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The fundamental physical features of convective heat transfer for laminar and turbulent flow in 
ducts and boundary layers are brought out and analyzed quant,itatively. A simplified variational 
method is used which is shown to be remarkably accurate by applying it to special cases where exact 
solutions are known. Results are expressed in nondimensional form by means of two universal 
trailing functions which embody the essential features of heat transfer for laminar and turbulent flow 
and are approximated by very simple piece-wise analytic expressions. The results are applicable to 
nonparallel strea.mlines as encountered in duct entry and most boundary layers. This is achieved by 
introducing a new transformation which provides a suitable extension of the “conduction analogy” 
to these cases. Drastic simplifications are derived in the analysis of convective heat transfer. In 
particular it is shown how the trailing function is used in evaluating the heat transfer in heat ex- 
changers and in the much more complex problem of transient heat conduction in a structure adjacent 
to a moving fluid. In the latter case it is pointed out how the use of the trailing function avoids serious 
errors in thermal stress analysis. 

I. INTRODUCTION 

A k important branch of the physics of fluids is 
concerned with mass and energy transport due 

to the combined effect of diffusion and convection. 
The field equations which govern these phenomena 

have long been known and a large collection of 
analytical and numerical solutions are available in 
the literature. However, the formalistic and numeri- 
cal manipulations of the fundamental equations are 
not sufficient in order to provide a really comprehen- 
sive t,heory from the standpoint of the physicist. 
The problem still remains to construct a physical 
model which brings to light the significant factors 
and the corresponding dimensionless parameters 
along with sound quant,itative justification for the 
exclusion of ma,ny others which are not fundamen- 
tally relevant t,o the physics. In addition to new 
physical insight, this viewpoint leads to the clarifi- 
cation of a number of paradoxical results as well as 
much needed simplification and an intuitive under- 
standing. 

In particular this approach provides a simple and 
physically correct evaluation of ‘the author’s trailing 
function’ which was introduced to represent com- 
pletely the convective heat transfer properties as a 
practical tool in technological applications thereby 
eliminating the use of the inadequate concept of 
“loca.1” heat, transfer coefficient. Once the trailing 
function is known it is possible to formulate cor- 
rectly and in a simple way a large class of thermal 
problems involving heat transfer and transient 
temperatures. 

As regards the applications, one of the crucial 
problems of aerospace technology is the evaluation 
of transient temperatures and the associated thermal 
stresses in a flight structure bounded by a moving 
fluid. Because of the extreme complexity of the 
phenomena involved current procedures of analysis 
make use of the simplifying concept of local heat 
transfer coefficient. However, that this concept is 
fundamentally wrong is shown by a detailed analysis 
of the physical nature of heat transfer in a moving 
fluid.2 Results of this analysis also indicate that the 
use of the local heat transfer coefficient may lead 
to serious errors particularly in the evaluation of 
thermal stresses, since they do not depend on the 
magnitude of the temperatures but on their dif- 
ferences. Such conditions occur in complex flight 
structures. For example at junctions of webs and 
flanges local aerodynamic heating and cooling gen- 
erate transient differential temperatures which are 
not localized and remain appreciable at relatively 
large distances downstream. Such e$ects are es- 
sentially convective and cannot be accounted for by 
local heat transfer properties. 

The variational Lagrangian procedures introduced 
by the writer’ avoid these difficulties and provide a 
physically correct and relatively simple formulation 
of transient thermal conduction coupled to convec- 
tive heat transfer at the boundary. 

A key to the variational formulation is the concept’ 
of trailing function as defined earlier by the author 
in a very general context.’ As illustrated in the last 
paragraph of this paper the trailing function also 

1 RI. A. Biot, J. Aerospace Sci. 29, 568 (1962). 2 M. A. Biot, J. Aerospace Sci. 29, 558 (1962). 
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provides at the same time convenient solutions of 
simple problems such as those of forced convection 
and heat exchangers. 

The trailing function itself is easily evaluated by 
variational procedures with remarkable accuracy. 
AS shown previously’ by simple examples, this is 
accomplished by using a conduction analogy. By 
this analogy the convection problem is replaced by 
a mathematically equivalent one of pure conduction 
which is then solved by the variational methods 
developed earlier for pure conduction.3 

The purpose of the present paper is to provide a 
physical and intuitive analysis of convective heat 
transfer using variational methods and to derive 
typical trailing functions for laminar and turbulent 
flow. An important result also derived below, is a 
new conduction analogy for the case of nonparallel 
streamlines. As previously suggested, the von Mises 
transformation’ provides a conduction analogy for 
this case. However, the resulting analogy is phys- 
ically awkward and in the application of variational 
methods leads to difficulties which are avoided by 
the new equation derived in Sec. VIII below. 

The analysis has been focused on bringing to light 
fundamental and essential features. By a suitable 
choice of key parameters we show that the trailing 
function is not very sensitive to the velocity profile 
and may be represented approximately by only 
two universal piece-wise analytic functions, one for 
laminar and one for turbulent flow. By a simple 
procedure these functions are applicable to bound- 
ary layers with nonparallel streamlines. As a con- 
sequence they also provide practical methods of ana- 
lyzing heat transfer in ducts under entrance condi- 
tions. 

The two basic trailing functions must be con- 
sidered as first approximations which should be 
satisfactory in many types of practical problems. 
Refinements may of course be introduced leading 
to small corrections as exemplified in Sec. VI. Such 
refinements and corrections should also be the object 
of further investigations for velocity profiles which 
differ drastically from the more general types as- 
sumed in the present paper. 

Finally it should be noted that the simplicity 
of the method as applied to problems of convective 
heat transfer with a known velocity field of the 
fluid suggests the possibility of solving without the 
need of large computers the much more complex 
case where the fluid velocity is unknown and de- 
pends on the heat transfer itself. 

3 M. A. Biot, J. Aeron. Sci. 24, 857 (1957). 

There exists extensive literature on boundary 
layer heat transfer, much of it in the nature of 
problem-solving using methods developed in the 
fundamental papers of Leveque4 and LighthilL The 
present paper constitutes an attempt to use the 
author’s recently developed variational methods 
to provide new physical insight as well as drastic 
simplification in the analysis of convective heat 
transfer. 

II. TRAILING FUNCTION AND THE 
CONDUCTION ANALOGY 

In its general form the trailing function is defined 
as follows. Consider that heat is injected into the 
fluid at a point P’ of the boundary at a constant 
rate per unit time. This causes an increase of tem- 
perature of the fluid at the boundary. This increase 
in temperature at any other point P of the boundary 
is r(P, P’). In the absence of heat transfer from the 
solid, the boundary temperature is the adiabatic 
temperature Oa(P). The function r(P, P’) defines 
the trailing function for the injection point. Note that 
r is singular and infinite for P = P’ since a finite 
rate of heat flow is concentrated at the point of 
injection. Strictly speaking for a time-dependent 
heat flow the trailing function should be also a func- 
tion of time. However as a quasi-steady approxima- 
tion the steady-state expression of the trailing func- 
tion may be used as if the heat injection rate and the 
fluid flow were time-independent. The range of 
validity of this approximation was discussed earlier.’ 

In general, and for three-dimensional flow the 
trailing function r(P, P’) is defined on a surface. 
In many applications the flow is two-dimensional 
in the x, y plane. In such a case it is convenient to 
modify slightly the definition of the trailing func- 
tions as follows. Assume the case of a straight bound- 
ary along the z axis. Injection into the fluid is con- 
centrated on a line at the boundary instead of at a 
point. The line is perpendicular to the 2, y plane 
and the heat injected per unit length of this line 
and for unit time is equal to unity. If the injection 
line if located at the abscissa E, the temperature 
rise at a point x of the boundary is expressed in 
the form 

e - 8, = r(x - 4, [). (2.1) 

Note that this function corresponds to concentrated 
injection of heat per unit length on a line. Hence 
its physical dimension is not the same as for the 

4 A. Leveque, Ann. Mines 13,201,381(1928). 
5 M. J. Lighthill, Proc. Roy. Sot. (London) A202, 359 

(1950). 
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case where injection is concentrated at a point. 
In the following we consider a slab of fluid of unit 

thickness parallel to the 2, y plane and we speak of a 
concentrated injection of heat at point x = E of the 
boundary. It is understood that this refers to heat 
injection per unit length and concentrated on a line 
located at point x: = 5 and perpendicular to the 
Z, y plane. 

Evaluation of the trailing function may be carried 
out by using a conduction analogy as already out- 
lined earlier.’ For example consider a two-dimen- 
sional laminar flow with parallel streamlines. The x 
axis lies along the plane boundary and the fluid 
occupies the region y > 0. The velocity profile of 
the boundary layer is 

u = u(y). (2.2) 

In the linearized problem, we may put 0, = 0 with- 
out loss of generality. Hence the excess temperature 
8 above the adiabatic value satisfies the equation 

c?&W/az> = k[(a2e/d22) + (a”e/ay”)]. (2.3) 

The fluid is assumed to be incompressible, of heat 
capacity c per unit volume and thermal conductivity 
k, both of constant value. 

It has long been known that the term d20/8x2 in 
Eq. (3.3) may be neglected in a large majority of 

. problems. This approximation was already used by 
Leveque4 in his classical paper. The validity of the 
approximation was also discussed more recently.’ 
This leads to the simplified equation 

cth(ae/ax) = k(#e/a$). (2.4) 

We may identify x with a time variable t and 

c’(y) = CU, (2.5) 

with a heat capacity function of y. Equation (2.4) 
becomes 

d(y)(ae/at) = k(a2e/ay2). (2.6) 

This equation coincides with that of a transient 
heat conduction problem where a semi-infinite solid 
of thermal conductivity k replaces the fluid, and 
the heat capacity c’(y) of the solid depends on the 
distance y from the boundary. Hence the tempera- 
ture field e is obtained by evaluating the penetration 
of heat by conduction in the solid, thus we are led 
to an analog model for the convective problem. We 
have referred to this as a conduction analogy.’ This 
analogy is much more general than the particular 
example represented by Eq. (2.6). 

The analogy may be used to evaluate the trailing 

function. Mathematically the problem may be 
formulated as follows. 

Consider Eq. (2.4) and let both sides be integrated 
from y = 0 to y = ~0. We derive 

s 

m 
c2h(ae/ax) dy = -k(ae/dy),+ (2.7) 

0 

Note that the right side of this equation represents 
the rate of heat injection per unit time and unit 
area into the fluid at the boundary. If the total rate 
of heat injection is equal to unity and concentrated 
in the infinitesimal interval 0 < x < E we may write 

e de - LS (4 o ay y-o 
ax = 1. (2.8) 

As a consequence, integration of Eq. (2.7) with 
respect to 2 

s m 

cue dy = 1, for x > 0. 
0 

(2 -9) 

Translated in conduction analogy this means that 
we must solve the conduction equation (2.6) with 
a unit amount of heat injected per unit area at 
t = 0 into the solid. At t = 0 the heat is concen- 
trated near the wall and starts diffusing into the 
solid. During the diffusion process the total amount 
of heat remains constant and equal to unity. This 
is shown by substituting c’ = cu into the integral 
condition (2.9) writing it in the form 

s co 

c'(y)8 dy = 1 
0 

(2.10) 

which corresponds to the conduction analogy. 

III. VARIATIONAL DERIVATION OF THE 
TRAILING FUNCTION 

Known variational principles3 may be applied 
to the conduction equation (2.6). For our purpose 
it is convenient to transform equation (2.6) by 
introducing nondimensional variables. We denote by 
6 a characteristic thickness of the boundary layer 
and express the velocity profile in the form 

u = UV(V), (3.1) 

where 

9 = Y/S (3.2) 

and .U represents a reference velocity. We also put 

7 = (kx/cU 8”) = (l/Pe)(x/@, (3 -3) 

where 

Pe = eU 6/k (3 *4) 
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is a Peclet number. With these variables Eq. (2.6) 
becomes 

(p(rl)(dB/d7) = (a2e/ar1*), 

and the integral condition (2.9) is written 

(3.5) 

where 

Ho = (l/cU S) = (l/k Pe). 

Equation (3.5) corresponds to thermal conduction 
in a semi-infinite solid of unit conductivity where r 
denotes the time, TJ the distance from the boundary 
and ~(7) a heat capacity per unit volume function 
of 7. In order to derive the trailing function we must 
find a solution which satisfies the adiabatic condition 
e0/&~ = 0 at 7 = 0 and the integral condition (3.6) 
of constant total heat content. 

The author’s variational method is applicable to 
this problem. The temperature distribution is ap- 
proximated by the expression 

e = e,[l - (s3/q3)1, for r~ < Q, 
(3 *7) 

e = 0, ‘for 11 > q; 

where q is a “penetration depth” considered to be 
an unknown function of time. The temperature 

algebra, it is more convenient to postpone intro- 
ducing the relationship explicitly until the last 
step using Eq. (3.11). 

Consider first the thermal potential. In the con- 
duction analogy corresponding to Eq. (3.5) the 
thermal potential is 

/ 

v = i ja V(q)e” dV. (3.12) 
o 

The dissipation function is obtained by first 
evaluating the analog heat flow H at the point 7 

(3.13) 

In order to facilitate the algebra in evaluating this 
expression, it is advantageous to write it in the form 

H = /’ 64s) dtl - s,’ Mrl> dv. (3.14) 
o 

The dissipation function is 

(3.15) 

With the value for fi obtained from (3.14) the dis- 
sipation function is given by 

(l/e:)D = $Mqq", 

en at the boundary (q = 0) is a function of q deter- 
mined by the integral condition (3.6). This func- 

where M is a function of q. 

tional relation, obtained by substituting expression 
The variational procedure leads to the Lagrangian 

(3.7) for 0 into the integral (3.6), is written 
equation 

eo[Ao - Bolq31 = HO, (3 8 

with the following functions of q For convenience we have divided the equation by 6:. 

Ao = ja P(T) dv, 

The right side is zero because no heat is allowed to 
flow at the boundary 7 = 0 and the corresponding 

0 (3.9) thermal force & vanishes. 

Bo = s,a v3’p(d dv. 
From expression (3.12) we derive the value 

(l/&)(~V/%d = -L, (3 .lS) 

In evaluating Certain key expressions below we 
require the differential relationship between 8, and q. 

where L is a function of q 

This is readily obtained by taking total differentials 
Introducing the values (3.16) and (3.18) into the 

of Eq. (3.8). Putting 
Lagrangian equation (3.17) yields 

s(q)qQ = 1, (3.19) 
3Bo 

R = A,p3 - B, 
(3.10) where 

and with time derivatives (8 = dO/dr, etc) we obtain S(Q) = M/L* (3.20) 

Bole0 = -%/a). (3.11) The d’ff 1 erential equation (3.19) is integrable by 

In the subsequent derivation B. is considered to be 
quadrature 

a given function of q defined by relation (3.8). 
However, in order to avoid undue heaviness in the 

7= 
s oa q&q) dq. (3.21) 
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The value of & as a function of Q is obtained by 
writ.ing Eq. (3.8) in the form 

00 = &$/(&IQ3 - &I). (3.22) 

Using Eqs. (3.21) and (3.22) it is possible to plot & 
as a function of T by evaluating the ordinate and 
abscissa as parametric functions of q. The resulting 
plot represents the trailing function and may be 
expressed analytically as 

4(T) = &l/Ho = q3/(&p3 - &I) (3.23) 

where @(7) is a nondimensional form of the trailing 
function referred to hereafter as the reduced trailing 
function. 

IV. VERIFICATION OF THE ACCURACY 
OF THE VARIATIONAL PROCEDURE 

Results obtained by the variational method out- 
lined above may be compared with exact solutions 
obtainable for some simple velocity profiles. 

A. Plug Flow 

The simplest ca.se 

cp(rl) = 1, (4.1) 

corresponds to a uniform velocity distribution 
u = U = const. Equation (3.5) becomes 

(rXJ/&) = (a”e/a$). (4.2) 

An exact solution of this equation satisfying the 
boundary condition de/a7 = 0 at 7 = 0 and the 
integral condition (3.6) is 

0, = [H,/(W)“] exp (- q2/47). (4.3) 

The temperature at the wall (v = 0) is 

6, = H&7)*. (4 -4) 

For the velocity profile (4.1) the variational 
method with the cubic approximation (3.7) for 6 
yields 

g(q) = z+-. (4.5) 

Equation (3.19) becomes 

qf.j = 8. (4.6) 

By integration we obtain 

q = (9/144)& (4.7) 

From Eq. (3.22) we also derive 

&I = Q(&lP). (4.8) 

Elimination of Q between Eqs. (4.7) and (4.8) yields 

0, = (H,/1.805)(1/~i) = 0.554(X,/7+). (4.9) 

Comparing with the exact solution (4.4) we see that 
X$ = 1.772 is replaced by the factor 1.805, an error 
less than 2%. 

In a previous paper’ the same case was also treated 
by the variational method using a parabolic ap- 
proximation 0 = e,(l - q2/q2) instead of the cubic 
expression (3.7). In this case the factor at is replaced 
by 1.765. Hence for this case the parabolic approxi- 
mation is even more accurate, the error being less 
than a fraction of a percent. However the cubic ex- 
pression (3.7) has been chosen because it provides 
a better approximation in the more? general case. 

B. Linear Profile 

The case 

P(V) = 91 (4.10) 

corresponds to a velocity profile u = Uy/6 where the 
velocity increases linearly with the distance y from 
the boundary. 

Equation (3.5) becomes 

a(ae/a7) = (d2e/dV2). (4.11) 

An exact solutJion of this equation, satisfying the 
boundary condition de/all = 0 at 7 = 0 is 

e = CT+ exp [- 7”/97] (4.12) 

with any constant factor C. 
This result may be verified by direct substitution 

into Eq. (4.11). The value of the constant is deter- 
mined by substituting the solution (4.12) into the 
integral condition (3.6). We find 

c = H”/“& r(g), (4.13) 

where I’ represents the gamma function. The trail- 
ing function is the value B, of 0 for r] = 0. Hence 
putting 77 = 0 in Eq. (4.12) and introducing the 
value (4.13) of C we derive 

B0 = 0.512H,~-‘. (4.14) 

For comparison we now solve the same problem 
by the variational procedure. With ~(7) = v we find 

g(q) = ?iq. (4.15) 

With this value of g(q), Eqs. (3.21) and (3.22) be- 
come 

s 

(I 
7 = i2r q2 dq = z&q’, 

0 

e. = 3%(1/q). (4.16) 

Elimination of q between these two equations yklds 

e. = o.514807-“. (4.17) 
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Comparison of this result with the exact value 
(4.14) shows an error less than a fraction of 1%. 

V. VARIOUS WAYS OF EXPRESSING THE 
TRAILING FUNCTION 

The foregoing results are expressed in terms of 
the variables B0 and r of the nondimensional conduc- 
tion analogy. The results may be expressed in equiva- 
lent form using the notation and variables of the 
corresponding convective problem. The notation 
T(Z) for the trailing function replaces &, and accord- 
ing to the definitions (3.3) and (3.6) the quantities 
7 and H, are replaced by 

(5.1) 
H, = l/k Pe. 

Consider for example the exact trailing function 
(4.4) for the case of uniform velocity profile. With 
the notation T(X) instead of &, and the substitution 
(5.1), Eq. (4.4) is written 

The approximate value (4.9) is written 

Pe kr(x) = 0.554 
( ) 
-!- Z -’ 
Pe6 ’ (5.3) 

Similarly for the linear velocity distribution the 
exact trailing function T(X), corresponding to Eq. 
(4.14), is given in terms of x and Pe by the relation 

1 x -O 
Pe LY(x) = ,I- - - 

( ) 33l?($) Pe 6 * 
(5.4) 

The corresponding relation for the approximate 
value (4.17) is 

Ye kr(x) = 0.514 
( > 
J- ’ -’ 
Pe6 * 

(5.5) 

In general for a boundary layer of arbitrary 
velocity profile we obtain a relation between &/Ho 
and T as given by Eq. (3.23). Such a relation may 
then be written in the form 

Pe kr(~) = $(x/6 Pe). (5 -6) 

The nondimensional expression 4 is the reduced 
trailing function. This function depends only on the 
shape of the velocity profile. 

In the two cases considered above it is also possible 
to express the trailing function in equivalent forms 
which depart from the general expression (5.6). For 
example consider Eq. (5.2) which corresponds to a 
uniform velocity profile. This case does not involve 

any characteristic length. Hence the parameter 6 
should not appear in the trailing function. This may , 
be verified by writing Eq. (5.2) in the equivalent 
form 

( ) 
-+ 

k?(x) = 5 cy ) 

where cUx/k is a Peclet number relative to the 
downstream abscissa x instead of 6. 

Equation (5.4) for the linear velocity profile may 
also be expressed in the equivalent form 

7cr(z) = [l/3” r(~)](k/c)“(u/s)-$8. (5 8 

This expression brings out the thermal diffusivity 
k/c and the slope U/6 = du/dy of the velocity profile. 

VI. TRAILING FUNCTION FOR LAMINAR 
BOUNDARY LAYERS 

Numerical applications of the foregoing results 
are now given to boundary layers with laminar flow. 
It is assumed that the flow field has parallel stream 
lines. As shown below, the solution is readily ex- 
tended to nonparallel streamlines without introducing 
any essentially new feature or difficulty. The two 
veIocity profiles which are considered below in 
paragraphs A and B are idealized in order to analyze 
two extreme cases. The purpose is to show that in 
both cases it is possible to introduce a characteristic 
thickness which is defined by the same general rule 
valid for a whole family of velocity profiles and con- 
trols the significant features of the heat transfer. 

A. Piece-Wise Linear Velocity Profile 

We first consider the velocity profile represented 
in Fig. l(a). The velocity increases linearly with the 
distance from the wall up to a thickness 6 beyond 
which it is constant and equal to U. Such a distribu- 
tion corresponds to the function 

47) = 7, for rl < 1, 

cp(v) = 1, for f > 1. 

(a) (b) 

IJ 

‘I!!! u-f 
s 
I 

FIG. 1. Idealized velocity profiles for laminar boundary 
layers. (a) piece-wise linear profile; (b) parabolic profile. 
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FIG. 2. Plot of g(a) for the velocity profile of Fig. l(a). 
The dotted line shows the value of the approximate expression 
g(Q) = 289/(73 + 819) for p > 1. 

We apply to this case the variational procedure 
with the approximation (3.7) for the temperature 
profile. We must distinguish two phases. 

In the first phase where q < 1 the temperature 
change in the fluid is restricted to the region 

O<y<6, (6 -2) 

and the problem is the same as for the linear velocity 
profile for which g(q) is given by Eq. (4.15). In this 
range the reduced trailing function is obtained from 
Eq. (4.17) which may be written in the form (3.23) 

f&/H, = $(7) = 0.5147~“. (6.3) 

This is the value of the reduced trailing function for 
q < 1 hence for r < 0.0606. 

In the second phase, where q > 1, the function 
g(q) is evaluated numerically and plotted in Fig. 2 
including the straight line portion (4.15) for q < 1. 
For q = 00 the plot of g(q) tends to an asymptotic 
value which as expected coincides with the constant 
value (4.5) obtained for the uniform velocity profile. 

In the range q > 1 the variables r and B0 are 

evaluated numerically as functions of q using Eqs. 
(3.21) and (3.22). The quadrature in Eq. (3.21) is 
evaluated by introducing the following approximate 
expression in the range q > 1: 

s(q) = 23!7/(73 + Slq). (6.4) 

The approximation is represented by the dotted 
curve in Fig. 2. With expression (6.4) the quadrature 
of Eq. (3.21) is an elementary integral. We derive 
the numerical values of T and 0/H, = C#J(T) for 
q > 1 and 7 > 0.0606. They are given in Table I 
and plotted in Fig. 3. 

It is possible to find a piece-wise analytical ap- 
proximation for c$(Q-) which is valid for the complete 
range of r. We write this approximation as 

FIG. 3. Reduced trailing function 4(r); (1) for the turbulent 
boundary layer as given by equations (7.26); (2) for the lam- 
inar boundary layer as given by values 4( 7) m Table I. Point 
:f6;e! turbulent crossover point corresponding to 7 = r( = 

. . 

where 

41(T) = 
0.5147~“, for T < 0.64; c6.6j 

0.5547~‘, for 7 > 0.64. 

Values of&(T) are shown in Table I. For 7 < 0.0606 
the value of $Q(T) coincides with expression (6.3) 
derived for the first phase. However expression (6.3) 
remains valid as an approximation well into the 
second phase up to a value r = 0.64. Beyond this 
point the approximation C#Q(T) coincides with the 
trailing function derived from Eq. (4.9) for a con- 
stant velocity profile. 

The value T = 0.64 is chosen as the crossover 
point because the two analytical branches of the 
approximation c#~(T) are equal at that point. We 
may express the trailing function in the form (5.6) 
where B,, is written as Pe kr(x) and 7 = x/8 Pe. Hence 
Eq. (6.5) becomes 

Pe kr(z) = +,(X/C? Pe). (6.7) 

In this equation the function & is approximated by 
the piece-wise analytical approximation (6.6). 

Some significant physical features are brought 
to light by considering the abscissa x1 corresponding 
to the end of the first phase, where the heat starts 
to penetrate beyond the thickness y = 6 into the 
region of constant velocity. The distance x1 cor- 
responds to q = 1 and 7 = 0.0606. Hence from the 
definition (3.3) 

x1 = 0.0606 6 Pe. (6.3) 

TABLE I. Reduced trailing function 4(~) for the velocity 
profile of Fig. l(a), and piece-wise analytical approximation 
4i(7) defined by Eq. (6.6). 

Q 7 4(T) 41(T) 

1.0 0.0606 3.33 3.33 
t:; 0.186 0.386 0.993 1.57 0.970 1.58 

2.45 0.640 0.750 0.693 

:I: 1.02 1.98 0.571 0.400 0.548 0.400 
6.0 4.91 0.250 0.250 
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We may also consider the point of crossover be- 
tween the two analytical approximations of Eq. (6.6) 
at 7 = 0.64. This value defines a point of abscissa 

x1 = 0.64 6 Pe (6.9) 

which we refer to as the laminar crossover point. 
The value of q at this point is q = 2.45 and the heat 
has penetrated to a depth y = 2.456 into the fluid. 

It is interesting to note that the distance x1 is 
about ten times the distance x1. Furthermore in the 
relatively large intermediate range between x1 and 
xI the trailing function is still represented by the 
same analytical approximation as for the linear 
velocity profile although the heat has already pene- 
trated considerably into the region of constant 
velocity. 

In order to provide some idea of orders of magni- 
tude consider the case of air with 

U = lo4 cm/set, 

6 = 0.06 cm, 

k/c = 0.187 cm’/sec, 
(6.10) 

Pe = 3210. 

We find 

X 1 = 0.0606 6 Pe = 11.7 cm, (6.11) 
x1 = 0.64 6 Pe = 123 cm. 

B. Parabolic Velocity Profile 

Consider next a boundary layer with the velocity 
profile shown in Fig. 1 (b). The velocity profile is para- 
bolic within a thickness 26 beyond which the velocity 
is constant and equal to U. The function cp(l) cor- 
responding to this profile is 

cp(rl) = 17(1 - tv), for t < 2, (6.12) 

cp(t) = I, for ~j>2. 

The parameter 6 in this case is the same as in the 
piece-wise linear profile obtained by drawing a 
tangent to the parabola at y = 0. As we see the 
trailing function for the parabolic profile is very 
close to that of the piece-wise linear profile with the 
foregoing definition of 6. Hence the length thus 
defined by drawing a tangent to the velocity profile 
at the wall may be used as a characteristic thickness 
and constitutes a key parameter for a whole family 
of velocity profiles. 

The trailing function for the parabolic profile is 
obtained by inserting the value (6.12) for ~(7) into 
the general equations. The procedure is entirely 
the same as in the preceding analysis and it is not 

TABLE II. Reduced trailing function+(r) for the parabolic 
velocity profile of Fig. l(b). Piece-wise analytical approxima- 
tion +,(T) of Eq. (6.6) and improved approximation &(T) of 
Eq. (6.13). 

0.5 0.0069 14.36 14.40 14.40 
1.0 0.048 3.87 3.89 3.92 
1.5 0.157 1.87 1.77 1.85 
2.0 0.346 1.152 1.042 1.16 
2.5 0.616 0.818 0.710 0.802 
3.0 0.970 0.628 0.563 0.630 
4.0 1.925 0.428 0.399 0.436 
6.0 4.85 0.260 0.252 0.267 

necessary to repeat the details. The values of the 
function 4(~) thus obtained are given in Table II. 
As announced the function $(7) of Table II when 
plotted as a function of r is close to the function 4(7) 
of Table I. In both cases they may be represented 
approximately by the piece-wise analytical expres- 
sion ~/Q(T) defined by Eq. (6.6). However the ap- 
proximation is somewhat better for the piece-wise 
linear velocity profile than for the parabolic profile. 
The discrepancy is largest in the vicinity of the 
cross-over point 7 = 0.64. The accuracy may be 
improved by adding a small analytical correction 
term. For example in the case of the parabolic profile 
an improved piece-wise analytical approximation is 

42(T) = &(7) + 0.66[7/(1 + 9T">l. 

Values of &(T) are shown in Table II. 

(6.13) 

VII. TRAILING FUNCTION FOR TURBULENT 
BOUNDARY LAYERS 

In the case of turbulent flow with parallel stream- 
lines the conduction analogy rem&ins valid’ pro- 
vided Eq. (2.4) is replaced by 

where 

cu(d e/as> = (a/aY)W’(a elaY)l, (7.1) 

i%’ = k + cc(y). (7.2) 

The eddy diffusivity E is a function of y. The coef- 
ficient k’ is an e$ective conductivity which also depends 
on y and represents the combined effect of molecular 
and eddy diff usivity. 

As before we chose a reference velocity U and a 
reference thickness 6 but their definitions are dif- 
ferent from those of the laminar case and are given 
below by expressions (7.9). Dimensionless variables 
are then introduced which are formally the same 
as defined by Eqs. (3.1) (3.2) and (3.3). They are 

?I = Y/6, cp(rl) = u/J, 7 = kx/cU S2. (7.3) 
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turbulent 

U 

FIG. 4. Velocity profile of the turbulent boundary layer, 
reference thickness 6 and reference velocity U. 

With these variables Eq. (7.1) becomes 

(p(V)(aela7) = (~/Md?>@~/W? 

where 

(7 *4) 

a(?$ = k’/k = 1 + (CC/k). 

By the change of variable 

(7 -5) 

(7.6) 

Eq. (7.4) is further simplified to 

with 

p(g’)(ae/a7) = a2e/d7Y, (7 *7) 

P(ll’) = cp(&(rl). (7 8 

Equation (7.7) is now of the same form as (3.5). 
Again it represents a nondimensional conduction 
analogy and may be solved as above by applying 
the variational principle for conduction. However 
the behavior of the function p(q’) is quite different 
from that of (p(q). Hence the solution for the trailing 
function will differ correspondingly from that ob- 
tained for the laminar case. 

In order to derive the essential difference intro- 
duced by the presence of t,urbulent flow on the 
trailing function, consider the typical velocity 
profile for such a case as obtained by von K&rmitn6*? 
and illustrated in Fig. 4. 

For the purpose of the present analysis of the 
turbulent case it is convenient to choose for the 
reference thickness 6 and the reference velocity U the 
following expressions 

6 = 14v(p/S)f, u = 14(X/p)“. (7.9) 

In these expressions, v is the kinematic viscosity 
of the fluid, p its density and S the shear stress at 
the wall (y = 0). The choice of 6 is made so that 
the ordinate y = 6 which corresponds to q = 1 plays 

6 Th. von KBrmSn in Proceedings o,f the Fourth International 
Congress IJ~ Applied Mechanics, 1934 (Cambridge University 
Press, London, 1935) p. 54. 

7 Th. von K&m&n, Trans. ASME 61, 705 (1939). 

&___ 
P(l’) 

FIG. 5. Plot of ~(1’). Dotted line shows piece-wise linear 
approximation (7.13). 

a key role in the analysis. As shown in Fig. 4 the 
velocity defined by the second expression (7.9) is the 
velocity which would occur at a distance 6 from 
the wall if the linear velocity profile of the laminar 
sublayer were extrapolated to that point. In the 
fluid mechanics literature S is usually designated by 

70. 
Three distinct regions for the velocity profile are 

also indicated in Fig. 4. They are 

(a) the laminar sublayer for 

Y < 46, or v<f; 

(b) the buffer layer for 

(c) the fully turbulent region for 

Y > 26, or ~>2. 

The turbulent velocity profile is represented non- 
dimensionally by the function cp(r]). An important 
feature from the standpoint of heat transfer is the 
behavior of the function u(q) which represents non- 
dimensionally the combined distribution of molec- 
ular and eddy diffusivity along the velocity profile. 
For a Prandtl number near unity using results 
derived by Rannie’ it is possible to write the follow- 
ing approximate value: 

u(~) = 1 + sinh’ 7. (7.10) 

This approximation is valid in the laminar sublayer 
and in the buffer layer hence for q < 2. In the tur- 
bulent layer, for p > 2 an approximate value is 

a(v) = 6.67. (7.11) 

What is important here is the general behavior of 
these functions since the results derived below are 
not very sensitive to detailed inaccuracies in the 
approximation for u(v). The exact value of 7 for 
which the two values (7.10) and (7.11) of u(q) are 
equal is slightly smaller than 2. 

Using a standard approximation for the velocity 
profile and the approximate value (7.10) of u(v) we 
derive the function p(q’) shown in Fig. 5. The curve 

8 W. D. Rannie, J. Aeron. Sci. 23, 485 (1956). 
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may be approximated by the two straight lines 

NV’) = o’, for $<l; 
(7.12) 

S(V’) = OD, for $>l. 

Since I]’ G q for q’ < 1, this approximation may be 
replaced by 

P(d = 7, for 17 < 1; (7.13) 

P(v) = OJ, for q=l. 

Hence for q < 1 the differential equation (7.7) be- 
comes 

q(cw/d7) = a”e/aq”. (7.14) 

It is formally the same as Eq. (4.11) for laminar flow 
with a linear velocity profile. The difference lies in 
the definition of the reference thickness 6 and the 
reference velocity U which in the case of turbulent 
flow are given by expressions (7.9). Another dif- 
ference is represented by the approximation p(l) = 
00. This is equivalent to solving Eq. (7.14) with 
the boundary condition 

19=0, for q=l. (7.15) 

Let us now derive the trailing function for a unit 
rate of heat injection concentrated at the origin 
2 = 0. In the nondimensional formulation this 
corresponds to the point T = 0. The problem is 
solved by applying the variational principle follow- 
ing closely the preceding analysis for laminar flow. 
Again we must distinguish two phases. 

In the first phase the heat penetration is restricted 
to the region q < 1. Hence the problem is the same 
as for the linear velocity profile analyzed in Sec. 4. 
The reduced trailing function as given by equation 
(4.17) is 

f&/Ho = C$(T) = 0.5147-‘. (7.16) 

This expression is valid in the first phase for 4 < 1 
and r < 0.0606. The end of the first phase and the 
beginning of the second phase corresponds to a 
value of 7 equal to 

71 = 0.0606. (7.17) 

We refer to this point as the turbulent crossover point. 
In the second phase (T > T$) the solution is of a 

quite different type. The temperature distribution 
must satisfy the boundary condition (7.15). It is 
obtained from expression (3.7) by substituting 
Q = 1. This yields 

8 = e,(i - q”). (7.18) 

In this expression the temperature B,, is the unknown 
function of time. From the standpoint of the conduc- 
tion analogy this second phase represents a leakage 
of heat from the region q < 1 into an adjacent 
medum of infinite specific heat. With the value 
(7.15) for 0 the thermal potential is 

qe2 dq = & et. (7.19) 

Because of the adiabatic condition, l? = 0 for q = 0, 
we may write 

fj=- * s Bq dq = - (iq” - $q”)&. (7.20) 
0 

Hence the dissipation function is 

63 ‘2 
A” dq = 4400 O,,. (7.21) 

The dot symbol represents the derivative with 
respect to the variable T. The Lagrangian equation 
for the unknown function e,, is 

(av/ae,) + @D/a&) = 0. (7.22) 

Substitution of the expressions (7.19) and (7.21) 
yields the differential equation 

e, + &d, = 0. (7.23) 

The constant of integration is determined by the 
value of B. at the end of the first phase. This value 
of 8, is obtained by putting 7 = 7t = 0.0606 in 
expression (7.16). We obtain 

190 = 3.33H,. (7.24) 

The corresponding solution of Eq. (7.23) is 

0,/H, = C#I(T) = 3.33 exp [-Y(T - TV)]. (7.25) 

This is the value of the reduced trailing function in 
the second phase. 

From Eqs. (7.16) and (7.25) we conclude that 
the reduced trailing function is represented ap- 
proximately by the piece-wise analytical expression 

d’(T) = 
0.51478, 

(3.33 eXp [-?(T - Tt)], for 7 > 71, 

where T( is the value (7.17) corresponding to the 
turbulent crossover point. The reduced trailing 
function (7.26) is plotted in Fig. 3. In contrast with 
the trailing function for laminar flow it decays much 
faster with the distance from the point of injection. 
In fact beyond a point corresponding to 7 = 0.6, it 
may be considered as having vanished and we may 
put 4(T) = 0. 
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A. Possibility of Large Errors in Thermal Stress Analysis 
Based on Local Heat Transfer Coefficient 

Referring to the numerical values (6.10) and (6.11) 
we conclude that in both laminar and turbulent 
flow, local heat injection exerts an influence down- 
stream up to distances which may be of the order 
of lo2 cm. This points to large possible errors which 
may result from using a local heat transfer coefficient 
in transient thermal stress analysis. 

There seems to be a current misundersta,nding as 
to what is involved here. The fact that the local 
heat transfer depends on upstream temperatures of 
the fluid-solid interface is well known as shown by 
the integral relation derived by Leveque4 as early as 
1928 and many similar analyses by later authors. 
However, it was generally assumed that for stream- 
wise temperature distributions encountered in prac- 
tice it was possible to use an “equivalent” local heat 
transfer coefficient derived by an averaging process. 
That this may not be adequate even for a smooth 
distribution was shown earlier by the author on a 
simple example.’ The present results provide further 
quantitative confirmation of this conclusion in a 
wide range of problem for laminar and turbulent 
flow. It also follows that the use of a local heat 
transfer coefficient suggests an erroneous physical 
model even as an approximation for a smooth 
temperature distribution. The correct physical 
model derived earlier’ and in the present analysis 
provides an explanation of some unorthodox be- 
havior along with a simple quantitative evaluation. 

Furthermore, in transient thermal stress analysis, 
we do not know in advance the streamwise tempera- 
ture distribution. Use of a local heat transfer coef- 
ficient obtained by an a priori estimate of the tem- 
perature distribution and a weighted average of the 
upstream temperature may lead to significant errors. 
This is particularly true for thermal stresses because 
they are very sensitive to temperature differences. 

B. Application of the Trailing Function to Ducted Flows 

In the foregoing analysis we have assumed parallel 
streamlines. This assumption is rigorously valid for 
the case of flow in a straight duct with a fully devel- 
oped velocity profile. The variational procedure 
outlined above is readily applicable and provides a 
correct evaluation of the trailing function for ducted 
flow. Because of the confined nature of the flow the 
reduced trailing function +(T) instead of vanishing 
for 7 = 00 will tend toward an asymptotic value 
greater than zero. This asymptotic value is im- 
mediately obtained without additional calculation 
and is equal to 0 = l/cw where w is the total volume 
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flow per second in the duct and c is the heat capacity 
per unit volume. 

For boundary layer heat transfer in a nonconfined 
fluid or for ducted flow under entrance conditions 
the assumption of parallel streamlines may not be 
valid. However as shown in the following section 
the foregoing results are easily extended to this 
case. 

VIII. GENERALIZED CONDUCTION ANALOGY 
FOR NONPARALLEL STREAMLINES 

The conduction analogy may be generalized to 
convective heat transfer in a flow field with non- 
parallel streamlines as already pointed out’ by 
applying the von Mises transformation. However 
application of the variational method to the result- 
ing equation is not convenient because of the pres- 
ence of some artificial singular features introduced 
by the von Mises transformation. Therefore we 
introduce a transformation which is more general 
and leads to a more convenient formulation. 

As before we assume the fluid to be incompressible. 
The components of the two-dimensional velocity 
field are U(Q) and v(zy). The excess temperature 0 
of the fluid above the adiabatic value satisfies the 
approximate equation 

CU(M/~~T> + ~(de/ay) = (a/ay)[k’(ae/ay)] (8.1) 

which is the same as Eq. (7.1) with the addition of 
the convective term cv &9/ay in the y direction. 
The equation is valid for either laminar or turbulent 
flow and the total conductivity k’ is given by expres- 
sion (7.2). Consider a change of variables 

Y’ = Y’(XY>, (f4.2) 
5’ = x’(xy). 

These variables may be interpreted as curvilinear 
coordinates. We choose y’ such that the coordinate 
lines 

y ’ = const 

coincide with the streamlines. Hence 

(3.3) 

dy’ dy’ 
u-g&+0-=o. 

8Y 

We may write 

ae -= 
8X 

?!?!+$!W, 
(8.5) 

de -= 
dY 

2!$X+i!!& 

We now choose a particular case of the transforma- 
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tion (8.2) by putting x’ = x. Taking into account 
relations (8.4) and (8.5) we conclude 

u.L+f21-=U+ 

ax dy dx 
(8.6) 

ae de dy' -= 
dY Y$dy’ 

Using these results leads to a simplified form of Eq. 
(8.1). Further simplification is obtained by putting 

aflay = i/cu(~'y'), (8.7) 

and writing x instead of x’ since this is only a change 
of notation. Equation (8.1) becomes 

cm(ae/ax) = (a/ay')[(lc'/~)(ae/ay')]. 63.8) 

Consider two streamlines of coordinates yiyi. The 
integral 

s Y, 111’ %I*’ 

u dy = s aY uldy’ = 
ay s ua dy’ (8.9 

YL Ul’ Y, ’ 

represents the volume flow between the two stream- 
lines. Since the fluid is incompressible this quantity is 
independent of x. Hence U(Y is independent of x and 
we may write 

UQ! = &(Y’). (8.10) 

Let us choose the streamline coordinates in such a 
way that y’ = y at a certain reference abscissa x,. 
In that case u,(y’) is the velocity profile at the 
reference abscissa. Equation (8.8) becomes 

cu~(Y’)(ae/ar) = (a/aY’)[(k’/ol)(ae/aY’)i . (8.11) 

We note that V/a is a function of x and y’. Hence 
Eq. (8.11) represents a one-dimensional conduction 
analogy where x plays the role of a time variable and 
y’ is a space coordinate. The author has shown3 that 
the variational principle and the corresponding 
Lagrangian equations are applicable to thermal 
conduction with a specific heat which depends on the 
coordinates and a thermal conductivity which de- 
pends on both the time and the coordinates. As a 
consequence, Eq. (8.11)) which governs convective 
laminar and turbulent heat transfer with nonparallel 
streamlines, may be solved by variational methods. 

In particular the method may be applied to the 
evaluation of the trailing function for boundary 
layers with nonparallel streamlines. Let the origin 
of x be located at the point of injection. We also 
choose the origin as the reference abscissa x,. In that 
case u,(y’) is the velocity profile at the point of 
injection and x represents the distance downstream 
from this point. For this local velocity profile Us, 

it is possible to define a reference velocity U and a 
reference thickness 6 which have been derived in the 
preceding analysis for either laminar or turbulent 
flow and will depend on the location of the point 
of injection. With nondimensional variables we write 

UlRJ = 9(V), 17 = Y’/& (8.12) 

Consider now the behavior of the function k’/ac 
downstream from the origin. It is a function of x 
and y’. Since the origin is the reference abscissa for 
which 01 = 1 the value of k’/crc on the y axis is 

IV/c& = (l/c)k’(y’). (8.13) 

In this expression (l/c)k’(y’) = l/&‘(y) is the total 
diffusivity along the y axis. The value of k’/ac is 
also a function of the downstream distance x from 
the point of injection. In most cases this function 
may be represented approximately as 

(k’/ac) = (I/C)k’(Y’)f(X) (8.14) 

with the property f(0) = 1. This means that the 
distribution of V/CYC varies only by a change of scale 
as we move downstream. Provided there is no sudden 
transition this approximation is justified if we re- 
member that the trailing function tends to vanish 
at a certain distance downstream so that the ap- 
proximation need be valid only in the downstream 
neighborhood of the point of injection. Note also 
that the function depends on the location of the 
point of injection. We now put 

U(V) = f k’(Y’), 
(8.15) 

T = k2 s’ f(A) dX. 
c 0 

With these variables Eq. (8.11) becomes 

p(v)(ae/a7) = (a/aGMa~/a~)i. (8.16) 

This result coincides with Eq. (7.4). As a conse- 
quence the trailing function 4(~) derived previously 
is directly applicable to the case of nonparallel 
streamlines provided the definitions (8.15) are 
introduced for r and (r. We may use the piece-wise 
analytical approximations (6.6) or (7.26) depending 
on the laminar or turbulent nature of the flow. The 
difference with the case of parallel streamlines lies 
in the definitions (8.15) of the variables 7 and g in 
addition to the fact that U, 6 and f(x) depend on 
the location of the point of injection. The function 
j(x) may be approximated in various ways. For 
example we may use the expression 

f(x) = I - &r, (8.17) 
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where H is a coefficient depending on the point of 
injection. In this case 

7 = (Icn/U,62)(1 - &x). (8.18) 

Other more flexible but less simple approximations 
may be used. A possible expression is 

f(x) = (1 - /Jr)” (8.19) 

where n is a fractional exponent depending also on 
the location of the point of injection. 

IX. TYPICAL APPLICATIONS OF THE 
TRAILING FUNCTION 

The trailing function is a central concept which 
embodies the essentials of the physics of heat trans- 
fer from solid to fluid. It was introduced specifically 
by the author’ for the purpose of solving the coupled 
problem of transient heat conduction in a solid 
adjacent to a moving fluid using the variational 
Lagrangian approach. This provides a correct and 
relatively simple formulation of an otherwise very 
complex problem without having to introduce the 
erroneous concept of local heat transfer coefficient. 

At the same time the trailing function also pro- 
vides immediate solutions for the usual simpler 
problems with prescribed wall temperature or heat 
injection, and those of heat transfer between moving 
fluids in heat exchangers. 

A. Heat Transfer with Prescribed Wail Conditions 

Consider the problem of evaluating the wall tem- 
perature for a prescribed distribution of heat injec- 
tion into the fluid. An immediate solution of this 
problem follows from the definition itself of the 
trailing function. In order to illustrate this let the 
point of heat injection be located at the abscissa 
x = 4. At this point a unit amount of heat is injected 
per unit time. The distance downstream from the 
point of injection is now x - 4. Hence we must 
replace x by x - f in expression (8.15) for T. It 
becomes 

1 s z-6 

4x: - 4, 0 = pe (,g *g> o fC.5 A> dh (9.1) 

where 

Pe (8 = (CM S(Ou(5). (9.2) 

The thickness 6(E) the velocity U(t) and the corres- 
ponding Peclet number Pe (f) are local values de- 
pending on the abscissa .$ of the point of injection. 
The function f(& X) also depends on the particular 
nature of the flow field downstream from the point 
of injection. 

For the particular case of parallel streamlines 
where 6 and U are constant and f(f, X) = 1 expression 
(9.1) reduces to 

7 = (z - Q/6 Pe, (9 *3) 

which is the same as (3.3) after replacing 5 by x - 4. 
Equation (3.23) is valid for the case of nonparallel 

streamlines. Hence 

00 = H&(7)* @.4 

In the reduced trailing function $(T) the argument 
7 is defined by Eq. (9.1) while H, is given by 

H, = l/c Pe (t;). (9.5) 

This expression is derived from the definition (3.6) 
using the local value (9.2) of the Peclet number at 
the point of injection. From relations (9.4) and (9.5) 
we conclude that the trailing function is 

& = r(x - l, E) = UC Pe (.W(~). (9.6) 

The function r(x - [, f) represents the wall tem- 
perature rise at point x for a unit rate of heat injec- 
tion at point t. We note the property 

or 
+(7) = 0, for 7 < 0, 

(9.7) 
4(7) = 0, for x < 4, 

which expresses the fact that there is no temperature 
rise upstream from the point of injection. 

Consider now a continuous distribution of heat 
injection equal to B(t) per unit area at a point 5. 
Assume that the injection is applied only in the 
region downstream from the abscissa x0. At any 
point z > x0 downstream there is a temperature rise 
0(x) - 0,(x) which depends on the total heat injec- 
tion between E = x0 and f = x. Hence 

By introducing expression (9.6) we derive 

This yields the wall temperature e(x) directly as a 
quadrature for any given distribution Z?(t) of heat 
injection into the fluid at the wall. The adiabatic 
temperature 8.(z) is the wall temperature in the 
absence of heat injection. 

Relation (9.9) also provides an integral equation 
for the inverse problem of determining the distribu- 
tion a(E) of heat transfer where the temperature 
0(x) is given at the wall. In the general case this 
integral equation may conveniently be solved 
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numerically. A standard procedure is to replace the 
integral equation by a system of linear algebraic 
equations with the values of 8(t) at a finite number 
of discrete stations as unknowns. Linear or parabolic 
interpolation will improve the accuracy of the 
quadratures and take care of the formal difficulty 
due to the singularity of 4(r) at 7 = 0. Another 
method is to replace the distribution Z?(f) by a sum 
of known functions with unknown coefficients. In 
particular we may use a polynomial with its coef- 
ficients as unknown. 

B. Heat Transfer in Heat Exchangers 

Two fluids flowing in opposite direction are sep- 
arated by a thin solid wall. The heat transfer between 
the two fluids is assumed to take place between the 
abscissas z,, and Q. The first fluid flows in the x: 
direction. Its trailing function is r(l?: - t, l) and its 
adiabatic temperature is 19,(x). The wall temperature 
for the first fluid is 

where B(E) is the local rate of heat transfer from 
the second to the first fluid. 

The second fluid flows in the negative direction 
of x. Its trailing function is ~‘(4 - X, t) and its 
adiabatic temperature 0:(x). The wall temperat,ure 
of the second fluid is 

e’(x) = e:(z) - [’ r’(E - 2, .$)A(E> df. (9.11) 

The temperature difference across the separating 
wall is 

e’(x) - e(x) = [~/k,)EiT(2$, (9.12) 

where a is the thickness of the separating wall and 
k, its thermal conductivity. By combining relations 
(9.10), (9.11), and (9.12), we derive 

+ J-1 r(x - 4, #r(E) dt + $ fi(& (9.13) 
I) 

This is an integral equation for the unknown heat 
transfer distribution. It is readily solved numerically 
by the standard procedures already mentioned 
above for the solution of Eq. (9.9). In problems 
of heat exchangers the unknown Z?(X) may con- 
veniently be approximated by a sum of a small 
number of exponential distribution of unknown 
amplitude. In most cases the adiabatic temperature 
difference 0’ - 0 will be independent of 5. 

C. Coupled Transient Heat Conduction and Boundary- 
. Layer Heat Transfer 

The foregoing examples refer to the solution of 
simpler problems of boundary-layer heat transfer. 
A more important application of the trailing function 
is to the transient conduction problem in a solid 
adjacent to a moving fluid. The method has been 
developed in detail in an earlier paper’ for the most 
general three-dimensional case. We briefly recall 
the method in the more restricted context of the 
present paper assuming the problem to be two- 
dimensional in the xy plane. 

The thermal vector field Hi in the solid is defined 
in terms of generalized coordinates pi as 

Hi = H&qz . . - qn q/O. (9.14) 

The generalized coordinates qi satisfy the Lagrangian 
type differential equations 

(aVla4,> + (aD/aQi) + Ci = &i (9.15) 

where V and D are, respectively, the thermal poten- 
tial and the dissipation function in the solid. The 
term Qi is the t,hermal force associated with the 
adiabatic temperature at the boundary adjacent to 
the fluid. If we denote by s downstream distance 
measured along the curved boundary, we write 

Qi = -J e,(s) y ds. (9.16) 

The outward normal component of Hi at point s 
of the boundary is denoted by H,,(s). 

The terms Ci represent the heat transfer properties 
of solid to fluid and is written 

Cj = / 1, y &,(d)r(s - s’, s’) ds ds’. (9.17) 
II * 

By definition Z?n is the total time derivative of H, 
hence 

In general, if the curvature of the boundary is not 
too large, the trailing function r(s - s’, s’) may be 
assumed to be the same as ~(5 - .$, t) for the straight 
boundary, putting x = s and .$ = s’. 

The transient heat conduction in the solid is then 
determined by solving the Lagrangian differential 
equations (9.15) for the time dependent unknowns. 
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