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The author’s theory of elasticity and viscoelasticity of initially stressed anisotropic solids 
is extended to include couple stresses and an additional refinement represented by a 
dependence of the deformation on the second gradient of the stress. The theory is intended 
to provide an approximate continuous model valid over a wide range for the mechanics of 
laminated media. The equations derivod for the continuous model are rigorous for a medium 
initially at rest under the initial stress but are applicable as an approximation to stability 
problems of viscous and plastic media which exhibit initial strain rate with finite strain. 
The effect of gravity is included. A ‘couple-stress analogy’ renders immediately applicable 
to the medium with couple stresses a large class of solutions obtained earlier for plates and 
multilayers under initial stress. The problem of internal buckling is discussed. The theory is 
particularly suited to the analysis of folding and gravity instability of stratified sedimentary 
rock and remarkably simple results are shown to provide striking verif%ation when applied 
to a wide variety of geological structures. 

1. INTRODIXPI~N 

The use of couple stresses or moments per unit area acting internally in an elastic 
continuum is found in implicit form in a paper by Cauchyt as long ago as 1851. That 
paper represented a quite advanced form of the theory where the energy density is 
assumed to be a function of gradients of the displacement of any order. The next 
systematic development is due to E. & 3’. Cosserat (rgog) who introduced explicitly 
the couple stresses in the analysis of a system with microelements undergoing rota- 
tions which are different from the local rotation of the continuum. In recent years 
the subject has been treated extensiveIy by several authors introducing a variety 
of stress-strain relations which involve couple stresses. 

These theories deal with materials initially stress-free. In order to treat problems 
of stability for a medium with couple stresses we will generalize the theory to 
include the effect of initial stress. 

The author has also discussed the effect of a new and additional feature by con- 
sidering that the strain depends also on the second gradient of the stress. This effect 
was already introduced earlier in the context of geology (Biot rg64a, 1965 d). In the 
case of a laminated medium the effect leads to an ‘interstitial flow correction ’ as 
outlined below at the end of $8. 

Since we consider the very complex case of anisotropic elastic and viscoelastic 
media drastic simplification is achieved by following the direct procedure used in 
developing the mechanics of incremental deformations (Biot 1939,1965 a) where the 
initial stress is rotated locally with the medium. The adjunction of couple stresses 
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into the theory is quite straightforward. The present treatment is intended to 
provide an approximate continuous and anisotropic model for the mechanics of 
rheological instability of laminated media. Such a theory is of importance in tectonic 
problems of geological folding as well as in many areas of technology. Only the 
geological applications will be discussed here. 

The paper provides a unified treatment of many cases which the author has 
analysed previously by using suitable approximations for each separate problem. 
Complete solutions are obtained for the rheological behaviour under initial stress of 
extremely complex stratified media including the effect of gravity. A ‘couple-stress 
analogy’ results in the immediate applicability to a medium with couple stresses of 
a large class of results obtained earlier for plates and multilayers. 

Compressible media 

For the purpose of simplifying the algebra the theory is presentedin the context of 
incompressibility. This does not affect the generality of the conclusions. Com- 
pressibihty introduces mainly a correction. However, extension of the theory for 
this case is readily obtained by following exactly the procedure of this paper adding 
couple stresses to the author’s general equations for the initially stressed com- 
pressible medium. 

2. ANISOTROPIC ELAS~CITY WITH INITIAL STRESS 

In order to derive equations for the initially stressed medium with stress couples 
we first recall briefly the theory of elasticity of initially stressed anisotropio solids 
without stress couples (Biot 1939, 1963 a, 1965 a). 

We shall limit ourselves to plane strain in the xy plane. The material is assumed 
incompressible and orthotropic with directions of symmetry along x and y. Initial 
principal stresses along these directions are S,, and S,,. The displacements U, TJ along 
x and y yield the incremental strain 

and a rotation 

(2*1) 

(24) 

The incremental strain is associated with stress increments sii, sz2, s12 superposed 
upon the state of initial stress. These stress increments are referred to local axes 
which rotate with the material through an angle w. The incremental stress-strain 
relations are 

sli - s = 2Ne,,, 

sg2 - s = 2NeVy, 

i 

(2.3) 

al2 = 2&e,,, 
where N and Q are elastic coefficients for incremental deformations. Since the 
medium is incompressible we write 

ez2 + eyz/ = 0. (2.4) 
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This implies s = $(srr + s&. The equilibrium conditions of the stress field are 

asll as12 ,+__paw= 0, 
ay ay I 

as12 8822 ~+--P$= 0, 
aY J 

with the initial stress difference P = S,, - S,,. (2.6) 

If S,, = 0 the quantity P represents a compression acting in the x direction. 

Alternative formulation 

The foregoing equations provide a rigorous formulation of the theory of elasticity 

in the presence of initial stress. For the particular purpose of this paper it is con- 

venient to introduce an alternative formulation which provides an immediate 

intuitive interpretation. 

We consider the alternative stress components 

t,r = sll-Pcyy, 

t22 = 5229 

1 ti2 = s12 + Pe,,. 
P-7) 

These quantities were introduced and discussed earlier (Biot 1939,1963 a, b, 1965 a). 

In order to bring out their physical significance let us assume that S,, = 0. Hence 

the initial stress is reduced to a compression P = -S,, in the x direction. In this 

case the components t 11, t22, ti2 may be considered as the stresses per unit initial area 
referred to local axes which have rotated through the angle au/ax. The physical 

significance of these stresses is illustrated in figure 1, showing the incremental 

stresses acting on a deformed element of the material. If the initial stress component 

X2, is not zero it may be added as a uniform hydrostatic stress throughout. Since the 

medium is incompressible the deformation is not affected. The components t,, and 

t,, must then be interpreted as incremental forces in excess of those due to the 

hydrostatic stress and P = S,, - S,, represents an ‘effective ’ compressive stress. 

The stress-strain relation may also be written differently. From equations (2*3), 

(2.4) and (2.7) we derive 
trr - t2, = 4Mc,,, 

ti2 = 2Lew, 
(24 

with the coefficients M = N+&P, 

L = Q+gP. > 
(2.9) 

These coefficients were introduced and discussed earlier (Biot 1963 a, b, 1965 a). They 

have a simple physical interpretation. We have referred to L as the ‘slide modulus ’ 

which relates the shear strain e,, to a tangential stress applied along a face parallel 

to the initial stress P as shown in figure 1 (b) . The significance of the coefficient M 

is obtained by considering the case t,, = 0. The first of equations (2.8) yields 

t,, = 4Me,. (2.10) 
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Hence 4M is the elastic coefficient relating the stress increment t,, to the corre- 

sponding strain when no transverse stress t,, is applied. Note that we may also put 

t,, = 0. Since ezr = -eyy we write (24) as 

tzz = 4Me,,. (2.11) 

Hence either one of the two equations (2.10) or (2-l 1) may be used to define physically 

the coefficient M. 

Y L, 
X 

137 ,/,////‘c B 

/ / 
p,/ 

/ 
/ / 
/ ,,,,’ 

AJ' 'D 

FIUURE 1. (a) Undeformed element of unit size under the initial stress P. (b) Deformed 
element, where .& and t,, are the tangential and normal stresses on the face BC. The 
total force acting on the face CD in the direction AD is t,, - P and the corresponding 
incremental stress per unit initial area is t,,. 

Alternative equilibrium equations may also be written by solving equations (2.7) 

for sll, sz2, s12, and substituting these values in equations (2.5). We find 

This form of the equation provides an immediate physical interpretation illustrated 

in figure 2. Consider a thin fibre of the material initially straight with its axis along 

the direction of P. After deformation the fibre acquires a curvature asv/axs and the 

equilibrium condition of an element of this fibre is expressed by equations (2.12). 
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FIGURE 2. Physical interpretation of the equilibrium equations (2.12). 

3. ADJUNCTION OF COUPLE STRESSES 

We shall now examine the case where the medium exhibits a bending rigidity. 

Because of anisotropy the effect may be restricted to a couple A per unit area 

acting on a surface initially perpendicular to the x direction (figure 3). The value of 

fi c t;l lEJT & 3 At ZdJ: 

I l 
I 

I t;z i 
hi!+ 

FIGURE 3. Physical interpretation of the equilibrium equation (3.2) for moments. 

this stress couple is assumed to be proportional to the curvature acquired by fibres 

of the medium initially parallel to the x direction. Hence we may write 

(3-l) 

The couple-stress coefficient b is a measure of the ‘bending rigidity’ of the medium. 

The presence of couple stresses implies nonsymmetric shear stress components 

ti2 + $ as illustrated in figure 3. Equilibrium of an element of the medium about an 

axis perpendicular to the figure implies the moment equation 

t’ -t’ _ f&f 
12 21 - ax * 
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Equilibrium in the vertical direction is expressed by the condition 

%I at22 z+- = P$ 
aY 

Hence the equilibrium equations (2.12) are now replaced by 

at,, ati >;+- = 0, ay 
a=v a2d ~+~~P-.---+-@. 

aY 1 

407 

(3.3) 

(3.4) 

The second equation is obtained by eliminating t& between relations (3*2), (3.3). The 

stress-strain relations (2.8) are not affected by the couple stresses and remain valid. 
Equations (3.4) along with the stress-strain relations (2.8) the couple-stress 

relation (3.1) and the incompressibility condition (2.4) constitute a complete set 

which governs the deformation field. 

Variational jrktciyple 

The variational principles developed for the elastic continuum under initial 

stress (Biot 1939, 1963a, 1965~~) are readily extended to a medium with couple 

stresses. The energy density in this case becomes 

AV = 2Me~~+2Le&,+~b(~)2-~P(~)2. (3.5) 

For b = 0 this expression becomes identical to results derived earlier. 

4. COUPLE-STRESS ANALOGY AND OENERAL SOLUTIONS 

Let us assume that the deformation field is a sinusoidal function of x. In particular 

in this case the displacement may be written 

v = V(Zy) cos Ix. 

Hence with the value (3.1) for the couple stress we may also write 

(4-I) 

a2d -=- 
ax2 

b@ 
ax2 * 

With this expression the equilibrium equations (3.4) become 

atI1 at;, 
-&-- = 0, 

aY 

at;, at,, ~+-=P$, 
aY I 

(4.2) 

(4.3) 

with P’ = P-b12. (4.4 

Equations (4.3) are identical to equations (2.12) provided P is replaced by P’. Hence 
for sinusoidal solutions of the type (4-l) the effect of stress couples is immediately 



408 M. A. Biot 

derived by substituting for the actual compressive stress an analogue compressive 

stress into the general solutions of anisotropic elasticity with initial stress. We shall 

refer to this property as the couple-stress analogy. 
General solutions for anisotropic elasticity with initial stress were derived in 

previous work (Biot 1963a, b, 1965a). They are immediately applicable to a 

medium with couple stresses provided we replace P by P’. These general solutions 

are written in the form 
u. = U(Zy) sin lx 

2, = V(Zy) cos Ix, 

t,, = r(Zy) cos Ix, 

I 

(4.5) 

t,, = q(Zy) cos zx, 

tiB = 7(Zy) sin Ix. 

In these expressions the factors function of ly are obtained as follows 

1u = -f', 

lV=f, 

r/L = -f'-f" 1 q/L = (2m+ l)f’-f”, 

r/L = -f’ -f”, 

(4.6) 

where f is a function of Zy and the prime denotes a derivative off with respect to the 

argument Zy. The function f satisfies the ordinary fourth order differential equation, 

f”--2mf”+k2f= 0, (4.7) 
and the coefficients are 

2M-L 
m=--z--’ 

k2=L<P’L-PP+b12 

L L * 1 

(4.9) 

Note that the only place where the couple-stress coefficient appears is in the value 

of lcs. Solutions of the differential equation (4.7) are of the type exp (/3Zy) where /3 

satisfies the characteristic equation 

/?4-2m/32+k2 = 0. (4.9) 

In particular we may write the general expression for f in the form 

f -_ C, & lY + C2 eB2 bJ + (7, e-PllU + (7, e-82 @, (4.10) 

where C, are four arbitrary constants. The four quantities + ~?r and f p2 are the 

roots of the characteristic equation (4.9). Hence 

A = d{m + 4m2 - k2)), 
/I2 = J{m - J(m2 - k2)}. I (4.11) 
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5. INTERNAL mmama AND SHEAR TEIRESH~LD 

Consider the case 
2M > L, P’ > L; (5.1) 

hence m > 0, k2 < 0. (5.2) 

In the absence of couple stresses this corresponds to what the author has referred to 

as internal buckling of the first kind (Biot I 963 a, 1965 a). One of the roots ,8,is a pure 
imaginary 

p2 = iLj. (5.3) 

L-_-l/.,,; ,,,, j / ‘I 

72 
FIGURE 4. Pattern of internal buckling. 

A particular solution f is therefore 

f = Ccos~ly. 

Let us put C$. = n/lH. 

It is readily verified from equations (4-G) that 
y=f$H. 

(5.4) 

(5.5) 

the values of I’ and r vanish for 

Hence the solution (5.4) represents an internal buckling of a medium confined 
without friction between rigid walls separated by a distance H. The deformation 
pattern is illustrated in figure 4. The wavelength of this pattern along II: is 

_Y = 27r/l= 2[H. (5.6) 

This provides a geometrical interpretation of the parameter 5 = L?/2H as the ratio 
of the wavelengths along x and y. 

The characteristic equation (4-9) must be satisfied by substituting the root 
p = p2 = i& Hence 

g4+2mp++2 = 0. 

From equations (4-S) and (5.5) we derive 

P a 

k2 = l-Z+E+ 

(5.7) 

with a = n2blLH2. 
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Substitution of the value (5.8) for k2 into equation (5.7) yields 

P 
L=1+;+2rnp+‘g4. (5.10) 

The term a/{2 is due to the couple stress and plays a crucial role. Because of the 
presence of this term the value of P goes through a minimum as a function of the 
wavelength parameter 6. This minimum corresponds to incipient internal buckling. 
It is convenient to introduce a variable \ 

2 = .g2m/a)k (5.11) 

With this variable equation (5.10) becomes 

g = l+ 2/(2ma) z2+$ +&z4- 
[ 1 

Equating to zero the z derivative of the right side of (5.12) yields 

(5.12) 

(5.13) 

The buckling wavelength is 28 = 2H(a/2m)*z, (5.14) 

where x is the positive real root of equation (5.13). 
In many applications a/m is small and a good approximation is x = 1. The 

buckling wavelength becomes 
2 = 2H(a/2m)*, (5.15) 

and the buckling load P is given by 

P/L = 1 + 2 J(2ma). (5.16) 

The case a = 0, P = L, represents the shear threshold (Biot r964a). 

6. STABILITY OF PLATES AND MULTILAYERS WITH COUPLE STRESSES 

In previous work the author has derived complete solutions for the mechanics of 
pIates and multilayers under initial stress (Biot 1963 b, c, 1965 a). These solutions 
are immediately extended to plates and multilayers with couple stresses by using 
the couple-stress analogy derived in $4. By this analogy all equations derived for the 
continuous anisotropic medium are applicable to a medium with couple stresses 
provided we replace P by P’. For example, consider an isolated plate of thickness h 
which is deformed sinusoidalIy along its axis X. The displacement and incremental 
stress fields are of the form (4.5). Values of the tangential and normal displacement 
and stress amplitudes U, V, T, p are indicated by the subscript one on the top face 
and by the subscript two on the bottom face. Equations relating the four displace- 
ments to the four stresses are expressed in very condensed form by introducing the 
quadratic form 

+qu&-U,~)+~(U,Tr,-U,V,) (6.1) 
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with the six basic coefficients defined as follows: 

and 

b,, = bllp$$ 
12 

(6.2) 

(6.3) 

where x1 = /& tanh (& Zh), 

x2 = f12 tanh (&!?, Zh). 
(6.4) 

With these definitions the surface stresses are given in terms of the four displace- 

ments by the relations 
81 

7 --&al r1=lLm19 2- au29 

aI 

P1= ILav,' q, = AL%. 
2 

These equations are formally the same as those derived for a medium without couple 

stresses. The effect of the couple stresses is obtained by replacing P by P’ = P - b12 
in the value of k2 as in equations (4.8). 

Consider for example the problem of buckling of a plate with couple stresses 

subject to an initial compression P along its axis. The surface stresses vanish, hence 

r1 = q1 = 72 = qz = 0. Th e UC b kl ing condition is obtained by equating to zero the 
determinant of equations (6.5). Since the buckling deformation is antisymmetric 

(U, = - U,, V, = V,) the determinant is a two-by-two determinant and the buckling 

condition becomes 
%la22-42 = 0. (6.6) 

After elimination of the factor (zl - z2) it is written 

(/3”1+ 1)2x2- (pi+ 1)22, = 0. (6.7) 

For a given value of the parameter M/L we may solve equation (6.7) for P’/L as a 

function of lh = 27&/g, where 9is the buckling wavelength. This plot is illustrated 

schematically by the dashed line in figure 5. It represents the buckling load P’ in the 
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absence of couple stresses. The horizontal asymptote P’/L z 1 corresponds to pure 
shear or surface buckling while the parabolic portion near the origin corresponds to 

the Euler buckling at large wavelength. The actual buckling load P in the presence 

of stress couples is obtained by plotting 

P P’ bl= 
z = ,sTI;, (64) 

which is represented by the full line in figure 5. Since b12/L may be written (b/Lh2) 12h2 
we see that there is a double family of curves with two parameters M/L and b]Lh2. 

The first parameter represents the anisotropy and the second the couple stress. 

FIGURE 5. Critical buckling value of P/L as a function of the wavelength parameter 
lh = 2nhl-T for an anisotropic plate with couple stresses. 

The analysis of a multilayered incompressible medium with couple stresses under 

initial stress is carried out in the same way. The system is constituted by superposed 

adhering horizontal plates of orthotropic symmetry along the horizontal and vertical 

directions. The principal initial stresses are oriented along the axes of symmetry. 

Elastic properties and initial stresses may be different in each layer. In the ith layer 

of thickness hi the incremental elastic coefficients are MS and Li, the effective com- 

pressive stress Pi, the couple stress coefficient b,. The displacements at the top 

interface of the layer are designated by Vi 6 and at the bottom interface by Ui+l, l$+r, 
In order to analyse this system we construct a quadratic form I4 corresponding to 

the ith layer. It is obtained from expression (6-l) by substituting U,, l$, Ui+r, l$+1 for 

U,, V,, U,, V, respectively. The coefficients A, B, . . . . etc., are evaluated for the ith 

layer as functions of M,, L,, b+ Pi and Ihi. The quadratic form for the whole multi- 

layered system of n layers is 
n 

3 = x Li Ii, 
i-l 

(6.9) 
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where the summation is extended to all layers. This quadratic form is a function of 

the 2n + 2 boundary displacements of the layers. Buckling is governed by the system 

of 2% + 2 homogeneous equations 

(6.10) 

They are recurrence equations between the six interfacial displacements at three 

successive interfaces. The buckling condition is obtained by equating to zero the 
determinant of equations (6.10). Numerical programming procedures are discussed 

elsewhere (Biot rg63c, 1965”). 
Gravity may be taken into account by considering an analogue model derived 

earlier (Biot Igsg,rg63 c, 1965 a). In the model the effect of gravity is equivalent to 

applying vertical interfacial forces proportional to the change in altitude and the 

density difference. This amounts to using for 4 the expression 

where 

(6.11) 

(6.12) 

In this expression g is the acceleration of gravity and is the mass density of the ith 

layer. If the top surface of the structure is free we put p. = 0. 
If the bottom layer adheres to a rigid surface we put U,,, = V,,, = 0. Both or one 

of the end layers may be infinitely deep, corresponding to multilayers bounded by 

one or two half spaces. This case is included by putting equal to infinity the thickness 

of one or both of the end layers (numbered i = 0, i = n+ 1). 

7. COUPLE STRESSES AS AN APPROXIMATION FOR LAMINATED MEDIA 

Consider a laminated medium composed of elastic layers of two different incom- 

pressible materials. A layer of thickness h, and elastic coefficients M,, L, alternates 

with a layer of thickness h, and elastic coefficients M,, L,. We shall refer to them as 

‘layer 1’ and ‘layer 2 ’ respectively. The layers are parallel to a plane of orthotropic 

symmetry of the materials. The principal initial stresses are oriented along the axes 

of orthotropic symmetry. The effective compressive initial stresses are Pr for layer 1 

and PZ for layer 2. 
It was shown (Biot rg63a, 1965”) that for deformations of sufficiently large 

wavelength the medium behaves approximately as an anisotropic continuum with . 

average incremental elastic coefficients M, L and initial compressive stress P equal 
to 

where 

M = M,a,+M,a,, 

(7.1) 

h, 
al=h,+h,’ 

h, 
a,=-’ (7.2) 
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Hence the parameters al, a2 represent the fraction of total thickness occupied by 

each layer. 

The coefficients (7-l) may be said to represent the collective a&so&o& behmiour 

of the laminated medium as contrasted with the intrinsic anisotropy of the layers 

themselves. For example, layers of isotropic materials with strong contrast of rigidity 

lead to colIective coefficients (7-I) which correspond to a large collective anisotropy. 
For shorter wavelengths a correction must be introduced corresponding to the 

bending stiffness of the layers by considering an equivalent continuous medium with 

couple stresses. The couple-stress coefficient is evaluated as follows. Assume a 

deformation such that the displacement v and the tangential stress tiB are both 

independent of y. A closer examination of the problem shows that these assumptions 

are approximately valid in the range where the influence of couple stresses if 

significant. Consider the stress-strain relation 

ti2=Ll av+au ( 1 ax ay (7.3) 

in layer 1. Since ezz = au/ax we may write 

2 = Lf!!+!$ff). (7.4) 

On the other hand tiz = _qav/ax), (7.5) 

where L is the average slide modulus (7.1) for the laminated medium. Elimination of 

tiz between equations (7.4) and (7.5) yields 

ae,, CC,(L, - Ll) a2v 

ay - c+L~+cc~L~ as* (7-6) 

In deriving this expression we have substituted the value (7.1) for L and used the 

identity c+ + a2 = 1. Equation (7-6) shows that e,, is a linear function of y. Therefore 

t,, = 4Me, is also a linear function of y and generates in layer 1 a bending moment 

-k; = +h:i& 
a,(L, - L,) a2v 

c+~+cc,L, as* (7.7) 

The sign of A1 is chosen positive counterclockwise when acting on a solid lying to 

the left (see figure 3). Similarly in layer two the bending moment is 

Let h = i(hl + h2) be the average 
moment per unit thickness is 

JY= 

with the couple-stress coefficient 

(7.8) 

thickness of the layers. The total average bending 

$-(4+A2) = b& U-9) 

b= ~~2WC--~2,M,) (-51-L2)%~2 
a L +a L . 

12 21 

(7.10) 
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This expression is considerably simplified if one layer is much more rigid than the 

other. For example, if Ml B M, and Ll B L, we obtain 

b = +h2,M 7 
(7.11) 

where M is the average elastic coefficient (7.1) for the equivalent continuum. 

In the subsequent analysis we shall assume that 13 > 0. 

Validity of the couple-stress approximation 

The existence of a skin effect which depends on the magnitude of the anisotropy 

was brought out in a recent paper (Biot 1966a). It was found that the stress will vary 

rapidly near the boundary of a layer through a skin thickness 6 = Y/(27r ,/(2m)) 

where L? represents the wavelength along the layers. Obviously the wavelength 

must be large enough so that the skin thickness is not smaller than the thickness h, 

or h, of the laminations. For a given wavelength this puts a limitation on the magni- 
tude of the anisotropy since the latter is measured by m. For isotropic materials 

m = 1 and 8 z O-15?. Hence in this case the wavelength must not be less than about 

ten times the lamination thickness. The condition also applies to the collective 

anisotropy of the laminated medium itself considered as an approximate continuum. 

However, in this case closer examination of the mechanics indicates that this 

will only affect the stress field in localized boundary regions without changing 

appreciably the overall behaviour of the system. 

A special correction must also be applied for internal buckling due to interstitial 
flow in the case of large rigidity contrast between the two lamination materials. This 

effect was evaluated earlier (Biot 1964a, 1965d) and will be discussed briefly in the 
next section. 

8. EXTENSION TO VISCOUS, VISCOELASTIC AND PLASTIC MEDIA 

The author’s principle of viscoelastic correspondence (Biot I 95 5, I 963 c, I 965 a) is 

applicable to a medium under initial stress. By this principle extensions of the 

previous results to viscous and viscoelastic media is trivial, and is obtained by 

substituting operators for the moduli in the equations of the elasticity theory. 

Consider, for example, the laminated medium. For layer 1 the viscoelastic pro- 

perties are expressed by the operators 

2,= s * p __ L,(r) dr + L, + Lip, 
0 p+r I 

&= 

s 

m p -M,(r) dr + Ml + i&p, 
0 p+r J 

1 (8-l) 

with the operator p = d/dt (8.2) 

which represents a time derivative. The viscoelastic properties of layer 2 are repre- 
sented by operators .& and a, given by expressions similar to (8-l). These expres- 

sions were derived by the author from irreversible thermodynamics (Biot 1954, 
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1963c, 1965a). The collective elastic coefficients L and M of the equivalent conti- 
nuum must be replaced by the operators 

iI-2 = i21aol,+i@2a2, 

2=1/@+$). 

The couple-stress coefficient (7.10) becomes the operator 

(8.3) 

It should be noted that the foregoing operators represent incremental properties. 
They relate theincremental deformations toincrements of stresses and couple stresses 
superposed upon a state of initial stress. In other words the theory is applicable to 
material which are incrementally viscous or viscoelastic. 

Modes of viscoelastic instability are obtained by solving the characteristic 
equation. The equation is formally the same as for the elastic case with corresponding 
operators substituted for the elastic coefficient. The time derivativep now becomes 
a real positive quantity. Each positive value of p which satisfies the characteristic 
equation yields a mode of viscoelastic instability whose amplitude is proportional 
to exp (pt). 

In some cases incremental deformations may exhibit purely viscous behaviour. 
This corresponds to operators &!, = M;p, ik2 = Mip, & = Lip, -f;, = Lip. In such 
a case the average operators (8.3) and the couple-stress operator (8.4) may be written 

i@ = M’p, 

J?i=_rp, (8.5) 

6 = b’p. 1 

The coefficients M’, L’ and b’ are viscosity coefficients similar to those of an aniso- 
tropic fluid with couple stresses. Their values are easily derived from equations (8.3) 
and (8.4). 

Note that this is rigorously valid for a material which is at rest under the initial 
stress and exhibits purely viscous properties for incremental deformations. Actually 
the result constitutes a suitable approximation for a medium which is not rigorously 
at rest initially but is in a state of slow creep. The theory becomes thereby applicable 
to strongly nonlinear plastic materials and the viscosity coefficients become dif- 
ferential coefficients representing the local slopes of strain-rate curves plotted as a 
function of stress (Biot 1961, 1965 a). For a wide range of problems the approxima- 
tion is also applicable to a Newtonian or anisotropio fluid under initial stress. The 
validity of this approximation was discussed elsewhere (Biot 1965a, e). 

Hydrodynamic instability due to viscosity stratification 

An exact theory of folding instability of a fluid with stratified Newtonian viscosity 
was developed earlier (Biot Ig64b, 1963 a). This provides a rigorous treatment of 
folding instability for a medium which is not at rest under the initial stress but in a 
state of flow with a time-history of finite strain. 
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Comparison between ji?uid mechanics and viscoelasticity 

In this connexion reference should be made to a paper by Ramberg (1964) where 
the analysis of folding instability is alleged to be based on fluid dynamics. This 
statement by Ramberg is incorrect since he does not take into account the fact that 
the fluid is not at rest under the initial stress and that the folding is superposed on an 
initial state of flow. Actually Ramberg’s treatment is equivalent to considering a 
medium initially at rest which is incrementally viscous and isotropic and is therefore 
a particular case of a viscoelastic medium with operators 2 = ti = rp (7 = viscosity). 
It is not surprising therefore that Ramberg’s results are in complete agreement with 
those derived earlier by the author under the same assumptions. However, the 
incrementally viscous model initially at rest is not theoretically correct for a 
Newtonian fluid but in practice it is generally applicable as an approximation to a 
viscous fluid. The range of validity of the approximation has been discussed in 
detail elsewhere (Biot 1964b, 1965a, c). 

Operationakuariational principle 

Variational principles in operational form are immediately derived by viscoelastic 
correspondence (Biot 1955, 1965 a) by the simple procedure of replacing the elastic 
coefficients by operators. 

Internal buckling of a laminated medium 

Equations for internal buckling of a medium with couple stresses are applicable to 

a laminated medium whose incremental properties are either elastic, viscous or 
viscoelastic. Results are formally the same for all cases by introducing the general 
operators (8.3) and (8.4). The same buckling configuration is obtained as shown in 
figure 4. 

Consider, for example, the case of a laminated elastic medium where one layer is 
much more rigid than the other. The couple-stress coefficient in this case is given by 
expression (7.11). Since M/L is large we may write approximately 

a n2 h2 __=--.A 
m 6 HZ’ 

am = 27T2 h: M2 
8 H2 L2 ’ 

(843) 

Because a/m is small, expressions (5.15) and (5.16) are valid. By introducing the 
value (8.6) for a/m the buckling wavelength (5.15) becomes 

2 = 1*90,/(h,H). (8.7) 

This same value is obtained for the dominant wavelength for a medium which 
incrementally is purely viscous and is represented by the operators (8.5). Hence, in 
first approximation, the folding is governed mainly by the geometry. 

This remarkably general and simple result represented by equation (8.7) was 
already obtained earlier (Biot 1964a, 1965 d) in a less general analysis. 
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For the elastic medium, equation (5.16) giving the buckling load P may be written 

P l.L -=_ h 4M 4 jj+ 1’81p 

A similar equation is obtained for the incrementally viscous medium by substituting 

for L and M the operators L’r, and 2M’p. We obtain 

P 1 L’ hl -=.... 41M’p 4 211’+ 1’f+j’ (8.9) 

The amplitude of folding of the dominant wavelength grows proportionally to ep 

under a given applied compressive load P. The rate of growth of the folding is repre- 

sented by the value of the coefficient p and determined by equation (8.9). 

Interstitial flow correction 

When the rigidity contrast becomes very large a correction must be introduced 

which takes into account the local flow of matter which occurs in the soft layers 

relative to the more rigid layers. We shall consider layer 2 as the soft layer. This 
‘interstitial flow’ effect was analysed earlier (Biot 1964a, 1965d) in a special case. 

However, the result is quite general and may be formulated as an apparent 

anisotropic compressibility, which amounts to replacing condition (2.4) for incom- 

pressibility by 
1 hi i% 

e,,+e,,=----A 
12 x2 a22 * 

(8.10) 

This equation makes the strain dependent on the second gradient of the stress. Other 

equations remain unchanged. The effect of interstitial flow on the wavelength of 

internal buckling was evaluated approximately for the particular case 

& = 2, = rj#, 2, = a2 = ?j2p 

(Biot 1964 a, 1965 d). The dominant wavelength was found to be 

2’ = 1.90 &H) (8.11) 

In this case r/1 and r2 represent isotropic viscosity coefficients of the hard and soft 

layers respectively and n is the total number of confined layers. The same correction 

factor applies for the buckling wavelength for a purely elastic material if we replace 

~1/~2 by the ratio ,u1/,u2 of the elastic moduli of the two layers. 
Note that the correction factor is extremely insensitive to the physical parameters 

because it depends only on the Q power. Moreover the correction is negligible if 

3.63~,a3,/(~,n) < 1. 

9. GENERAL FORMULATION OF GEOLOGICAL FOLDING 

The theory of stability of multilayers with couple stresses outlined in $6 may be 
applied to the case where the layers themselves are constituted by laminated materials. 
Structures of this type are frequently encountered in geology. For example, figure 6 
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shows the superposition of four horizontal layers, where layers 1, 2 and 3 are 

laminated media, while layer 4 is homogeneous and isotropic. The laminated layers 

1, 2, 3 are themselves constituted by a superposition of alternating hard and soft 
layers and each of them is approximated by an anisotropic continuum with couple 

stresses. The average effective initial compressive stress P would also be different 

in each of the four layers. 

Let us assume that the structure is subject to horizontal compression associated 

with a state of slow oreep and a homogeneous strain. The rheological properties of the 

FICXJRE 6. Example 

‘) rigid I 

of a stratified geological structure analysed as a four -hJW Hll. 

Layers 1, 2 and 3 are considered to be laminated plates each behaving as a continuous 
anisotropic medium with couple stresses. 

free 

materials may correspond to nonlinear plastic behaviour. However, incremental 

deformations representing deviations from the initial state of homogeneous creep 

may be represented by viscous properties expressed by the operators (8-5). 

The problem of deriving the time history of folding instability of the structure is 

solved by applying the general equations of 0 6. The effect of gravity and density 

contrast is included in these equations. Suitable operators are substituted for the 

elastic constants to represent the incremental viscous properties. The unknowns 

are the two displacements U and V at each interface or free surface. Note that the 

structure illustrated in figure 6 is analysed as a four-layer system, hence the inter- 
faces referred to here are those between the composite laminated layers as a whole 

and not those within the components of the laminations. This means that there are 

only eight unknowns in the stability equations. They are the two displacements at 

the free top surface, and at the three interfaces between the component layers 2, 3 

and 4. The displacements at the bottom interface of layer 4 vanish if we assume the 

structure to rest without friction on an ‘incrementally rigid’ medium. Hence the 

characteristic equation of the stability problem is an 8 x 8 determinant. Solutions 

of this equation determines the parameter p as a function of the wavelength. Folds 
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of amplitude proportional to ept are obtained and maximum values of p determine 

the hminant wavelengths. By the same token the time history of folding may be 

evaluated starting with an initial deviation of the structure from perfect flatness and 

representing the deviation by a superposition of sinusoidal solutions and orthogonal 

characteristic solutions. 

10. APPLICATION TO TYPICAL NEOLOGICAL STRUCTURES 

Preliminary approximate and simplified solutions previously derived by the 

author in key problems lead to the prediction of the behaviour of the more complex 

structures which can be analysed by the more exact but more elaborate methods 

developed in the present paper. 

FIGURE 7. Folded structure showing the simultaneous appearance 
of two dominant wavelengths. 

Simultaneozcs appearance of different folding wavelengths 

Under conditions of confinement equation (8.7) is approximately valid and shows 

that the dominant wavelength depends primarily on two geometric parameters, the 

thickness, it,, of the competent layers and the confinement distance, H. On the other 

hand the rate of growth of the folding is relatively insensitive to scale and depends 

more on material properties and geometric ratios. This may be seen by considering 

the value of p obtained from equation (8.9). This value of p determines the rate of 

folding and may be the same for two different dominant wavelengths as illustrated 

in figure 7. In region A the layers are thinner with an effective confinement distance 

He, corresponding approximately to the distance between regions B. With h, denoting 

the competent layer thickness in region A the dominant wavelength in this region is 

about $2’ = l-90 J(h,H,). In the overall region A and B both the competent layer 

thickness and the confinement distance are large, resulting in a larger dominant 
wavelength superimposed on the smaller folds. As a rule the larger wavelengths will 

be superposed on the smaller folds but the reverse will not be true. 
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Conjined microstructures 

Internal buckling of a thinly laminated structure of schistous or micaceous rock 
confined between thick competent layers will generate microfolds as illustrated in 
figure 8. The dominant wavelength or buckling wavelength is given by the same 
formula (8.7), whether the medium is elastic or in a state of quasiviscous creep. 
Equation (8.7) has recently been applied (Potter 1966) to micaceous deposits between 
competent sandstone layers. Results are in good agreement with field observations. 

FIWJRE 8. Folding in thinly laminated microstructure of micaceoua or schistous 
rock confined between thick competent layers. 

FIUTTRE 9. Secondary folding in the compressed region of a crest. 

Secondary folding 

The compression which causes the folding instability may itself be generated by 
localized stresses due to primary larger scale folding. As an example consider the 
crest region in a folded competent thinly laminated layer illustrated in figure 9. 
The compressed region may be considered as a laminated medium with an effective 
confinement distance. Secondary microfolding will appear in this region. The 
effective confinement distance H, may be evaluated by applying the general theory 
in the present paper. As a preliminary approximation we may assume that H, is about 
equal to the total thickness of the laminated layer. Microstructures of this type in 
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sedimentary rock are quite common. It has also been observed in layered rubber 
models (Ramberg 1964). 

Ximil& folding of the$rst and second Icind: transition to internal buckling 

A model of particular interest is illustrated in figure 10, where a multilayered 

structure A lies on top of a thick soft layer B, and the whole system rests on a rigid 

foundation. The folding of this system, including the effect of gravity, may be 

analysed by applying the general equations of § 6, for a large category of materials, 
incrementally elastic, viscous or viscoelastic. The four unknowns are the two dis- 

placements at the top and bottom of region A and the characteristic equation is a 

4 x 4 determinant. Particular cases of this model have been analysed previously for 

an infinitely thick region B (Biot 1961) and for the,case of pure gravity instability 
(Biot & Ode 1965 ; Biot 1966 b). The latter treatment, included the effect of variable 

thickness and compaction of the overburden with special reference to the formation 

of salt structures. 

FIGURE 10. Folding and gravity instability of a stratified overburden 
separated from a rigid base by a soft layer. 

A previous approximate analysis of folding of the analogous case of a multi- 

layered structure embedded in a soft medium (Biot 1965 b) permits certain con- 

clusions regarding the general behaviour of the structure shown in figure 10. Under 

certain conditions when layer B is very soft the folding wavelength will be large, 

resulting in what the author has referred to as similar folding of thefirst kind. In this 

case the multilayered overburden A exhibits almost pure bending behaving as a 

single anisotropic layer. For increasing stiffness of layer B the wavelength decreases. 

Below a cross-over wavelength depending on the collective anisotropy of the over- 

burden the folding is predominantly a shear instability which we have referred to as 
similar folding of the second kind. For further increase of rigidity of region B the 

overburden A becomes more and more confined at the bottom and internal buckling 

will begin to show up. This is characterized by a variation in folding amplitude 

across the thickness of the multilayered overburden. 

Plastic jlow and’nonlinear effects 

The foregoing linearized analysis will be approximately valid for folding with 

‘I moderate slopes. In this initial phase as shown in a previous analysis for the single 
layer (Biot ig64b, 1965 a, c) due to the compensating effects of overall compressive 

: shortening and thickening of the layers, the wavelength of the folding tends to 
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remain constant. Beyond a certain amplitude the bending stress at the crest pro- 
duces a local yielding (Biot 1961). In this second phase the crests behave as sharp 
hinges and the wavelength decreases in accordance with further compressive 
shortening. The analysis shows that the onset of the plastic phase is delayed to 
larger folding amplitudes when the compressive stress decreases. 

An entirely similar behaviour may be exhibited by a multilayered structure 
when the second phase of similar folding is characterized by sharp folds with large 
slopes which participate in the overall compressive shortening of the whole structure. 

REFERENCES 

Biot, M. A. rg3g Non-linear theory of elasticity and the linearized case for a body under 
initial stress. Phil. Mag. 27, 468-489. 

Biot, M. A. 1954 .Theory of stress-strain relations in anisotropic viscoelasticity and relaxation 
phenomena. J. Appl. Phys. 25, 1385-1391. 

Biot, M. A. 1955 Variational and Lagrangian methods in viscoelasticity. Proc. IUTAM 
colloquium on deformation andpow in solids (Madrid 1955), pp. 251-263. Berlin: Springer. 

Biot, M. A. 1959 The influence of gravity on the folding of a layered viscoelastic medium 
under compression. J. Franklin Inst. 267, 211-228. 

Biot, M. A. 1961 Theory of folding of stratified viscoelastic media and its implications in 
tectonics and orogenesis. Bull. Geol. Sot. Am. 72, X95-1620. 

Biot, M. A. 1963 a Internal buckling under initial stress in finite elasticity. Proc. Roy. Sot. A 
273, 306-329. 

Biot, M. A. 1963 b Theory of stability of multilayered continua in finite anisotropic elasticity. 
J. Franidin Inst. 276, 128-153. 

Biot, M. A. 1963~ Stability of multilayered continua including the effect of gravity and 
viscoelasticity. J. Franklin Inst. 276, 231-252. 

Biot, M. A. rg64a Theory of internal buckling of a confined multilayered structure. Bull. 
Geol. Sot. Am. 75, 563-568. 

Biot, M. A. 19645 Theory of viscous buckling of multilayered fluids undergoing finite strain. 
Phy&s Fluids 7, 855-859. 

Biot, M. A. rg65a Mechanics of incremental deformations. New York: John Wiley and Sons, 
Inc. 504 pp. 

Biot, M. A. 1965 b Theory of similar folding of the first and second kind. Bull. Geol. Sot. Am. 
76, 251-258. 

Biot, M. A. 1965~ Theory of viscous buckling and gravity instability of multilayers with 
large deformations. Bull. Geoeol Sot. Am. 76, 371-378. 

Riot, M. A. rg65d Further development of the theory of internal buckling of multilayers. 
Bull. Geol. Sot. Am. 75, 833-840. 

Biot, M. A. rg65e Internal instability of anisotropic viscous and viscoelastic media under 
initial stress. J. Franklin Inst. 279, 65-82. 

Biot, M. A. rg66a Fundamental skin effect in anisotropic solid mechanics. International 
Journal of Solids and Structures 2, 645-663. 

Biot, M. A. Ig66b Three-dimensional gravity instability derived from two-dimensional 
solutions. Geophyks 31, 153-166. 

Biot, M. A. & Ode, H. 1965 Theory of gravity instability with variable overburden and 
compaction. Geophysics 39, 213-227. 

Cauohy, A. L. 1851 Note sur l’equilibre et les mouvements vibratoires des corps solides. 
Comptes-Reno?us 32, 323-326. 

Cosserat, E. & Cosserat, F. agog Thkorie des corps ddformables. Paris: A. Hermann et Fils. 
Potter, J. F. 1966 Deformed mioaceous deposits in the Downtonian of the Llandeilo region, 

South Wales. Proc. Geol. Ass., Lond. 77 (to be published). 
Ramberg, H. 1964 Selective buckling of composite layers with contrasted rheological 

properties, a theory for simultaneous formation of several orders of folds. Tectonophysks 
1, 307-341. 


	Foreword
	Papers:
	Titles
	Full Citation
	Abstracts

	About M.A.Biot
	Domains
	Keywords
	Copyrights
	Acknowledgments
	List of Papers:
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	20a
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179


