 
A2 = - !%dy= -)hzz. df (16) 

-&hz 

zctrnzlsre value (15) for f(x) this expression 

h2 = _ 1223 a2usll -. 
12712 8x2 (17) 

When interstitial flow is taken into account the 
total thickening of the composite plate is ob- 
tained by adding hz to expression (10) ; hence, 

h h32 d2um g_gj=_ga,,-- -. 
2% 12r]z ax2 (18) 

Finally we assume an averaged smooth distribu- 
tion of ti in the vertical direction. We put zi’ - 
6 = Zh(%/$) and write equation (18) as 

2,1$=hu,,_- -. ht3 ahu 
ay hn 12q2 a2 (19) 

Thus we have derived two simultaneous equa- 
tions, (9) and (19), for the two unknowns, v and 
UY?P 

Internal Buc&ng under Self-Conznement 

Let us assume a sinusoidal distribution of v 
and uyy along x and y. We put 

v = v cos [ly cos lx 

U - -Ssin[lycosIx. 2/2/ - (20) 

Substituting these values in equations (9) and 
(19) and eliminating S yields 

P$=qt+ 
0 

” ‘qn 4 + y a13qly2. 
Y 

(21) 

We have put 

y=+lh 

6=1 
1 + K’f 

K = 16 n, a23 
3 rls 

The quantity n represents the number of layers 
contained in the half vertical wave length H. 
This can be seen by writing the value of H as 

H=$=nh. (23) 

The wave length C along the layers is related to 
y and I by the relation 

The pattern of self-confinement folding repre- 
sented by equations (20) is shown schematically 
in Figure 4a and is the same as previously de- 
rived for anisotropic elastic media and multi- 
layered structures (Biot, 1963; 1964a). The 
term self-con&ement was introduced to indicate 
that this type of folding occurs in a medium of 
infinite extent and does not require the presence 
of any confining boundaries. 

Under the average compressive stress P the 
structure undergoes a uniform horizontal 
shortening of the layers and a corresponding 
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thickening in the vertical direction. Folding ing confined between two rigid straight bound- 
patterns as shown in Figure 4a will develop 
spontaneously with rates of growth, depending 

aries without friction. The two competent 

on the vertical and horizontal wave lengths. 
layers adjacent to the rigid walls are only half 

They are triggered by the particular distribu- 
the thickness of the same layers inside the 

tion of irregularities initially present in the 
medium. The distance H between the confining 
walls increases with time to allow for lateral 

structure. The time history of the pattern can 
be evaluated by expanding the initial dis- 

expansion as the medium is compressed. The 

turbance in a double Fourier series and pro- 
result is obviously valid for any type of con- 
finement which is approximated by the present 

(a) (b) 

Figure 4. Folding pattern of internal buckling of a multilayered structure. (a), self-confinement; 
(b), rigid confinement 

ceeding exactly as in the similar problem for the 
case of a single layer (Biot and others, 1961). 

Actually during the process of folding, the 
wave length d: decreases due to the over-all 
compressive strain. Correspondingly the wave 
length 2H in the vertical direction increases. 
This may be taken into account by noting that 

(25) 

becomes a function of time. Hence equation 
(21) is a differential equation for V with time 
dependent coefficients. As will be discussed 
further on, appropriate constant values of 6: and 
H may be chosen as a simplifying approxima- 
tion. 

Internal Buc!$ing under Rigid Conjkement 

By assuming the center lines of two compe- 
tent layers A and B to remain straight and to be 
separated by one-half wave length H, we obtain 
the case shown in Figure 4b. It represents a fold- 

case. Frictionless boundaries are not essential 
since the adjacent incompetent layer tends to 
act as a lubricant. 

Layers of Equal Thickness 

For competent and incompetent layers of 
equal thickness equation (21) leads to the re- 
sult already obtained for this case in a previous 
paper (Biot, 1964a). We put al = a2 = g. 
With PI denoting the compressive stress in the 
competent layer, we write approximately 
Pr (1/2)Pl, qt z 2qs, 7% =” (l/2)711. With 
these values equation (21) becomes 

(26) 

where 

This result coincides with equation (18) of the 
previous paper (Biot, 1964a). 
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Dominant Wave length 

If the amount of compression is not large, the 
quantities 6: and H may be approximated by 
time-independent values. In that case V/V = p 
is a constant determined by substituting this 
value in equation (21), whereas V is pro- 
portional to exp (pt). 

The right side of equation (2 1) , considered as 
a function 7 goes through a minimum for a cer- 
tain value y = Ed which yields the dominant 
wave length d& = ?r/z/yd. This is the wave 
length which grows at the fastest rate and will 
predominate in the folding process. As shown 
elsewhere (Biot, 1964b; 1965b; 1965~) the 
time-independent values of d: and H to be used 
in the simplified approximate treatment are the 
wave length after deformation and the thick- 
ness before deformation, respectively, The 
evaluation of the dominant wave length is 
considerably simplified by writing y2 in the 
form 

with a new variable Z related to the wave length 
by the relation 

d3= 
27r $2/l;;i7 ( ) 1/3 

- = 1 go 9. (29) 
z . 

By substituting the value obtained in equation 
(28) for y2 and introducing the approximate 
relation2 qn = alvl, equation (21) is written 

ps 
v =w+ fin 

4*aP771 z2+ 8 . I 1 (30) 

The factor 6 of equations (22) now becomes 

(ye’ 
1 + KZ2’ 

with 

(32) 

Note the physical significance of S. As shown 
previously (Biot, 1964a) it measures an ap- 
parent vertical stiffness 6~~ which is smaller 
than qn due to interstitial flow. 

The dominant wave length is determined by 
equating to zero the derivative with respect to 

2The analysis may be carried out without this as- 
sumption, but in practice little is gained by doing so. 

Z of the bracket in equation (30). This yields a 
relationship between Z and K which may be 
written in the form 

24 = 6(2 - S) . (33) 

For numerical evaluation we substitute this 
value of Z in expression (31) of 6 and obtain 

K2= (I--. 

63(2 - 6) 

Equations (33) and (34) provide a parametric 
plot of Zversus K, shown in Figure 5, with the 
values of 6 along the curve. The plot may be 
approximated by two asymptotic branches, 
AB and BC. Along AB (Z = 1) the dominant 
wave length is 

&? = 1.90 m. (351 

For small values of d we write Z4 = 26, K2 = 
(l/2) R3, and Z = (2/K)& This yields the 
branch BC and the corresponding value 

(36) 

Hence the dominant wave length is given by 
whichever is the largest of the two values, 
equation (35) or (36). Note that the same ap- 
proximations are also derived by substituting 
8 = 1 and 6 = l/~y~ in equation (21). This 
remarkably simple result shows that the wave 
length is controlled mainly by the thickness hl 
of the competent layer and by the confining 
distance H. 

The effect of interstitial flow on & becomes 
significant for K > 2 when the value (36) is 
applicable. This is expressed by the condition 

g > 0.275 2. 
82 - 

(37) 

For layers of equal thickness (a2 = l/2) we 
find (0.275)/aa3 = 2.2. In a previous discussion 
of this case (Biot, 1964a) the factor 3.4 was used 
instead of 2.2. The latter is more correct, but 
the difference is not significant. 

Consider for example the case vi/712 = 1000, 
n = 100, and a2 = l/4. The incompetent 
layer is one-third the thickness of the competent 
layer. Application to this case of the inequality 
(37) shows that interstitial flow is not significant 
and the dominant wave length is given approxi- 
mately by the simple formula (35). Note that 
in equation (36) the correction factor for in- 
terstitial flow is very insensitive to the vis- 
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cosity ratio qr/qa. This conclusion was derived 
previously (Biot, 1964a). 

Empirical Formula for the 
Dominant Wave Length 

With an error less than about two per cent 
it is possible to fit the curve of Figure 5 in the 

Z 

A 
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interface. As can be seen from the value of 
equation (7) of vt interfacial lubrication re- 
quires that the value is/as remain sufficiently 
small in relation to 71. 

Owing to the approximations, strict ap- 
plicability of the theory requires the wave 
length to be larger than about 10 times the 

I 

0.9 

0.8 

k3 k 2 8 

K- 

Figure 5. Plot representing in compact form the relation between the dominant wave 
length and the controlling parameters according to equation (33) for the nondimen- 
sional variables Z (29) and K (32). A logarithmic scale is used for K. The relative magni- 
tude of interstitial flow is measured by the value of l/6. 

complete range (0 < K < w) by the equation 

1 KQ 

Z 
-= 1+7 . 

( > 
(38) 

Hence from expressions (29) and (32) we derive 
the following empirical formula for the domi- 
nant wave length: 

3 Cd = 1.90 1 + 3.63 F 
> 

‘m. (39) 

Range of Validity 

If we put ua = 0 in equation (39) the domi- 
nant wave length is given by expression (35). 
This corresponds to incompetent layers of zero 
thickness. However, this has a physical meaning 
only if sufficient lubrication is retained at the 

thickness of any layer (Biot, 1964a; 196%). 
This will be verified in a very large category of 
problems. 

Large Deformations and Viscous-Fluid Theory 

The previous results are applicable to a cate- 
gory of large deformations. As already stated, 
equation (21) may be considered as a differential 
equation for V, with time-dependent coefh- 
cients. In this case y is a function of time which 
embodies the gradual thickening of the layers 
and the corresponding shortening of the wave 
length. The theory is therefore applicable to 
large compressive strain, with moderate slopes. 
The author has shown that in first approxima- 
tion the observed folding wave length does not 
participate in the over-all shortening. 

More comprehensive treatment for the case 
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of large strain has been given elsewhere (Biot, 
1964b; 1965b; 1965c), in the context of viscous- 
fluid theory. In this connection it is of interest 
to show that the same equation (9) may be 
derived directly from viscous-fluid theory. We 
have shown (Biot, 1964b; 196513; 1965c) that 
viscous buckling may be derived from an 
analog model initially stress-free, where the 
effect of the compression is replaced by tan- 
gential forces at the interface of the two fluids. 
This amounts to putting P = 0 in equation (2) 
and including in the value of m an additional 
moment Iti(Pr - P&%/&V, where Pi and PZ 
are the compressive stresses in the competent 
and incompetent layers, respectively. This 
procedure leads to the same equation (9) except 
that 2Ph is replaced by /zl(P~ - P,). The 
difference amounts to a small correction in the 
time scale which in practice may be disre- 
garded. 

Elastic and Viscoelastic Materials 

By the correspondence principle the theory 
is formally the same for viscous, elastic, and 
viscoelastic media. In particular the buckling 
load for a perfectly elastic medium is derived by 
replacing the time derivative V by V and the 
viscosities r]i and 72 by the elastic moduli ~1 and 
~2 of the two layers. This leads to equation (16) 
of a previous paper (Biot, 1964a). This same 
equation also provides the solution of a large 
category of viscoelastic cases. For example, 
putting M = PIUI + pmaz and L = ppo,3/ 
(aivsp + aspi) in the cited equation solves the 
folding problem of elastic layers of modulus 
~1 alternating with viscous layers of viscosity 
712. The quantity p appears in the factor exp 
(pt) which describes the time rate of growth of 
the amplitude of folding. A detailed discussion 
of the general theory is given in the author’s 
book (Biot, 1965b). 
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