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FUNDAMENTAL SKIN EFFECT 

IN ANISOTROPIC SOLID MECHANICS* 

M. A. BIOT 

New York, N.Y. 

Ah&act--It is shown that in solid mechanics a skin effect is associated with anisotropy. Near a free surface 
or a surface of discontinuity certain components of the stress field vary rapidly from zero to a maximum within 
a thin skin. The thickness of this skin tends to vanish for increasing anisotropy. A stress concentration also 
occurs whereby certain stress components are amplified within the skin thickness. The analysis is carried out 
for a medium with or without initial stress and includes the case of surface instability, internal buckling and 
surface wave propagation. The results presented in the context of elasticity theory are on the whole valid for 
viscoelastic media by the principle of correspondence. The results are also applicable to multilayered or fibrous 
compound materials which, on the average, behave approximately as anisotropic continuous media. 

1. INTRODUCTION 

THE GENERAL equations used in the classical theories of deformation of anisotropic solids 
are very complex and involve many variables and elastic coefficients. As a consequence 
characteristic properties due to anisotropy and relevant parameters do not seem to have 
been fully recognized. 

Our purpose here is to show that a basic feature in the mechanics of anisotropic 
solid is the appearance of a skin efSect. The phenomenon referred to here will appear 
for example near a free surface where certain components of the stress field will vary 
very rapidly from zero to a maximum value within a thin skin. The thickness of the 
skin depends on the magnitude of the anisotropy and tends to zero when the anisotropy 
becomes very large. A skin effect will also occur near a rigid adhering boundary or in 
the vicinity of a surface of discontinuity. 

Another phenomenon associated with the skin effect is a stress concentration whereby 
certain stress components within the skin thickness are magnified increasingly with 
increasing anisotropy. 

In order to bring out these features in the simplest possible way, we have considered 
the restricted problem of plane-strain elasticity for an orthotropic incompressible solid. 
Some of the significant features due to finite deformation have also been included by 
applying the theory of elasticity of initially stressed solids. 

The skin effect is analyzed in detail for three types of problems. The first is treated 
in Section 3 where the effect is derived for a surface under tangential loading. In Section 
5 the skin effect is shown to appear in the buckling modes due to surface instability 
when a compressive stress is acting in a direction parallel to the surface. For internal 
buckling under initial stress the skin effect appears near a free surface or a rigid adhering 

* This work was supported by the AF Office of Scientific Research of the Office of Aerospace Research 
under Contract No. AF 49 (638)-1329. 
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boundary as shown in Sections 6 and 7. 
It is remarkable that in all these cases the skin thickness is expressed by the same 

formula 6 = Y/27cJ(2m) where 8 is the wave length of the deformation along the 
surface of discontinuity and m is a fundamental dimensionless parameter measuring the 
magnitude of the anisotropy. 

The result is by no means restricted by the simplifying assumption of incompressibility. 
A brief discussion in Section 8 indicates that the same parameter m determines the skin 
thickness for an anisotropic compressible medium provided we use for m the value 
obtained in earlier theories in terms of the various elastic coefficients of the anisotropic 
solid. The generalization including compressibility is valid for initially stressed solids. 
As indicated in the last section, the principle of viscoelastic correspondence suggests 
further generalizations of these results to purely viscous and viscoelastic anisotropic 
solids. 

While the skin effect becomes more significant with increasing anisotropy its impor- 
tance is not confined to such cases. Actually the effect brings to light certain fundamental 
properties of elastic solutions which are already present for isotropic media. These 
properties provide a new outlook and suggest new methods of attack in many practical 
problems of “Strength of Materials.” 

Another important field of application of these results is the mechanics of thinly 
layered or fibrous structures where the anisotropy is due to the use of composite materials 
of strongly contrasting rigidities. By viscoelastic correspondence this includes the case 
of heterogeneous media composed of different viscoelastic materials. 

2. SIMPLIFIED EQUATIONS FOR ANISOTROPIC ELASTICITY 

Consider a plane-strain deformation in the x, y plane. The material is assumed in- 
compressible of orthotropic symmetry with axes of symmetry parallel to the x, y axes, 
and initially stress-free. 

The two-dimensional stress-strain relations of the material are 

u xx-u = 2Ne xx 

uyy-u = 2Ne,, 

u xy = 2Qe,, 

(2-l) 

with a condition of incompressibility 

e,,+e,, = 0 (2.2) 
The usual stress components for plane strain are oXX G,,,,G._ and the strain components 
are defined by 

au av 
e =- 
*x ax eyy = - ay 

1 av au 
e xy = 

- -+- 

( ) 2 ax ay 

(2.3) 

where u and v are the displacement components in the x, y plane. The plane-strain 
elastic properties are defined by the two elastic constants N and Q. The significance of 
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c is obtained by adding the first two of equations (2.1) taking into account relation (2.2). 
We find 

0 = &Lf$J (2.4) 

Equations (2.1) are a particular case of the incremental stress-strain relations derived by 
the author for the initially stressed medium [l, 21. They are obviously applicable to a 
medium initially stress-free. Note that the left side of equations (2.1) represents a two- 
dimensional stress deviator. In the case of anisotropy it is different from the three- 
dimensional stress deviator as already pointed out [l, 21. We must add the condition 
of equilibrium of the stress field 

aa aoxy 
-e+-== ay 
da aa,, 

(2.5) 

2+--O ay 
The set of equations (2.1) to (2.5) is solved by introducing the function 4(x, y) and putting 

a4 
“=-Y 

a4 
V=ax 

Elimination of all variables except (r and C#J yields 

Finally elimination of o yields 
4 

c-2+2 2N_1 _L!x+3=(). 

( 1 Q a2ay2 ay4 

(2.6) 

(2.7) 

V-8) 

The plane-strain problem is now reduced to finding c and C/J from equations (2.7) and 
(2.8). 

We shall consider solutions which are sinusoidal along the x direction. Such a solution 
of equations (2.7) and (2.8) is 

1 
4 = $(Zy) sin lx 

o = Q(mf’-f”‘) cos lx 
(2.9) 

where f(ly) satisfies the differential equation 

f”“-2mf”+f = 0. (2.10) 

The primes denote differentiation with respect to the argument ly and we have put 

m2-1. 
Q 

(2.11) 
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Stresses and displacements are now derived completely by means of a single unknown 
function f in the following form 

u = V(ly) sin Ix 

u = V(2y) cos lx 

CT xx = r(ly) cos Ix 

0 
YY 

= q(ly) cos lx 

c XY = r(Ey) sin lx 

with 

Kqly) = -f’ 

WY) = f 

l-fly) = -f’-f”’ 

$(ly) = (2m+ l)f’-1”’ 

(2.12) 

(2.13) 

$$y) = -f-f”. 

These results provide complete solutions of a large variety of problems. 
Basic solutions of the differential equation (2.10) are of the type 

f = .+ 

where /I satisfies the characteristic equation 

~4-22m/P+l 

In the present analysis we shall assume 

N>Q 

hence 

m>l 

(2.14) 

= 0. (2.15) 

(2.16) 

(2.17) 

The limiting case N = Q, m = 1 corresponds to an isotropic medium. Under the assump- 
tions (2.16) and (2.17) the four roots of the biquadratic equation (2.15) are always real. 
Two of the roots pi and /I2 are positive. They are 

/?r = [m+J(m'- l)]+ 

pz = [m-J(m'-- l)]+ (2.18) 

the radicals being chosen positive. 
These roots satisfy the conditions 

PA = I /I:+/?: = 2m 

The other two roots are the negative values --Pr and -/12. 

(2.19) 
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With four arbitrary constants Ci the general solution of the differential equation (2.10) 
is 

f =c, @lb+ C, eS2lY + C3 e-filly + C, e-@dY. (2.20) 

3. SKIN EFFECT UNDER TANGENTIAL SURFACE LOADS 

Consider the elastic half space occupying the region y < 0 with the plane boundary 
y = 0. 

Solutions which vanish at y = -co are obtained by putting C3 = C, = 0 in expt-es- 
sion (2.20). Such a solution retains only two arbitrary constants and is written 

f = C,fr+C,f, (3.1) 

with 

(3.2) 

The salient feature in which we are interested in here is a consequence of the fact that 
if N/Q is sufficiently large, hence for large anisotropy, the value if /I1 is large while /Iz 
is small. For example let us assume 

N/Q = 45. 

From equations (2.18) and (2.19) we may write approximately 

(3.3) 

(3.4) 

Hence 

In this case although N/Q is not really very large we see that /I2 may be considered small 
relative to pl. Therefore the function fi decays much more rapidly than f2 when we move 
away from the surface. 

Skin efect 

We choose values C1 = - 1, Cz = 1 for the constants in the solution (3.1). Hence 

f = fz-fi. (3.6) 

We substitute this expression into equations (2.13). After taking into account relations 
(2.19) we find the following equations for 4 and r 

&(‘Y) = (81 +Bz)(.& -f1) 

&(lY) = (1 +Bl)fr(1+Pz")fz. 
(3.7) 
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At y = 0 we find fi = fi = 1 and 4 = 0. Hence expressions (3.6) correspond to a solution 
for which the normal stress cyy at the surface is zero. Because j?r % pZ the value of the 
tengential stress z is given approximately by 

$r(ly) = ml. (3.8) 

This value decays rapidly with depth as shown schematically in Fig. 1. It decreases by a 
factor l/e at a depth 

1 9 

6 = m = 2nj?, (3.9) 

where 9 = 27r/Z is the wavelength of the tangential surface load distribution. With the 
approximation (3.4) we may also write 

6r 
9 

27-cJ(2m). 
(3.10) 

The length 6 represents a “skin thickness”. It is proportional to the wave length and 
decreases approximately as the inverse square root of the “anisotropy ratio” N/Q. For 
N/Q = 45 its value is 

(3.11) - 

By substituting expression (3.6) for f into the first two of equations (2.13) we may also 
derive the values of the displacements U and V. At the surface we find I/ = 0. Hence the 
tangential load produces no vertical displacement at the surface. We also obtain 

r(O) = '&/(NQYW) (3.12) 

where z(0) and U(0) are the tangential load and tangential displacement at the surface. 
Equation (3.12) agrees with earlier results [1,3]. 

Stress concentration 

Consider the normal stress distribution oXX = r(2Y) as a function of the depth at the 
abscissa x = 0. Substitution of expression (3.6) into the third of equations (2.13) yields 

&(ly) = P1(1 -M)fi --Ml +P%-z. (3.13) 

Hence for p1 % flZ we write approximately 

$r(I,) = ml. (3.14) 

This value also decays rapidly with depth and exhibits the same skin effect as the shear 
stress r. In addition, comparison with the value (3.8) of z leads to the relation 

r = /3lZ (3.15) 

This shows a stress concentration corresponding to a magnification of the shear stress r 
by a factor fir. This magnification increases approximately as the square root of the 



Fundamental skin effect in anisotropic solid mechanics 651 

anisotropy ratio N/Q. The skin effect and the magnification of crxX are illustrated in 
Fig. 1. 

FIG. 1. Skin effect due to a tangential load distribution CT_ = r(0) sin Iw of wavelength Y = 2n/I 
applied at the surface y = 0. Distribution with depth of stresses g,, and gxY is shown respectively 

at x = 0 and x = Y/4. Values of r(b) and $y) are both positive. 

An important feature of this stress concentration is its independence from the wave- 
length. 

4. ANISOTROPIC ELASTICITY WITH INITIAL STRESS 

A similar skin effect is obtained in the case of an anisotropic solid with initial stress. 
The discussion is carried out as in the previous case by applying the theory of initially 
stressed anisotropic solids. [ 1,2]. 

The anisotropy in this case may be “intrinsic” or “induced”. What is meant is that 
the anisotropy may be present in the material initially in the stress-free state or it may be 
induced by the initial stress itself. In any case the anisotropy which we consider here 
refers to incremental properties. The principal directions of the initial stress as well as 
those of the elastic symmetry are assumed to coincide with the coordinate axes. For 
simplicity we shall again assume the medium to be incompressible. This implies relation 
(2.2). 

The incremental stress-strain relations in this case, are [l, 21, 

s 11--s = 2Ne,, 

s~~-s = 2Ne, 

~12 = 2Qe,, 

(4.1) 

where s r1 s22 s12 denote incremental stresses referred to locally rotated axes with incre- 
mental elastic coefficients N, Q. The local rotation is 

1 au au 
“===F ( 1 (4.2) 

The elastic coefficients N, Q will in general be functions of the initial stress. 
Let the initial stress be reduced to a single principal component S, 1 = -P in the x 
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direction. Because the medium is incompressible this does not restrict the generality 
since the addition of an initial hydrostatic stress has no effect on the deformation. 

The equilibrium equations for incremental stresses are 

- __p!.%() as11 as12 
ax + ay ay 

aS12 aSz2 aa 
ax+--Pax = 0. 

ay 

(4.3) 

These equations are solved as in the case of the initially stress-free medium. The displace- 
ment U, u is expressed by the same relations (2.6) in terms of a function 4. We may write 
a general solution in the form 

f$ = +j(ly) sin Ix 

s = L[(m++-*kz)f’-f”‘] 

with 

2M-L L-P 
m= 

L k2 =-C 

M = N+jP L = Q++P 

(4.4) 

(4.5) 

The function f satisfies the differential equation 

f”‘‘-2mf”+k’f = 0 (4.6) 

where the prime denotes a differentiation with respect to ly. From the function f it is 
possible to derive the displacements using the representation (2.12). The displacements 
are given as in equation (2.13) by 

ZU(Zy) = -f’ 

ZV(Zy) = J: 
(4.7) 

Similarly the incremental stresses sli sz2 srz may be expressed in terms of f: However 
for our purpose we shall evaluate the following expressions 

tll = s,,-Pe,, = r(ly)coslx 

t,, = s22 = q(Zy) cos lx 

Ax,, =F s12 + Pe,, = 2Le,, = z(Zy) sin Ix. 

(4.8) 

The physical significance of these quantities is discussed in detail in the author’s book [l] 
(pages 87, 125, 206). The quantities s22 and A__ are respectively the normal and tangential 
stresses on a surface initially perpendicular to the y axis. The quantity t,, is the incre- 
mental normal stress per unit initial area initially perpendicular to the x axis. In terms of 
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f we derive 

$ly) = -f’-f”’ 

$I(ly) = (2mf l)f’-f”’ (4.9) 

;T(zy) = -f-f”. 
An exponential solution f = exp(/?ly) of the differential equation (4.6) is obtained when /3 
satisfies the characteristic equation 

P4-2m/12+k2 = 0. (4.10) 

Two of the roots may be written 

PI = [m+J(m’-k2)lt 

jj2 = [m-,/(m’-k2)]t. 
(4.11) 

The other two roots are then --PI and -p2. 
In the present analysis we shall again assume the inequality (2.16), hence m > 1. In 

this case 

P 
m2-k2=m2-1+->O 

L . 
(4.12) 

Therefore J(m2 - k2) may be chosen as a positive real quantity. The value (4.11) of /I I 
is real and may also be chosen as positive. The value of /I2 may be real or a pure imaginary. 
If 

P<L 

the value of b2 is real and is then chosen positive. If 

P>L 

(4.13) 

(4.14) 

the value of p2 is a pure imaginary and we may write it as 

B2 = i5 (4.15) 

where 5 is a positive real quantity. The biquadratic (4.10) implies the following relations 

P1P2 = k /?+/3$ = 2m. (4.16) 

When k2 is negative /I2 is imaginary. In order to be consistent with equation (4.15) we 
choose for k the value with a positive coefficient of i. 

It is of interest to note the formal identity of equations (4.7) and (4.9) with the corres- 
ponding equations (2.13) for the medium initially free of stress. The general solution for f 
in, the case of initial stress is formally the same as expression (2.20) where the values of the 
roots p1 and p2 are now given by equations (4.11). 
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5. SKIN EFFECT OF SURFACE INSTABILITY 

An anisotropic incompressible half-space occupying the region j < 0 is under the 
initial compressive stress P parallel to the free surface (y = 0). 

The author has shown [l, 31 that there is a critical value of the compression P for 
which the surface is unstable. The critical value of P is smaller than L. Hence, as pointed 
out in the previous section, the roots j?r and fiz are real and chosen positive. 

A solution of the differential equation (4.6) is 

f = CJ-I + G&L (5.1) 

where fr = exp(B,ly) and f2 = exp(P21y). This solution vanishes at y = - co. We choose 
the constants 

c, = -(l+p$) cz = 1+/?:. (5.2) 

Actually these constants may still contain a common arbitrary factor. This is a consequence 
of the fact that we are dealing with homogeneous boundary conditions and that solutions 
are valid with an arbitrary amplitude. -For simplicity in the present analysis this factor 
is not included. 

Substituting the values (5.1) (5.2) into the third of equations (4.9) we derive 

$(fY) = (1 +PBl)(l +Pwi --“fix (5.3) 

Hence r = 0 for y = 0 and there is no tengential stress at the surface. 
The same substitution off in the second of equations (4.9) after taking into account 

relations (4.16), yields 

(5.4) 

The normal stress 4 vanishes at the surface y = 0 if 

(1 +p:)‘P?-(l +Bf)2B1 = 0. (5.5) 

This is the condition which determines the critical compression P for instability of a free 
surface. Using relations (4.16) and eliminating the common factor @r -fi2 we obtain 
condition (5.5) in the form 

2k(m+1)+k2-1 = 0. (5.6) 

This equation was obtained previously and discussed in detail by the author [l, 31. 
Finally we substitute the expression (5.1) for f into the first of equations (4.9). We derive 

ir(ly) = (1+B:)(1+BI)(Plfi-P2fi). (5.7) 

As before consider the case of strong anisotropy, hence N $ Q, m B 1. The instability 
condition (5.6) may be solved approximately for k. Hence 

km-!--- 
2(m + 1) 

k < 1. (5.8) 
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From the definition (4.5) of k2 we derive the critical compressive stress 

P = +-4(Ltl)J 
(5.9) 

This value is only slightly smaller than L. Approximate values of the characteristic roots 
are obtained from equations (4.11) and (4.16). They are written 

BI = J(2m) 

p,+ 1 
(5.10) 

1 2J(2m) (m + 1)’ 

Expressions (5.3) and (5.7) may be written approximately 

;r(ly) = /WI-f,) 
(5.11) 

ir(ly) = /%-I. 

The stress distribution as a function of depth is represented schematically in Fig. 2. 

FIG. 2. Skin effect of surface instability under initial compressive stress P with surface deflection 
v,, = VcosZx. Plot shows distribution of incremental stresses t,, = r(ly) at x = 0 and AxY = r(ly) at 
x = Y/p/4. Values of r(ly) and z(ly) are respectively positive and negative. The sign is not indicated 

in the plot. 

Since pz is quite small the functionf, decays very slowly and may be replaced by unity 
near the surface. The term fi varies rapidly by a factor l/e through a distance 6 which 
represents a skin efict’and is the same as in the previous equations (3.9) and (3.10). Hence 
we write approximately 

where _Y is the buckling wavelength. Putting 

(5.12) 

Tl(lY) = UGfi 
T,(lY) = -L$:f, 

(5.13) 
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equations (5.11) become 

T(lY) = t,(Zy) + T,UY) 

ruY) = BITI( 
(5.14) 

The second equation shows the same stress concentration factor PI = J(2m) as in 
equation (3.15). 

The instability condition (5.5) is independent of the wavelength. Assuming a vertical 
deflection o = Vcos Ex and applying the second of equations (4.7) we derive approxi- 
mately 

ZV(Zy) = Bffi = +(zy). (5.15) 

Hence the tangential stress A!$) corresponding to the term z,(Zy) may be written 

Ac2) = z,(Zy) sin Ix = _Le XY ai 

This expression varies very slowly with depth and may be assumed independent of y 
within the skin thickness. As a consequence we derive the approximate value 

dv 
A!$) = z,(O) sin 2x = Lo 

dx 
(5.17) 

(5.16) 

where v0 is the surface deflection. Since z1 +z, = 0 at the surface we also derive 

zr(O) sin Ix = - Lz, (5.18) 

Numerically the assumption of large anisotropy turns out to be already appreciable 
for values of M/L which are not large. For example if M/L = 4.5 we derive the same 
approximate values fir g J(2m) = 4 and /I2 g l/J(2m) = l/4 as in equation (3.4). 

6. INTERNAL BUCKLING WITH SKIN EFFECT AT A FREE BOUNDARY 

Internal buckling occurs for P > L. This phenomenon was analyzed in detail by the 
author for an indefinite or confined medium [l, 21. It was shown that there are two types 
of internal buckling in anisotropic media which we have referred to as internal buckling 
of the first and second kind. 

We shall assume as before that m > 1. From previous results it follows that only 
buckling of the first kind is possible in this case. The root /I1 is real while /I2 = it is a 
pure imaginary. Relations (4.16) for the roots may be written 

(6-l) 

A solution of the differential equation (4.6) corresponding to the characteristic roots 
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+p2 = +i< is 
f3 = sin 51~. (6.2) 

We substitute this value for f in the second and third of equations (4.9) after taking into 
account the second of relations (6.1), we derive 

&(ly) = (I+ B% cos BY 

&(ly) = -(l -12) sin @y. 

The subscript 3 is used to indicate that these values are those associated with the solution 
f3. The displacements are obtained from equations (4.7) 

W&y) = - 5 cos <ly 

lVa(ly) = sin @y. 
(6.4) 

The tangential stress r and the displacement V vanish for y = 0. They also vanish for 
y = h provided 

(6.5) 

where _!Z is the wavelength along the x direction. 
Hence the solution (6.2) represents the internal buckling of a medium subject to a 

compression P and confined between two rigid frictionless parallel walls separated by a 
distance h as illustrated in Fig. 3(a). Since it is a characteristic root, equation (4.10) is 
verified by substituting /3 = it. If we solve the resulting equation for P we obtain 

P = L + 2(2M - L)C2 + L54. (6.6) 

This is the value of the compression P required to maintain an internal buckling mode 
of wavelength 2 = 2h< as shown by relation (6.5). 

Equation (6.6) coincides with the result obtained previously in a detailed analysis of 
internal buckling of a confined medium [l, 21. As pointed out these buckling modes are 
metastable. For a given value of P > L there is a continuous range of unstable modes 
with wavelengths between zero and the value corresponding to equation (6.6). As before 
we assume the anisotropy to be large. Hence 

2M-L 
rn=-91. 

L 
(6.7) 

(a) (b) 

T FREE SURFACE 

h 

-1 x 

P 

FIG 3. (a) Internal buckling of a confined medium under initial compressive stress P. (b) Internal 
buckling of the same medium with a free surface at y = h/2. 
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Approximate values of B1 and < in this case are 

(6.8) 

Furthermore it is assumed that P is only moderately larger than the lower critical value 
L. Hence 

<<l (6.9) 
Under these conditions we derive from (6.3) the approximate values 

ir,(ly) = -sin’@y. 

Using equations (6.4) and (6.10) we obtain 

43 = -3m cot OY 

73 = -LlV3. 

(6.10) 

(6.11) 

Introducing the definitions (2.12) and (4.8) the last equation may be written 

A(3) = Lfi 
XY 

ai 
(6.12) 

Hence the tangential stress AL: associated with the solution f3 is determined approxi- 
mately by the horizontal derivative of the vertical displacement u. 

We now assume the presence of a free surface at y = h/2 as illustrated in Fig. 3(b). 
In order to cancel the stresses q3, z3 at the free surface we must add a solution correspond- 
ing to the characteristic root /?r. Such a solution is 

C,fi = C, eSl’Y (6.13) 

with an undetermined constant Cr. The stresses rI, ql, z1 generated by this solution are 
obtained by applying equations (4.9). When /I1 is large their approximate values are given 

by 

(6.14) 

;MYl = 

By superposition of the solutions f3 and fi the total normal and tangential stresses at 
the free surface y = h/2 are made to vanish by choosing the constant C, such that 

- Wfi. 

lh lh 
43 z +41 yf = 0. 

0 0 

(6.15) 
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Elimination of C1 exp(B,lh/2) between these two equations yields 

(6.16) 

Referring to the values. (6.8) of 5 and & we see that equation (6.16) determines the com- 
pression P required to maintain a buckling mode of given wavelength _P = 27c/l in the 
presence of a free surface. 

The foregoing analysis shows that the influence of the free surface is embodied essen- 
tially in the term C,f; given by expression (6.13). It decays very fast with the distance 
from the free surface and gives rise to a skin efect with the same skin thickness 6 as in 
equation (3.10) 

(6.17) 

The tangential stress is the sum of two terms. One of these terms is r&y) as given by 
equation (6.10). It varies slowly with y and is almost constant within the skin thickness. 
The other term according to equations (6.14) may be written 

z,(ly) = rr ; 
0 

,P1b-W2)1 (6.18) 

and decays very fast within the skin thickness. * 
Equations (6.15) also show that the tangential stress r1 is associated with a normal 

stress r1 parallel to the surface and equal to 

r,(ly) = P,r,(ly). (6.19) 

This relation exhibits the same stress concentration factor PI as in the foregoing equations 
(3.15) and (5.14). 

The solution f3 contributes only a small value r&y) to the total component r(Zy) 
and may be neglected. Hence the total stresses r and 4 within the skin thickness are 
distributed as in Fig. 2 for the case of surface instability. 

Note that according to equation (6.12) the approximate value of the stress com- 
ponent z,(lh/2) = --z&h/2) at the surface is given by 

lh 
71 - 0 2 

sinlx = -L,dv, 
dx 

(6.20) 

where dv,/dx is the surface slope. A similar result was derived for surface instability as 
shown by equation (5.18). Let us also examine the significance of the buckling condition 
(6.16) and consider the case where a:r is large. This implies a ‘large value of tan(@h/2) 
and we may write approximately 

<lh = x. (6.21) 

The value of 5 thus obtained coincides with the value (6.5). Hence in this case the buckling 
mode and the compression P required for buckling with a given wavelength _V is approxi- 
mately the same as for a confined medium of twice the total thickness. The only specific 
feature due to the free surface occurs in a thin layer of thickness 6 near the surface. 

The range of validity of the assumptions may be illustrated by considering the 
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numerical values 

(6.22) 

hence 

p1 =‘J(2m) = 4. (6.23) 

In this case /I:l = 16 and equation (6.16) is approximately verified by putting <lh = TC 
in accordance with the value (6.21). Hence the critical compressive stress is not affected 
significantly by the presence of a free surface and is very close to the value (6.6) derived 
for a confined medium. The foregoing numerical values also imply P = 2L. We note 
that the assumptions we have ibtroduced are already verified if m is not actually very large. 

Relation to the theory of plate stability 

Examination of Fig. 3(b) shows that the problem of internal buckling in the presence 
of a free surface and a frictionless rigid boundary is identical to the case of instability 
of a thick plate for deformations symmetric with respect to the plane of symmetry. The 
plane of symmetry corresponds to the rigid frictionless boundary in pig. 3(b). 

The theory of plate stability under a compression P parallel to the faces has been 
developed in detail by the author [l, 4,5]. The condition for occurrence of a symmetric 
buckling mode in a plate of thickness h was found to be 

R,z; - R,z; = 0. (6.24) 

This equation is given on page 328 in the author’s book [l]. For static buckling and an 
incompressible material we may write 

R, = (1+/?:)2 R, = (1+/3;)2 

z; = Ltanh 
B1 

When p2 = it and for large real values of p1 equation (6.24) becomes * 

1 lh 
/?:--tan<- = 0 

5 2 

(6.25) 

which is the same as the approximate buckling condition (6.16). 

7. INTERNAL BUCKLING WITH SKIN EFFECT AT A RIGID ADHERING 
BOUNDARY 

Consider the internal buckling illustrated in Fig. 3(a) and assume that perfect adher- 
ence occurs at the upper rigid boundary y = h. As we shall see the effect of the adherence 
is to produce a disturbance confined near the boundary. 

The initial stress is a uniform compression P parallel to the boundary. In the present 
case such a state of stress could be produced by deforming the medium homogeneously 
with a variable gap between frictionless rigid boundaries after which the upper boundary 
is made. to adhere to the deformed medium. Another procedure would be to use as upper 
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boundary a very strong medium which is deformed homogeneously under very high 
stress by the same amount as the confined medium. 

The internal buckling solution f3 generates at the upper boundary displacements 
U&h) and V&h) obtained by substituting y = h into equations (6.4), 

K.J,(lh) = -r cos @I 

W&h) = sin <Dr. 
(7.1) 

Perfect adherence requires cancellation of these displacements by adding the solution 
C, fr = C, exp /I1 ly of equation (6.13). By applying equations (4.7) the displacements 
U,, V, associated with the solution C,fr are found to be given by 

Perfect adherence requires 

lU,(lh) = - Cl/l1 exp firlh 

lV1(,(lh) = Cr exp j?rlh. 

U,(lh)+ U,(lh) = 0 

Va(‘,(lh)+ V;(lh) = 0. 

(7.2) 

(7.3) 

Elimination of C1 exp(/?,lh) between these two equations yields the approximate buckling 
condition 

(7.4) 

Assuming the same numerical values (6.22) and (6.23) as in the previous case, equation 
(7.4) is approximately verified by @h = TC which coincides with the values (6.5) and (6.21). 
Hence the buckling condition is not significantly affected by the adherence. 

The term C,fl in the total solution represents the disturbance introduced by the 
adherence. Its effect is confined near the boundary with a skin efect of thickness 6 given 
as before by equation (6.17). 

The stress disturbance within the skin thickness is given by equations (6.14). Relation 
(6.19) with the stress concentration factor PI is also applicable. 

8. SKIN EFFECT OF SURFACE WAVES INCLUDING THE 
INFLUENCE OF INITIAL STRESS 

A skin effect of a type entirely similar to that analyzed above occurs for surface waves 
in anisotropic solids. This can be seen immediately by applying the equations derived 
by the author for the dynamics of anisotropic media under initial stress [l, 41. The results 
are of course valid for the particular case of the initially stress-free medium. 

The same solutions as used in Section 5 for surface’- instability are applicable to 
dynamics with two characteristic roots fir and &. The roots in this case depend on the 
circular frequency a and the density p. For example for an incompressible solid they are 
obtained from the same equation (4.10) where the coefficients as derived by the author 
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[l, 41 are 

2m = k 
( 
4M-ZL-9 

) 

k2 = ;(L_P_$C). 
(8.1) 

Under the assumptions 

m&l 0<k2<1 (8.2) 

the roots fil and p2 are real, with a large value for /I1 and a small value for /12. Proceeding 
as in Section 5 it can be seen that exactly the same skin effect is obtained as for surface 
instability. 

Skin eflect for compressible solids 

In the preceding analysis it was assumed for analytical simplicity that the solid is 
incompressible. The skin effect also occurs for strongly anisotropic compressible solids 
and may easily be evaluated numerically by applying the general equations derived by 
the author for the dynamics of anisotropic compressible media under initial stress [l, 41. 

The skin effect features are obtained in terms of characteristic roots /I1 and fi2 re- 
spectively large and small and are essentially the same as in the various cases considered 
in the foregoing analysis for an incompressible solid. Values of the roots p1 and fi2 are 
expressed by the same formulas (4.11) in terms of the two basic parameters m and k2. 
However in this case these parameters depends on the various elastic moduli describing 
the elastic properties of the compressible anisotropic medium. The complete expressions 
for m and k2 in this case will be found in the author’s previous book and paper [l, 41. 

4 

9. SKIN EFFECT IN ANISOTROPIC VISCOELASTICITY 

From the principle of viscoelastic correspondence [6,7] we may conclude that a 
skin effect will also occur in a strongly anisotropic viscoelastic material. Of particular 
interest is the case of a purely viscous anisotropic medium. For example the analysis of 
Section 3 is immediately applicable to this case since N/Q is replaced by the ratio of two 
viscosity coefficients and the characteristic roots remain algebraic quantities independent 
of any operator. The skin thickness is given by the same expression (3.10). Applicability 
of viscoelastic correspondence to such materials including the effect of initial stress was 
already indicated in earlier work [7] and has been discussed in detail more recently [8]. 
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RBsurn&-11 est dtmontre que dans la mecanique solide un effet pelliculaire est relit? a l’anisotropie. Pres dune 
surface libre ou surface de discontinuite. certaines composantes du champ des tensions varient rapidement de 
zero a un maximum a l’interieur d’une pellicule mince. L’epaisseur de cette pellicule tend a fondre pour une 
anisotropie allant en augmentant. Une concentration de tension a egalement lieu, par laquelle certaines com- 
posantes des tensions sont amplifites i l’interieur de l’tpaisseur de la pellicule. L’analyse est entreprise pour 
un milieu avec ou sans contrainte initiale et comprend les cas d’instabilite de surface, de flambage interne et 
de propagation d’ondes de surface. Les rksultats present& dam le contexte de la theorie de l’elasticiti: sont 
en general valables pour les inilieux visdoelastiques selon et principe de la correspondance. Les rtsultats sont 
egalement applicables a des materiaux composes a couches multiples ou fibreux qui, en moyenne, se cornportent 
approximativement comme des milieux continus anisotropes. 

Zusammenfassung-Es wird gezeigt, dass in der Festkorpermechanik Hauteffekt und Anisotropie miteinander 
vebuden sind. In der Nahe einer freien Oberlllche oder einer Diskontinuitats-Obertkache Lndem sich gewisse 
Komponenten des Spannungsfeldes in der dunnen Haut schnell zwischen Null und dem Maximalwert. Die 
Dicke dieser Haut verschwindet ganz wenn die Anisotropie zunimmt. Ferner wird die Spannung such kon- 
zentriert indem gewisse Spannungs-Komponenten innerhalb der Hautdicke verstarkt werden. Die Analyse 
wird fur Material mit oder ohne Anfangsspannung durchgefiihrt einschliesslich der Falle mit Instabilitat der 
Oberi%che, mit innerem Knicken und Oberlkachen-Wellenausbreitung. Die Resultate werden in Rahmen der 
Elastizitatstheorie gegeben, dem Korrespondenzprinzip entsprechend gelten sie such fur viskoelastische 
Materialen; sowie such fur mehrschichtige und faserige Materialen, die sich allgemein und ungefahr wie 
kontinuierliche anisotropische Materialen benehmen. 

A6eT~HT-~OKa3bIBaeTCn, 'IT0 B MeXaHkiKe TBiip.L(bIX TeJI'CKKW3@~KT CBR3aH C aHU30TpOIUiek B6nH3n 
c~o60ntrofi UOB~~XHWTM W~A ~oB~~xHoCTH paspbma HeKoTopbIe c0cTaBHbIe YacTn nom Hanpmemr 

6r.rcTpo W3MeHIImTCa C HyJta DO MaKCHMyMa B npefienax TOHKOrO HapyXCHOrO CJIOR. Tonrsuna 3TOr0 HapyX- 

HorocnoK C~pe~HTcax Hyn~,CyBen~9aea~oruelc~aHu30Tponue~.KoHrreHTpauwKHanpffae~w~nonyraeTcrr 

TaKxe IlOCKOJIbKy HeKOTOpbIe KOMnOtIeHTbl HanpRmeHUR yCEJIUBiuorC5l B IIpeAeJIaX TOJlllJUHbI HapymHOrO 

CJIOII. A~anus ~~~BOAHTC~I ~a cpenbr (MaTepuana) c HawnbHbm mu 6e3 HamnbHoro HanpsKeHur w 

BKJIKJliaeTCJIy'G&HeyCTOti'iHBOCT~ iIOBepXHOCTli,BHyTpeHHerO BbIIIYSHB~~IIEIpaCnpOCTpaHeHuRnOBepX- 

HOCTHOi BOJIHbI. Pe3yJIbTaTbI IIpenCTaBneHbI BKOHTeKCTe TeOpHH ylIpyrOCT&iH B o6meM E~eJ'IOMIJeHHbI 

AJlll BII3KO-3JlaCTkWHO~ CpenbI, COrIIaCHO IlpHHUHIIy COOTBeTCTBWI. Pe3yJlbTaTbI TaGiCe llpHhleHSUOTC5l B 

CJIy'Gie MHOrOCJIOZiHbIX EIJIH BOJIOKHHCTbIX CJIO~HbIX MaTepHZilIOB, KOTOpbIe, B CPeAHeM, BenyT ce6x, 
IIpU6JIU3UTeJlbHO,KaK aHU30TpOnHaR HeIIpepbIBHaSICPeAa. 
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