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THREE-DIMENSIONAL GRAVITY INSTABILITY 
DERIVED FROM TWO-DIMENSIONAL SOLUTlONSt 

M. A. BIOT* 

The theory of three-dimensional gravity instability of multilayers is developed with particular application to 
salt structures. It is shown that three-dimensional solutions are immediately obtained without further numerical 
work from the solution of the corresponding two-dimensional problem. Application to a number of typical three- 
dimensional structures yields the characteristic distance between peaks and crests and shows that this distance 
does not differ significantly from the wavelength of the two-dimensional solution. Various periodic patterns are 
examined corresponding to rectangular and hexagonal cells. The time history of nonperiodic structures correspond- 
ing to initial deviations from perfect horizontality is also derived. The method is applied to the three-dimensional 
problem of generation of salt structures when the time-history of sedimentation is taken into account with variable 
thickness and comnaction of the overburden and establishes the general validitv of the ecological conclusions de- 
rived from the pre;ious two-dimensional treatment of the same pr%lem (Biot and Ode’,~l%)~?he present method 
of deriving three-dimensional solutions, which is developed here in the special context of gravity instability, is valid 
for a wide variety of problems in theoretical physics. 

I. INTRODUCTION 

It is now generally accepted that the physical 
mechanism for the generation of salt domes is 
provided by the gravity instability which arises 
when a denser material lies on top of the salt 
layer. Due to the action of gravity and the plastic 
properties of the materials the salt tends to in- 

trude into the denser overburden. This mecha- 
nism was originally proposed by Arrhenius (1912). 
Extensive model tests by Nettleton (1934) and 
evaluation of the scaling factor by Hubbert 
(1937) with application to actual geological 
structures and known geological time-scales have 
put the theory on a firm basis. 

Additional model studies and further compari- 
son with geological data have also been made by 
Dobrin (1941), Parker and McDowell (195.5), and 

Nettleton (1955). 
When attempting to develop a mathematical 

analysis of the generation of salt domes one 
should distinguish between two phases. The first 
phase involves the formation of what is some- 
times referred to as “pillows” where the upper 
boundary of the salt structure is deformed in hills 
and valleys of gentle slopes. In the second phase 
cylindrical columns of salt intrude vertically into 
the over-burden. The cylindrical column (diapir) 
represents the salt dome proper. 

t Manuscript received by the Editor April 23, 1965. 

The interest in considering the first phase as a 
distinct problem lies in the possibility of lineariz- 
ing the equations. In particular it is justified to 
consider small perturbations of the medium near 
a state of hydrostatic equilibrium where the ini- 
tial stress is approximately isotropic. In the per- 
turbed state the slope of the interfaces between 
layers remains small and small incremental stresses 
are generated which are approximately linear 
functions of the strain rate. This implies that the 
motion is nearly the same as if the materials were 
purely viscous. Hence, in spite of the fact that the 

rheological properties of rock for large strain are 
strongly nonlinear, we may, in this case, apply the 
linear equations for viscous fluids using a “dif- 
ferential viscosity” coefficient defined for incre- 

mental stresses (Biot, 1961; 1965a, page 390). 

It should be noted that, even if we assume a 
plastic material such that under geological condi- 
tions creep becomes negligible below a certain 
threshold of shear stress, the viscous and visco- 
elastic model will still be valid for imremental 
deformations superposed upon an initial state of 
slow creep which itself may be due to tectonic 
action or uneven sedimentation. 

Except perhaps insofar as it may clarify cer- 
tain initiating conditions, the present analysis as 

well as the earlier two-dimensional treatments 

* Consultant, Shell Development Company, New York, New York. 
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156 M. A. Biot 

The rotated pattern (2.3) is also a solution of the adding an arbitrary phase to the sinusoidal pat- 
problem of instability. tern. Hence we may also express it as 

The same considerations are of course also 
applicable to a horizontal translation of the pat- 20(x, y) = sin Ix, (3.4) 

tern. 
As will now be shown, these methods of super- 

position and rotation lead to a completely general 
analysis of three-dimensional instability by using 
as basic components the two-dimensional solu- 
tions. 

The procedure is evidently applicable to a 
much wider range of problems than those of 
gravity instability which are considered below 
since the only condition required is that of trans- 
verse isotropy and the validity of the superposi- 
tion principle. 

3. BASIC TWO-DIMENSIONAL SOLUTIONS 

The two-dimensional solutions of gravity insta- 
bility which we shall use as basic components to 

or, in the more general form, 

W(X, y) = sin (IX + 0), (3.5) 

with an arbitrary phase angle 0. 
As pointed out in the previous section, the pat- 

tern may also rotate about a vertical axis. Ac- 
cording to equation (2.3) the rotation amounts to 
replacing lx by 

lx’ = Z(x cos a + y sin LY), (3.6) 

where LY is the angle of rotation (Figure 1). 
By putting 

‘$ = 1 cos o!, 

r] = 1 sin 01, (3.7) 

build up three-dimensional solutions were derived 
in previous papers (Biot, 1960, 1963; Biot and 

the sinusoidal patterns (3.2), (3.4), and (3.5) 

OdC, 1965). These solutions assume a sinusoidal 
after rotation become 

distribution along the horizontal x direction and 
are independent of y. Hence they are of the form 

W(% Y) = cos (fx + sr), 

w(x, Y) = sin (& + rly), 

W = f(z)eP” cos Ix. (3.1) W(X, y) = sin (C;x + 7y + 0). (3.8) 

Note that in the aforementioned papers the verti- Note that 
cal axis was denoted by y instead of z. The vertical 
distribution function depends on the wavelength. 1 = 452 + 72. (3.9) 
This dependence is not relevant at this point and 
we shall come back to it later. It is also convenient to express these results vec- 

The solution (3.1) amounts to putting torially by using a coordinate vector, 

w(x, y) = cos Ix (3.2) 
r = (x, Y>, (3.10) 

and a unit vector, 
in the general expression (2.1). Hence in this two- 
dimensional case the deformation pattern of a n = (cos cy, sin a). (3.11) 

typical interface is a cylindrical surface with 
sinusoidal corrugations. 

The latter points in a direction rotated clockwise 

For brevity, a pattern of the type (3.2) corre- 
through an angle a! from the x direction. The ro- 

sponding to a two-dimensional solution will be re- 
tated sinusoidal patterns (3.8) become 

ferred to hereafter as a sinusoidal pattern. 
The wavelength or distance between crests is 

W(X, y) = cos (Zn.r), 

20(x, y) = sin (Zn.r), 

&=“1’. (3.3) 20(x, y) = sin (In-r + 0). (3.12) 

The coefficient p appearing in the exponential 

The sinusoidal pattern may be translated arbi- factor exp (pt) determines the rate of growth of 

trarily in the horizontal plane. This amounts to the altitude of the crests for a particular wave- 
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length. It is a function of the wavelength. Hence, 

we write 

P = PO>* (3.13) 

In general, there is a value Zd of I for which p ac- 
quires a maximum value 

p+n = p(&). (3.14) 

The corresponding wavelength is 

&2. 
ld 

(3.15) 

We have referred to gd as the dominant wave- 
Zeq$z because it tends to predominate after cer- 
tain time during the process of growth of an ini- 
tially irregular configuration. 

4. RECTANGULAR PATTERN 

Consider the first of the sinusoidal patterns 
(3.8) obtained by rotation through an angle a 

wr(x, y) = cos (b + rly). (4.1) 

Another pattern is obtained by changing the sign 

of f_Y 

z&(x, y) = cos (Ex: - oy). (4.2) 

By superposition, the sum of expressions (4.1) and 
(4.2) yields a pattern w which represents a three- 
dimensional instability. We derive 

w(x, y) = wr + w2 = 2 cos ‘$x cos qy. (4.3) 

In this pattern the nodal lines (w=O) form a 
rectangular network. Adjacent rectangular areas 
are regions of upward and downward displace- 
ments. Lengths of the sides of a rectangular hill 

are 

a = x/E, 

b = r/r]. (4.4) 

Note that we have superposed two sinusoidal 
patterns of the same wavelength d: =2x/l. Hence 
the height and depth of the rectangular pattern 
grows proportionally to the exponential factor 
exp(@t) where p(Z) is a function of the wavelength 
of the corresponding two-dimensional solution. In 
terms of the size of the rectangle this wavelength 
is [computed from equations (3.7) and (4.4)] 

2ab 

&TP’ 
(4.5) 

FIG. 2. Square pattern. Shortest distance between 
peaks is S=C. In this figure and others below, hills 
are indicated by blank areas, hollows by shaded areas. 

There is an infinity of rectangular shapes corre- 
sponding to the same wavelength, C, and the same 
rate of growth as can be seen by varying the ratio 
a/b in equation (4.5). The case of a square pat- 
tern (a= b) is illustrated in Figure 2. In this figure 
and the following ones blank and shaded areas 
represent, respectively, hills and hollows. 

For a square pattern equation (4.5) becomes 

d:=d?a. (4.6) 

In this case the shortest distance, S” between 
peaks is equal to the diagonals 42a of the 

squares. Hence 

s = 2. (4.7) 

This shows that for the square pattern the char- 
acteristic distance, S, between peaks is equal to 

the wavelength, 6, of the corresponding two- 
dimensional solution. For hills and hollows of 
maximum rate of growth, S is equal to the domi- 

nant wavelength, .&, of the corresponding two- 
dimensional problem. 

5. CIRCULAR PATTERN 

The same procedure of superposition may be 
used to derive a pattern with circular contour 
lines, represented by Bessel functions. This is 
obtained by superposing an infinite number of 
sinusoidal patterns 

w(x, y) = cos (h.r), (5.1) 
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FIG. 3. Circular pattern. Characteristic distance of 
the central peak to the first crest is C= 1.116s. 

with equal amplitude and wavelength oriented 
isotropically about a vertical axis. The result 
amounts to an integration with respect to the 
angle LY, and is written 2n 45 Y) = S cos (Zn.r)&. (5.2) 

0 

The integral may be transformed by introducing 
polar coordinates, putting 

X = r cos 4, 

y = r sin 4, (5.3) 

hence 

n.r = r cos (CY - 4). (5.4) 

With the variable /3=(r-4 and because the inte- 
gration is performed over a complete period 2n 
the integral (5.2) is equivalent to the form 

S 
2* cab, Y) = cos [Zr(cos p)]dp 

0 

The value of this integral is well known in terms 

of Bessel’s function.’ We derive 

20(x, y) = 27rJo(Zr). (5.6) 

1 See, for example, McLachlan (1934), page 43. 

Thus the pattern is represented by circular con- 
tour lines (Figure 3). A central hill is surrounded 
by concentric crests and valleys. 

The characteristic distance C of the center to 
the nearest circular crest is found by using tables 
of Bessel functions. This leads to the value 

Hence 

IC = 7.016. (5.7) 

C = 1.1162. (5.8) 

This value is slightly larger than the wavelength, 
C, of the two-dimensional solution. As we move 
further away from the center the solution ap- 
proaches the two-dimensional case and the dis- 
tance between circular crests tends toward the 
wavelength, 2. 

Again there is a characteristic distance 

C = 1.116&, (5.9) 

for which the rate of growth is maximum. This 
value is determined by the dominant wavelength, 
&, of the corresponding two-dimensional prob- 
lem. 

The same conclusions apply, of course, to the 
circular pattern obtained by reversing the sign of 

the elevation M. In this case the central hill is re- 
placed by a hollow and crests are replaced by val- 
leys. 

6. TRIANGULAR PATTERN 

By using the same process of superposition it is 
possible to derive a periodic pattern where the 
nodal lines form a network of equilateral triangles. 
To show this we make use of the second of equa- 
tions (3.12), 

~(2, y) = sin (Zn.r). (6.1) 

We choose three unit vectors n,, a, n3 in direc- 
tions which differ by 120 degrees (Figure 4). By 
adding the three corresponding expressions (6.1) 
we obtain 

w(x, y) = sin (Zn,.r) + sin (Zn~.r) 

+ sin (Zn,.r). (6.2) 

This is a three-dimensional pattern which results 
from the superposition of three sinusoidal pat- 
terns whose nodal lines are oriented at 120 de- 
grees from each other. 

A cyclic permutation of nl, n2, n3 leaves expres- 
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sion (6.5) unchanged; hence the pattern is invari- 
ant for any rotation of 120 degrees. 

In order to show that the nodal lines form 
equilateral triangles, we make use of the trigono- 

metric identity 

4 sin X1 sin Xz sin Xs 

= - sin (X, + X2 + X3) 

+ sin (-XI + X2 + X3) 

+ sin (XI - X2 + X8) 

+ sin (Xl + XT - X3). (6.3) 

Since they are oriented symmetrically, the three 
unit vectors satisfy the following relations, 

c 
nl 

/ n3 

FIG. 4. Unit vectors used to 
and hexagonal 

represent the triangular 
patterns. 

nl + nz + n3 = 0, 

nl = (1, O), 

+(-nl + nz + ns) = - nl, 

3(nl - n2 + n8) = - nz, 

and t(nl + n, - n,) = - n3. (6.4) 

We put 

-_Xxl = $lnl.r -X2 = *lnz.r 

- Xa = +Zn3 .r, (6.5) 

and (6.8) 

The nodal lines for this case are shown in Figure 5. 
The pattern is composed of triangular hills and 
hollows represented by blank and shaded areas, 
respectively. 

and substitute these values in the trigonometric 
identity (6.3). Taking into account relations (6.4) 
we find that the pattern (6.2) may be written in 
the form 

That the pattern is also periodic is immediately 
evident by writing explicitly 

~(x, y) = - 4 sin ($&.r) sin (+&.r) 

*sin ($Zn3.r). (6.6) 

The nodal lines are those for which w = 0; hence 
they are represented by the equations 

and 

nl.r = x, 

1 43 
n2.r = - ,x+~Y, 

1 43 n3.r = - -_x - - 
2 2 y. 

(6.9) 

*Znl.r = &r, 

$Znz.r = k2r, 

$Zn3.r = ksn, (6.7) 

Referring to equation (6.2) we verify that for a 
given value of y the pattern remains unchanged 
by translating it through a distance 4?r/l=2d: in 
the x direction. Hence in the x direction it has a 
period equal to twice the wavelength, C, of the 
corresponding sinusoidal pattern. Because of 
symmetry the same period applies in directions 
obtained by repeated rotations of 60 degrees. 

where kl, kz, ka are either zero, positive, or nega- The periods in the x and y directions are differ- 

tive integers. They form a network of equilateral ent. Expression (6.2) shows that in the y direction 

triangles. the pattern has a period 

It is convenient to consider a particular set of 
unit vectors such that n1 is oriented along the x 
axis. The components of these vectors are then 

H = 5 $ = -$ d: = 1.1.5.5C. (6.10) 
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FIG. 5. Triangular pattern showing nodal lines (zu=O) and corresponding hexagonal cells. 
Characteristic distance between peaks is H= 1.155C. 

This period is also equal to the sides of the tri- 
angles and represents the shortest distance be- 
tween peaks. Note that the peaks must lie on 
axes of symmetry of the pattern and therefore 
must be located at the center of gravity of the 
triangles. 

As shown by the dotted lines in Figure 5, we 
may distinguish three types of hexagonal cells 
indicated by the dotted lines. One is centered on 
the intersection of the nodal lines and the other 
two are centered on a peak and a bottom point. 
The last two are interchanged by a change of sign 
of the elevation w. Either one of the three cells 
may be used to construct the periodic pattern. 
Note that the cell is hexagonal but the symmetry 

inside is triangular. 
If we consider triangular patterns of all possible 

sizes the one with fastest rate of growth is ob- 
tained from the corresponding two-dimensional 
solution of dominant wavelength J&J. Equation 
(6.10) shows that the characteristic distance H 

between peaks in this case is about 1.5 percent 
higher than the dominant wavelength. 

7. HEXAGONAL PATTERN 

Let us again superpose three sinusoidal pat- 
terns whose nodal lines are oriented at 120 de- 
grees from each other. However, in this case, in- 
stead of using the sine functions which led to the 
previous triangular pattern, we choose the cosine 

function (5.1). We write 

w(x, y) = co.5 (h-r) + cos (hb.r) 

+ cos (&..r). (7.1) 

The unit vectors, nl, n2, n3 are the same as those 
shown in Figure 4. They satisfy relations (6.4). 

The patterns (6.2) and (7.1) differ by the phas- 
ing of the three sinusoidal components. In equa- 
tion (6.2) three nodal lines intersect at the same 
point, while equation (7.1) represents the sum of 
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E’IG. 6. Network of contour lines of elevation M = - 1 for the hexagonal patttern. 

sinusoidal patterns whose crest lines intersect at 
the same point. 

The pattern (7.1) remains unchanged under 

cyclic permutation of nr, nz, n3, hence for any 
rotation of 120 degrees. In addition, it remains 
unchanged when the unit vectors are changed 
in sign. This amounts to an inversion. These two 
operations are seen to be equivalent to a 60.de- 
gree rotation. Hence the pattern posesses hexag- 
onal symmetry. 

In order to obtain a clearer picture of the 

geometry we use the following trigonometric 
identity 

4 cos x1 cos xz cos xa 

= cos (X, + xz + X,) 

+cos(-x1+Xz+X~) 

+ cos (X1 - x2 + X3) 

+ cm (Xl + x2 - X3). (7.2) 

By substituting the values (6.5) for X1, Xz, X8, 
and taking into account relations (6.4), we find 

that the pattern (7.1) may be written 

W(X, y) = 4 cos ($&.r) cos @Zn2.r) 

aces (&h.r) - 1. (7.3) 

This expression shows that the contour lines of 
altitude w = - 1 are the straight lines 

&l.r = @I + $)?r, 

+Zn,.r = (k2 + t>7r, 

*Zna.r = (KS + J&r, (7.4) 

where kl, kt, k3 are either zero, positive, or nega- 
tive integers. These lines form a periodic network 

of hexagons and triangles shown in Figure 6. 
The peaks of elevation w = 3 are located at the 

centers such as o and o’ of hexagons in Figure 6. 
The distance 00’ between peaks is obtained as 
follows. With the values (6.8) for nr, n2, n3, we 
substitute x=0 into expression (7.1). It becomes 

~. 

w(0, y) = 1 + 2 cos 
( ) 

$zy . (7.5) 

The period of this expression along y represents 
the shortest distance between peaks. Its value is 
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=0 

f 

- 

--i - 

(a) (b) 

FIG. 7. Hexagonalpatterns, showingnodallines, and corresponding hexagonal cells. (a) Hills separated by a network 
of valleys; (b) hollows separated by a network of crests. Characteristic distance between peaks is H= 1.155JL 

H = 3 f = 1.1556. (7.6) 

It is the same as the characteristic distance (6.10) 

for the triangular pattern. 
The nodal line lies inside the hexagon and is al- 

most circular. The ordinate yo at which it inter- 
sects the y axis is found by putting w=O in equa- 
tion (7.5). We find 

,,=L~L=Lj-$. 
3431 3 

(7.7) 

Two main patterns are derived. The one shown 

in Figure 7a is composed of near circular hills 
separated by a hexagonal network of valleys. 
Changing the sign of the elevation w yields the 
pattern of Figure 7b where near circular hollows 
are separated by a hexagonal network of crests 
as indicated in the figure. 

We may also distinguish hexagonal cells of the 

same size as those of the triangular pattern of 
section 6. 

8. GENERALIZED PATTERNS 

Patterns corresponding to three-dimensional 

solutions of a very general type are obtained by 
superposition of sinusoidal components. We 
write 

w(x, y) = 2 Aisin (hi-r) 

+ 2 Bi cos (&.r), (8.1) 

where Ai and Bi are constants and ni represents 
a sequence of unit vectors in the x, y plane. 

The triangular and hexagonal patterns (6.2) 
and (7.1) are applications of this general expres- 
sion. 

The concentric pattern of section 5 is also de- 
rived from expression (8.1) replacing the summa- 
tion by an integration over a continuous set of 
unit vectors distributed with equal weight in all 

horizontal directions. The procedure is readily 
generalized to a noncircular pattern by adding a 
weight-factor function of the orientation. For 
example, an elliptic pattern may be derived quite 
simply. 

Very general periodic patterns are obtained by 
introducing the requirement of periodicity of 
expression (8.1) in given directions. For example, 
if the pattern (8.1) has a period whose magnitude 
and direction is defined by the vector a the pat- 
tern must remain unchanged under a translation 
a. This requires the condition that for all vectors 
ni it is possible to write 

(8.2) 
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where Ki is any positive or negative integer or zero. 
With a unit vector 11, in the direction of a and 
with a denoting the absolute magnitude of a, we 
write 

27r 
ni’na = - ki. 

la 

This result is equivalent to stating that the pro- 
jections of the vectors ni on the direction of a are 
all commensurable. 

The pattern may also be required to be periodic 
in another direction of vector period b. We shall 
then require a similar condition that the projec- 
tions on the b direction of the vectors ni be 
commensurable. 

In particular the triangular pattern (6.2) may 
be generalized by writing 

20(x, y) = sin (Znl.r + 0) + sin (Zn,.r + 0) 

+ sin (Zn,.r + e), (8.4) 

where the unit vectors n,, n2, n3 are again oriented 
at 120 degrees from each other as in Figure 4. The 
pattern is periodic and has the symmetry of the 
equilateral triangle. For 0=0 and 0=x/2 expres- 
sion (8.4) yields, respectively, the triangular and 
hexagonal patterns of Figures 5 and 7. Actually 
the hexagonal pattern is already obtained for 
@=x/6. This can be verified by translating ex- 
pression (7.1) through a distance x=2&/3 in the 
x direction. When 0 <0 <n/6 we obtain a contin- 
uous series of intermediate cases which we shall 
refer to as triartgular-hexagonal patterns. The 
significance of this result is illustrated by consid- 
ering the point P of intersection of the crest lines 
of two of the sinusoidal components. The various 
triangular-hexagonal patterns are obtained by 
varying the distance at which the crest line of 
the third component lies from the intersection P. 

In order to obtain a more accurate picture of 
the pattern we shall apply, as previously, the 
trigonometric identity (6.3). By putting 

-X; = a1ni.r - 8, (8.5) 

we may write expression (8.4) as 

20(‘(x, y) = - 4 sin ($?nl.r - e) 

. sin (+Znz.r - e) 

*sin (&.r - 0) + sin 38. (8.6) 

FIG 8. Triangular-hexagonal pattern. Network 
of contour lines of elevation w = sin 38. 

Contour lines for the altitude w = sin 30 constitute 
a network of straight lines as illustrated in Figure 
8. This corresponds to the two triangular-hexag- 
onal patterns shown in Figures 9a and 9b. One is 
obtained from the other by a change in sign of w. 

The pattern is also divided in hexagonal cells. 
The size of these cells and the distance, H, be- 
tween peaks is the same as for the triangular and 
hexagonal patterns of Figures 5 and 7. 

Periodic patterns with nonregular hexagonal 
cells were also obtained by Vernotte (1936). They 
may be derived as a particular case of the general 
expression (8.1). 

9. TIME-HISTORY OF THREE- 

DIMENSIONAL STRUCTURES 

In the previous discussion we have considered 
patterns derived from two-dimensional solutions 
with the same wavelength in all directions. In 
practice the unstable pattern which will emerge 
after a sufficient time will correspond to the domi- 
nant wavelength of the two-dimensional solution. 

However, as we have seen there are an infinite 
number of three-dimensional patterns which have 
the same rate of growth and correspond to the 
same dominant wavelength. The particular pat- 
tern which will emerge depends on irregularities 
initially present in the layered structure. For 
example, if the structure is composed of a number 
of homogeneous fluid layers of different densities 
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=o 

(a) (b) 

FIG. 9. Triangular-hexagonal patterns showing nodal lines and hexagonal cells. 
Characteristic distance between peaks is H= 1.15.5.S. 

the initial irregularities are represented by the 
initial deviation of each interface from a perfect 
horizontal plane. In geological structures such 
derivations may be due to tectonic forces or 
uneven sedimentation. 

The time-history of the unstable deformation 
for such initial conditions may be obtained from 
the basic two-dimensional solution by the follow- 
ing somewhat elaborate but straightforward pro- 

cess. 
We first consider the time-history of a sinus- 

oidal two-dimensional solution with initial condi- 
tions such that all interfaces except one are differ- 
ent from a perfect horizontal plane at t=O. The 
wavelength d: = 27r/Z is given. It is a simple matter 
to solve this problem, by representing the initial 
deviations of the discontinuity surfaces as a super- 
position of normal modes of the two-dimensional 
problem. These modes correspond to characteris- 
tic roots for p in the exponential factor exp (pt). 

The degree of the characteristic equation for p 
is equal to the number N of nonrigid interfaces 
including the free surface. This means that the 
plot p(l) of p as a function of I is represented by 
N branches. 

pj = pj(l) (j = 1, 2, * * ’ 9 N). (9.1) 

There are N modes corresponding to these values. 
For two-dimensional solutions they are of the 
form (3.1) and the vertical displacement is written 

W(j) = f’j’(Z, 7&w cos Ix. (9.2) 

The vertical distribution is written j(i)@, z) to 
indicate explicitly that it depends on the wave- 
length and is different for each mode. The roots 
pi(l) may be positive or negative corresponding 
to either unstable or decaying modes. 

The vertical deflections may be represented as 
a sum of modes 

W = kf(j)(l, z)fN cos IX. (9.3) 
j=l 

The vertical displacement at the kth interface of 
altitude zk may be written 

with 

Wk = F&, t) cos lx, (9.4) 

Fk(Z, t) = 5J”)(l, zk)epit. 
j.;l 

(9.5) 

Now each mode, hence each function f(i), con- 
tains an arbitrary amplitude factor. These N 
arbitrary constants may be adjusted so that2 

2 The constants are conveniently derived by a stan- 
dard procedure using the orthogonality property 

N 
c Ap#‘)(Z, z,+)f@‘)(I, z/J = 0 
k=, 

for @#v and APk=the density discontinuity. This 
orthogonality condition is a direct consequence of the 
analog model formulation (Biot, 1965a, page 475). 
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0 k#m 
F& 0) = 1 

k = m. 
(9.6) 

This means that the initial vertical displacement 
(9.4) is zero except for the mth interface where it 
is equal to cos lx. 

In the value (9.4) we may, of course, replace 

the factor cos lx by sin lx or exp (ilx) and write wk 
in the complex form 

wk = F,$, t)t+. (9.7) 

By rotation through an angle, 01, about the verti- 
cal axis it becomes 

Wk = F& t)d(@+“u), 

where 4 and 7 are the value (3.7) and 

(9.8) 

1 = &” + $. (9.9) 

We shall now determine the time-history of 
deformation of the various interfaces. We denote 
by wk(x, y, t) the vertical displacement of the Kth 
interface as a function of x, y, and t. As initial 
conditions we assume that ~~(x, y, 0) is given for 
h=m and is zero for all other interfaces. We ex- 
press the initial deflection as a double Fourier 
integral,s 

W&X, Y, 0) 

1 +- +a0 
=- 

ss 2n _-o) 
4(,$, t)ei(@+qu)d@7j, (9.10) 

-00 

where 

+(E, V) = &J +m J +L(% Y, 0) 
-co --oo 

.~-~(t+w)d.&y. (9.11) 

Expression (9.10) represents the initial deforma- 
tion as a super-position of two-dimensional solu- 
tions of the type (9.8). Hence, after a time t the 
vertical displacement of the hth interface is 

1 +m +m d% Y, t> = 2, SS Fk(J, tM4‘, 7) -cc -Co .ei(b++?Y)&d~. (9.12) 

It is obtained by introducing the factor Fk(l, t) 
in the integrand of (9.10). This result also yields 

8 See, for example, Sneddon’s book (1951), page 43. 

FIG. 10. Dominant three-dimensional pattern due 
to initial conditions corresponding to slight hills cen- 
tered at A, B, C. 

the time-history when the initial deformation of 
all interfaces is different from zero by adding the 
values (9.12) for each interface. 

It is possible to obtain some idea of the depen- 
dence of the dominant pattern upon initial condi- 
tions by a simple reasoning which does not re- 
quire any calculations. Assume that the initial 
deformation of the interface is represented by 
three slight hills centered at A, B, and C (Figure 
10). Under unstable conditions each hill will gen- 
erate a concentric pattern which intersects in the 
region R. In that region we may therefore expect 
to observe approximately hexagonal cells with the 
various inside patterns illustrated in Figures 5, 7, 
and 9, depending on the phasing of the three in- 
tersecting components. 

The size of the hexagonal cell, hence the char- 
acteristic distance between peaks, as given by ex- 

pression (6.10), is 

H = l.l55C~, (9.13) 

where L?d is the dominant wavelength of the two- 
dimensional solution. In regions close to a pair of 
initial hills the pattern will correspond to ap- 
proximately rectangular cells whose size corre- 
sponds to expressions (4.5) and (4.7) and is equal 
or very close to the dominant wavelength of the 
two-dimensional solution. 

Note that the initial deviations from a perfect 
horizontal plane may be represented either by 
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hills and hollows or a combination of both with 
various amplitudes. This simply changes the 
phasing and amplitudes of the sinusoidal com- 
ponents and results in a three-dimensional struc- 
ture with the same general characteristics as those 
illustrated above. 

10. THREE-DIMENSIONAL SALT STRUCTURES 

WITH VARIABLE OVERBURDEN 

AND COMPACTION 

Due to the linearity of the general problem the 
present method of superposition of two-dimen- 
sional solutions is applicable to the case of three- 
dimensional instability of salt structures when 
account is taken of the rate of sedimentation and 
compaction of the overburden. 

The two-dimensional problem was solved in a 
previous paper (Biot and Ode, 1965) for a layer 
of salt of given thickness lying on a rigid base. 
The overburden thickness varies with time at a 
uniform rate while the density depends orz both 
time and de@th so as to take into account the non- 
uniform compaction. The time required for a 
given amplification of an initial sinusoidal dis- 
turbance was plotted as a function of the wave- 
length in Figure 11 of a previous paper (Biot and 
Ode, 1965). The value of the dominant wave- 
length is derived. 

By superposition of such two-dimensional solu- 

tion we derive the three-dimensional structures 
for this case corresponding to the square, concen- 
tric, triangular, and hexagonal patterns discussed 
above. This yields the time-history and the dis- 
tance between peaks and ridges for these various 
patterns. 

These characteristic distances are given by ex- 
pressions (4.7), (5.8), and (6.10) in terms of the 
dominant wavelength, gd, of the two-dimensional 
solution. They are not significantly different from 
&. Previous conclusions regarding the geological 
validity of the theory as derived from the two- 
dimensional analysis are therefore applicable to 
three-dimensional structures with variable over- 

burden. 
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