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EDGE BUCKLING OF A LAMINATED MEDIUM-f 

M. A. BIOT 

New York, N.Y. 

Abstract-It is shown that in a laminated medium subject to a compressive stress an instability occurs which is 
localized near an edge cut perpendicularly to the layers. General equations are derived for the rheological stability 
of laminated media and applied to the particular case of “edge buckling”. The theory includes the effect of 
“interstitial flow.” As a consequence of the author’s principle of correspondence, the results are valid for elastic, 
viscous and viscoelastic materials. The influence of friction at the edge is taken into account. The analysis may be 
considered as an extension of the theory of initially stressed anisotropic media to include couple stresses and 
stress-gradient dependence of the strain. 

1. INTRODUCTION 

CONSIDER a laminated medium composed of thin layers of two types of materials alternately 
hard and soft. We shall first assume the material to be elastic. The results are then readily 
extended to viscous and viscoelastic materials by viscoelastic correspondence. 

The laminated medium is confined between rigid frictionless boundaries A B and C D 
and extends to infinity to the left as shown in Fig. 1. The laminations are parallel to the 
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Typical configuration showing edge buckling of a laminated medium under a compressive stress P. 

boundaries A B and C D and an initial compressive stress P acts along the same direction. 
The medium is terminated at the edge B D which is cut perpendicularly to the laminations. 
The initial compressive stress P may be applied by a rigid piston acting at this edge. It is 
assumed that there are no couple stresses at this edge with other boundary condition to be 
specified regarding the influence of friction. 

The xy plane is the plane of the figure with the x axis along the center line of the 
laminated medium and oriented outward to the right. For simplicity we shall consider an 
incompressible medium and two-dimensional deformations in the xy plane. 

The problem of internal buckling of such a medium was previously analyzed [l] for 
the case where the medium extends from x = - co to x = + co. 

By contrast, as shown in the following analysis, the presence of the edge B D gives rise 
to a buckling which is localized near this edge as illustrated in Fig. 1. The general equations 

t This work was supported by the A.F. Office of Scientific Research of the Office of Aerospace Research 
under Contract No. AF 49(638)-1329. 
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derived previously [l] for the treatment of internal buckling are also applicable to this 
case. The derivation of these equations is outlined in the following section. 

A hydrostatic initial stress may of course be added to the compressive stress without 
modifying in any way the analysis and the results. This amounts to assuming the presence 
of two principal initial stress components with P representing their difference [2, 31. 

It should be pointed out that a similar effect of edge buckling occurs in the well known 
problem of a beam resting on an elastic foundation [4]. The present treatment is however 
much more general and considers the effect of new factors such as a shear rigidity, inter- 
stitial flow and edge friction. In particular the introduction of interstitial flow leads to a 
differential equation of the sixth order as compared to an equation of the fourth order for 
a beam on elastic foundation. 

2. GENERAL STABILITY EQUATIONS 

The laminated medium is represented by an equivalent anisotropic continuum with 
couple stresses and strain components depending on the second gradient of the stress. 
This equivalent continuum is derived as follows. 

The stiff layers of thickness h, and elastic modulus pi alternate with soft layers of 
thickness h, and elastic modulus pz. 

Consider a hard layer sandwiched between two half layers of soft material. This may be 
considered as a composite plate and the medium is constituted by a stacking of such plates 
with perfect adherence (Fig. 2). 

FIG. 2. 
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Composite plate made of a hard layer between two soft layers. 

Equations of equilibrium for bending of such a plate are 

(2.1) 

In these equations u is the normal deflection of the centerline of the hard layer and 
2h = h, + h, is the total thickness of a pair of layers. The bending moment _& is assumed to 
be due only to the bending of the hard layer. Hence 
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The couple stress is &‘/2h and corresponds to a bending moment per unit area. The total 
shear over the cross section is denoted by _M. The external moment applied per unit 
length is 

m = h(t&, + ox,,) z 2ha,, 

and the vertical force per unit length is 

(2.3) 

The average tangential and normal stress in the approximately equivalent continuum are 
denoted by cXY and oYY. The value of crXY is given by 

(2.5) 

where L is the average shear modulus of the laminated medium along the layers. As 
derived earlier [2, 31 its value is 

1 
L=-----.- (2.6) 

where 

h, 4 
a1 =G a2 = z 

are the fractions of the total thickness occupied by each layer. 
By introducing the values (2.2) (2.3) (2.4) and (2.5) into equations (2.1) they become 

-$,h$$+2hL$ = ./V- 

g+2hs = 2j=h$. 
ay 

Elimination of JV” between these two equations yields 

fpih~~+2h(P-L)~-2h$$’ = 0. 

(2.8) 

(2.9) 

In order to complete the theory we need an additional relation between u and bYY. 
Consider a soft layer sandwiched between two half layers of hard material (Fig. 3). The 
relative change of thickness of this composite plate represents the average local strain in 
the y direction. It may be written approximately 

dV - a,,+& 
ay-4lM 

where cYY is the normal stress, and 

M = a,~1 +a,~2 (2.11) 
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FIG. 3. Soft layer between two hard layers showing interstitial flow ZJ. 

is an average elastic modulus of the laminated material as derived earlier [2, 3) under the 
assumption that the microstrain is the same in the hard and soft materials. If the rigidity 
contrast of the two materials is large a correction term e;, must be added. The strain (2.10) 
is assumed to depend only on oYY. This assumption is valid for the purpose of the present 
theory dealing with deformations where the wavelength along x is much shorter than the 
wavelength along y. This is further confirmed by applying more elaborate theories which 
do not introduce this simplifying assumption [2, 3, 51. 

The correction term eku enters into play when the modulus ,uu, is much smaller than pl. 
In this case the soft medium may tend to flow relative to the hard layers with a parabolic 
distribution of the displacement along x (Fig. 3). We have called this effect interstitial 
flow [3,5]. It is evaluated as follows. 

With the x axis along the centerline of the soft layer the parabolic distribution of 
displacement is 

u= l-$(x) i 1 2 

(2.12) 

wheref(x) is an undetermined function. The equilibrium condition for the stresses in the 
soft layer is 

!5+!?5?! = 0. 

ay (2.13) 

The average shear stress across the thickness in this layer is 

(2.14) 

Combining (2.12) (2.13) and (2.14) yields 

f(x) = 5 2. 
2 

The change of thickness of the soft layer produces an additional strain 

eb, = 
1 h2’2 au 

-- 
s 2h 

-_dy= -%!& 

-hz/2 ax 

(2.15) 

(2.16) 

This change of thickness is expressed by means of the microstrain au/ax as the integrand, 
using the assumption of incompressibility. Elimination off(x) between (2.15) and (2.16) 
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yields 

h; a20Yv 6& = --z 
24hp, ax 

with this value the stress-strain relation (2.10) becomes 

2hd” = k. h; a%,, 
ay 2M yy-Ep’ 

(2.17) 

(2.18) 

Equations (2.9) and (2.18) are the general equations for the two unknowns 2) and oyY. 

3. INTERNAL BUCKLING 

In order to obtain better physical insight we shall first recall the case of internal buckling 
with couple stresses [l, 51. Consider the following solution of equations (2.9) and (2.18) 

v = Ccos$!exp2iyX. (3.1) 

In these expressions C is an arbitrary amplitude and y is a real root of 

ay4-by2+cd = 0 (3.2) 

with 

16 
a = -,u,ar: 

3 

b=P-L 

n2h2 
c=~M 

6= 
1 

l+ 

16 3M 

K=y”2E’ 

(3.3) 

This solution corresponds to a confined medium such that 0 = 0 at y = &-H/2, and 
represents an internal buckling with a deformation which is a purely sinusoidal function 
of x, of wavelength 

pL”h. 
Y 

(3.4) 

Equation (3.2) yields the compressive stress P required to maintain a given wavelength. 
Solving equation (3.2) for P we derive 

P = L+ay2+?j. (3.5) 
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The minimum of this expression as a function of y yields the critical buckling stress and 
wavelength. The problem is considerably simplified if we introduce the assumption 

6= 1. (3.6) 

This amounts to putting e& = 0 in equation (2.10) hence to neglecting the effect of inter- 
stitial flow. With this assumption the minimum value of (3.5) yields the buckling stress 

P = L + 2&c). (3.7) 
The corresponding value of y is 

C+ 

Y=a’ 0 
Hence from expression (3.4) the buckling wavelength 

Pi = 
a* 

7th - 0 C 

This expression may be further simplified by noting that in practice the rigidity contrast 
between layers is large so that we may write approximately M s alpI. With this approxima- 
tion expression (3.9) becomes 

zi = 1*90J(h,H). (3.10) 

(3.8) 

is 

(3.9) 

If we take into account interstitial flow the value of 6 becomes a function of y through 
expression (3.3). Finding the minimum of the value (3.5) for P is somewhat more elaborate 
and may be carried out numerically [ 11. By introducing the same approximation M CT alpI 

as above the buckling wavelength zi is represented graphically by plotting 

z = 1.9o&g 
I 

as a function of 

An approximate expression for this plot is found to be 

Hence 

. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The bracket represents the correction factor due to interstitial flow. It depends on the 
i power of 1+(1/2)K and is therefore very insensitive to the parameter K. In many cases 
for which K is not large the influence of interstitial flow will be negligible and the simple 
formula (3.10) will be valid for the buckling wavelength. 

According to equation (3.7) the buckling stress P is of the order of L. Note that this 
buckling may occur in the elastic range for a material with strong anisotropy where M 

is large relative to L. This will be the case for example in a laminated medium composed of 
an alternation of hard and soft layers. 
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4. EDGE BUCKLING WITH PERFECT SLIP 

We replace iy by 1 in the solution (3.1). It becomes 

where 

and 

V = Ccoszexp2L; 

0 
YY 

= -4n6gCsinzexp2nX, 

1 
d=- 

l-?cIZ 

(4.1) 

(4.2) 

aA4+bA2+cd = 0. (4.3) 

This solution again represents a confined medium such that u = 0 at y = + H/2. For the 
case of edge buckling we must consider complex roots I of equation (4.3) with positive 
real parts. This corresponds to a deformation localized in the region x < 0 near the edge, 
x = 0. (Fig. 1). 

As pointed out in the preceding section, the case of internal buckling is obtained by 
evaluating the minimum value of P as a function of the wavelength. The present case of edge 
buckling is derived in quite a different way by introducing boundary conditions at the 
edge x = 0. 

In order to simplify the analysis it is convenient to consider the case where interstitial 
flow is negligible. As shown above this amounts to putting 6 = 1. Equation (4.3) for il 
becomes 

aA4+bA2+c =O. (4.4) 

We choose two complex roots 1 and 1* of this equation with positive real parts. Adding 
two solutions of the form (4.1) given by these two roots the deflection representing edge 
buckling is written 

u = v() cos Tf 
H 

v0 = C exp 21; + C* exp 2A* X 
(4.5) 

with complex conjugate constants C and C*. The deflection of the center line at y = 0 
is given by t+,(x). 

Consider boundary conditions at the edge x = 0. We shall assume that no couple stress 
is applied at the edge. This implies 

&2L() 
6X2 

(x = 0). 
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Another boundary condition involves the total shear .,V over the cross section of area 
2h. If there is no friction at the edge the compressive stress P acts in a direction normal 
to it and the value of M at the edge is 

A’” = 2hPe 
ax 

(x = 0). 

With this value of M the first equations (2.8) becomes 

;p,h$$+2h(P-L)g = 0. (4.8) 

(4.7) 

This is the second boundary condition. We substitute expression (4.5) into the two boundary 
conditions (4.6) and (4.8), at x = 0 and obtain 

c;1z+c*1*2 = 0 

Lz(Cil3+C*L*3)+b(CL+ c*l*) = 0. 

By taking into account the characteristic equation (4.4) these equations become 

(4.9) 

CA2 + c*a.*2 

c;+c*; = 0. (4.10) 

Elimination of C and C* and cancellation of the factor (A-n*) yields 

12+ai*+n*2 = 0. (4.11) 

This equation may be expressed by means of the coefficient a, b, c using the relations 

(4.12) 

b 
12+A*2 = -- 

a 

With these values relation (4.11) becomes 

b = &I c). (4.13) 

By substituting expression (3.3) for b this last equation yields the critical compression for 
edge buckling 

P = L+J(ac). (4.14) 

As expected this value is smaller than the value (3.7) required for internal buckling. 
The roots i and 1* are derived from 

aA4+J(aC)12+C = 0 (4.15) 

obtained by substituting b = J( a c in equation (4.3). The complex conjugate roots of ) 
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(4.15) with positive real parts are 

A* = f ae-W3. 0 
(4.16) 

Equations (4.10) and (4.16) require the constants to be of the form, 

C = icein/ C* = _ iCre-i”/3. (4.17) 

By using equation (3.9) the roots (4.16) may be expressed by means of the wavelength A$ 
for internal buckling. We write 

With these results the deflection (4.5) of the center line becomes 

u0 = -2Cexp(g) sin (rcJ3;+;). 

The wavelength of edge buckling is therefore 

L$‘= $Zi = 1.16Zi. 

(4.18) 

(4.19) 

(4.20) 

Hence it is slightly larger than for internal buckling. The amplitude damps out rapidly 
with the distance from the edge as illustrated in Fig. 4(a). 

FIG. 4. Deflection q,(x) of the centerline: (a) with perfect slip at the edge; (b) with imperfect slip at 
the edge. 

5. EDGE BUCKLING WITH IMPERFECT SLIP 

We shall consider the case where perfect slip is prevented by an elastic restraining force 
acting at the edge x = 0. The boundary condition (4.7) is now replaced by 

JV = 2hP?-kv ax ’ (5.1) 

The additional term - ku represents an elastic force opposed to the deflection II, acting over 
the thickness 2h of the composite plate at the edge. The other boundary condition (4.6) 
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corresponding to the absence of couple stress at the edge remains the same. Proceeding 
as before, using expression (2.8) for JV” we derive the two boundary conditions at x = 0 

a% o -= 
ax2 

$rh$$+2h(P-L)&ko = 0. 
(5.2) 

Again we shall assume that interstitial flow is negligible, putting 6 = 1. The solution v is 
then of the form (4.5) with the two complex conjugate roots ;i and 1* of equation (4.4). 
Substitution of the solution (4.5) into the boundary conditions (5.2), taking into account 
equation (4.4), yields, 

CA2 + c*1*2 = 0 

(;+;)c+(;+;)c* = 0. 
(5.3) 

By elimination of the constants C and C* and cancellation of the factor (A-- A*) in the 
resulting equation we obtain 

(12+~1*+1*2)+$11*(1+1*) = 0. (5.4) 

Due to relations (4.12) for the roots 3, and I* we further derive 

L+I* = J[ -$+2/i] (5.5) 

(5.6) 

and equation (5.4) may be written 

r-l = Ad(2-r) 

with 

(5.7) 

The value of r as a function of A is obtained by solving equation (5.6). Knowing r, the critical 
compressive stress P for edge buckling is derived from the relation 

b = P-L = rd(uc). (5.8) 

The roots 1 and 1* are derived by substituting this value of b into equation (4.4). It becomes 

aA4 + rJ(a c)A.’ + c = 0. (5.9) 

The roots are 

(5.10) 
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For A varying from zero to infinity we obtain all intermediate cases between perfect slip 
and no slip at the edge. The latter case amounts to pinning the hard layers at the edge. 

Between these two cases equation (5.6) shows that 

l<r<2. (5.11) 

The case A = 0 corresponds to r = 1. We obtain 

b = &c) c+ 
A2 +-lkiJ(3)] ; . [I 

(5.12) 

This coincides with the values (4.13) and (4.16) for perfect slip. 
The case A = cc corresponds to r = 2. Hence 

b = 2& c) 

C+ 
A = 12 __. 

0 u 

(5.13) 

This corresponds to the values (3.7) and (3.8) for internal buckling. In this case the defor- 
mation is an unattenuated sine function throughout the medium. 

As we approach the latter case the amplitude of the buckling decreases less rapidly as 
we move away from the edge, and the wavelength approaches the value for internal buckling. 
A typical deformation for such case is illustrated in Fig. 4(b). 

6. EXTENSION TO VISCOUS AND VISCOELASTIC MATERIALS 

Consider a laminated medium constituted of purely viscous layers alternately of 
viscosity y~r and q2. Applying the author’s principle of viscoelastic correspondence [6] 
the foregoing theory is readily extended to this case. It is sufficient to replace the elastic 
coefficients ,ur and ,u2 by the operators 

$1 = PI;Il 

P2 = PV2. 
(6.1) 

In general p is an operator representing the time derivative p = d/dt. In problems of 

instability p is an algebraic quantity in the factor exp (pt) representing the exponential 
growth with time of the unstable deformation. 

Consider for example the case of internal buckling. We replace L and M by 

2 = L’p ti = M’p (6.2) 
with 

(6.3) 
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Hence the parameters a and c of equations (3.3) are replaced by the operators 

A , 16 3 
a = up = --_Illn,p 

3 

h2 
2 = c’p = n2 -M’p. 

H2 

(6.4) 

By correspondence equation (3.5) becomes 

P 
- = L’+u.;,2+$ 
P 

where 6 is 

(6.5) 

6=1 16 M’ 

1 +Ky2 

K=-_iY;- 
3 ?I; 

(6.6) 

For a given value of the compressive stress P equation (6.5) shows that there is a wavelength 

Y = nh/y for which p is a maximum. This is the wavelength of maximum amplitude rate of 
growth or dominant wavelength. This wavelength has the same value as for elastic internal 
buckling. If we neglect interstitial flow putting 6 = 1 the dominant wavelength is given by 
the same expression (3.10) as in the elastic case. The value ofp which measures the amplitude 
rate of growth is proportional to P and is given by 

$ = L’+2J(a’c’). (6.7) 

The general case of edge buckling analyzed in section 5 is also readily extended to viscous 
media. We replace k by the operator 

I% = k'p (6.8) 

where k’ is a coefficient of viscous friction at the edge. The value of A is now 

(6.9) 

and equation (5.6) yields the value of Y. The roots 1 are derived from equation (5.10). Hence 

A2 = J$-r+iJ(4-r2)] $ 
[I 

‘. (6.10) 

From relation (5.8) by correspondence from the elastic case, we derive 

g = L’ + rJ(a’c’). (6.11) 

Since r < 2, the value of p is larger than the value derived from (6.7) for viscous internal 

buckling. Hence the amplitude due to viscous edge buckling tends to grow faster and will 

generally overshadow the appearance of internal buckling. 
The same general conclusions derived for elastic media are applicable to viscous media. 

For instance as the friction at the edge increases, hence for increasing values of k’ the 
amplitude of the deformation decreases less rapidly as we move away from the edge, up 
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to the case of infinite friction where the buckling deformation is represented by a sine 
function of constant amplitude. 

Identical behavior is also obtained for viscoelastic materials defined by operators 
,L1 = V&P) & = ~;lJ(p) k = k’f(p) with the same increasing function f(p). 

Finally, by formal correspondence, the results may be extended to viscoelastic materials 
represented by operators which are completely general. However, the physical behavior 
must be the object of a separate analysis for each case. 
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A6CTpaKT--~oKa3aHo, 9TO B JIaMEiHapHOi CpeAe, IlOjV3CpXCeHHOZi 'SKPTHH), nORBJllleTCR HeCTa6WIbHOCTb, 

KOTOpaRElMeeTMeCTOB6~U3UOTpe3aHOrOKpaRne~neHAHKy~RpHOKC~ORM.~~BOA~TCKO6~~eyp~BHeH~K 

AnSI ClIynaSI ~OIIOrWIeCKOrO paBHOBeCHR JIaMElHapHbIX CpeA, KOTOpbIe npHMeHRIoTCK B qaCTHOM CJIyqae 

“KpaerOrO BbInyYIiBaHIId'. Teopw 3aKmxaeT ~@&KT “npoMexyTorHor0 Tesemff". IIocneACTBHe 

npHHUEiIIa aBTOpa, KaCaIOlqerOCK JBBUCHMOCTH, pe3yJIbTaTbI BamHbI AJIK MeTepklalIOB ynpyrliX,BR3KAX 

Ii BSl3KOyIIpyrliX. Y'iHTbIBaeTCR BJ'IWlIiEIe TpeHASl Ha KpaKLPaClreT MOlKHO PaCCMaTpHBaTb KaK pa3BHTUe 

TeOpHHnepBOHa~a~bHOHanpflXeHHbIXeHE130TpOnHbIXCpe~,TaKYT06bIBKJIH)YIITbMOMeHTHbIeHanpK~eH~X 

3aBucm4ocTb rpanAeHTa HanpnmeHm OT nepebfeluemx. 
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