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in Acoustic Reflection 
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A boundary condition is developed that generalizes the author’s earlier results and embodies the effect 
of multiple scatter for acoustic reflection on a rough surface. The size of the roughness is assumed to be 
sufficiently small in comparison with the wavelength. Both induced radiating dipoles and radiating sources 
are taken into account. The results are further generalized to take into account roughness of various shapes, 
nonuniform distribution, and anisotropic properties. The anisotropy is represented by a two-dimensional 
symmetric tensor of Rank 2. Results open the way to the analysis of combined coherent and incoherent 
reflection including the cooperative resonance due to multiple scatter. 

INTRODUCTION 

I 

N some earlier work, the author has shown that the 
effect of roughness on the reflection of acoustic and 

electromagnetic waves including the influence of multi- 
ple scatter could be obtained under certain conditions 
by satisfying a suitable boundary condition on a smooth 
surface. The analysis for the acoustic problem was de- 
veloped in two papers,‘J where the roughness is repre- 
sented by a uniform distribution of hemispherical bosses 
all of the same size, and the equivalent boundary con- 
dition is obtained by introducing a suitable distribution 
of radiating dipoles. 

The purpose of the present paper is first to complete 
the theory by taking into account not only the induced 
dipoles, but also the induced sources. In addition, the 
theory is further generalized to include roughness 
elements of various closeness and shapes, anisotropic 
properties and nonuniform distribution. 

Results of the theory for the case of nonuniform dis- 
tribution of the roughness opens the way to the analysis 
of reflected waves containing both coherent and non- 
coherent components including the cooperative reso- 
nance characteristic of multiple scatter. This is of par- 
ticular interest in applications to the case where the 

* Consultant, Cornell Aeron. Lab., Inc. 
r M. A. Biot, “Reflection on a Rough Surface from an Acoustic 

Point Source,” J. Acoust. Sot. Amer. 29, 1193-1200 (1957). 
2 M. A. Biot, “On the Reflection of Acoustic Waves on a Rough 

Surface,” J. Acoust. Sot. Amer. 30, 479-480 (1958). 

roughness distribution possesses a correlation distance 
of the order of the wavelength. 

The theory leads to a very general boundary condi- 
tion that represents the combined effect of nonuni- 
formity and anisotropic properties of the roughness. A 
feature essentially due to multiple scatter and brought 
out by the introduction of a close interaction factor is 
the anisotropic reflection that results from anisotropic 
spacing of hemispherical bosses. 

The acoustic theory is an outgrowth of similar bound- 
ary conditions developed earlier for multiple scatter of 
electromagnetic waves.av4 

Note that the boundary condition provides essentially 
the magnitudes of scattering sources and dipoles as if 
they were continuously distributed. The actual scatter 
both coherent and incoherent is then readily evaluated 
by a standard summation process applied to the dis- 
crete scatterers. An approximation to the coherent re- 
flection may also be obtained by retaining a continuous 
distribution of scatterers. In this case, the reflection 
occurs only with a change of phase as shown in Sec. 4. 

The boundary condition derived here is applicable to 
nonuniform roughness whose distribution is represented 
by Fourier components of wavelength significantly 
larger than the scatterers, but may be comparable to 

a M. A. Biot, “Some New Aspects of the Reflection of Electro- 
magnetic Waves on a Rough Surface,” J. Appl. Phys. 28, 14% 
1463 (1957). 

4 M. A. Biot, “On the Reflection of Electromagnetic Waves on a, 
Rough Surface,” J. Appl. Phys, 29, 998 (1958). 
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the wavelength of the incident wave. This yields a non- 
specular reflection and scatter superposed on the smaller 
scale scatter due to the roughness. A problem that 
bears some resemblance to this was considered by 
Semyonov6 for the scatter of electromagnetic waves due 
to small roughness on an uneven surface, where the 
characteristic dimension of the latter is large compared 
to the wavelength. 

Nonspherical scatterers of a very general nature have 
also been considered by Twersky6 under the assumption 
of farfield interaction of the scatterers. The two- 
dimensional problem of scatter by parallel elliptic 
cylinders on a plane surface was also treated by Burke 
and Twersky’ for wavelengths both large and small 
relative to the size of the scatterers. 

I. ISOLATED SCATTERING CENTER 

field U across the surface of the sphere of radius a is 

Q= (4/3)na3D,,. (Id) 

Hence, the presence of a solid sphere of this radius re- 
quires the cancellation of this outflow by placing at the 
center a radiating source of velocity potential: 

cps= $a3D&. (le) 

The outflow of this source is equal to -Q. The total 
velocity potential cp due to the source and dipole is de- 
rived by adding the values obtained from Eqs. la and 
2e. Hence, 

cp= $&&p8= -+a3&.VF-+-$a3D(,F. W) 

Consider the case of a plane incident wave propagat- 
ing in the x direction. The x component of the velocity 
field of the incident wave may be written 

Consider a solid sphere of radius a subject to an inci- 
dent acoustic wave. The center of the sphere is located 

U,=li, exp(ikx). Og) 

at the origin. We denote by U the velocity field of the The divergence of this field is 

incident wave in the absence of the solid sphere. 
When the wavelength is large relative to the radius 

dUJdx=ikUo exp(ikx), (lh) 

of the sphere it is well known that part of the scattered and its value at the origin is 

wave is represented by a radiating dipole of velocity 
Dotential : 

Do= ikU,. (19 

(“d= -&Z3& VP , (la) Hence, the velocity potential (Eq. 2f) of the scattered 

where UO is the velncity of the incident wave at the 
origin, and 

v = id/ax+ ja/ay+ ka/az, 
F=e/RikR, 

R= (x2+y2+z2)t 

(lb) 

The wavenumber is 

k=w/c (2) 

with w the angular frequency and c the velocity of sound. 
The time factor exp(iwt) is omitted. 

The velocity field of the scattered wave due to the 
dipole is then given by V++,. 

As is shown below, it is necessary to take into account 
another scattered wave corresponding to a radiating 
source in contrast to a dipole. 

The radiating source is derived by considering the 
volume change of the incident wave. The relative rate 
of change of volume of the incident wave at the origin is 

D,,=V*U. (lc) 

This represents the value at the origin of the divergence 
of the field U. Hence the rate of volume outflow of the 

6 B. I. Semyonov, “Approximate Computation of Scattering of 
Electromagnetic Waves by Rough Surface Contours,” Radio 
Eng. Electron. Phys. 11, 1179-1187 (1966) (transl.). 

6 V. Twersky, “Acoustic Bulk Parameters of Random Volume 
Distributions of Small Scatterers,” J. Acoust. Sot. Amer. 36, 1314- 
1329 (1964). 

‘.J. E. Burke and V. Twersky, “Scattering and Reflection by 
Elhptically Striated Surfaces,” J. Acoust. Sot. Amer, 40, W-895 
(1966). 

wave is 

cp = - $a3UdF/dx+&ka3U8. (19 

At large distance, this potential becomes 

cp = &ka3U$[ 1+ (3/2) (x/R)]. Ok) 

Hence, the energy radiated by the dipole and the source 
are of the same order, and both must be taken into 
account for a correct evaluation of the scattered field. 

Expression lk coincides with the result obtained by 
Lord Rayleigh.* 

II. CONTINUOUS DISTRIBUTION OF RADIATING 
DIPOLES AND SOURCES 

If, in Expression If, we put 

M= -4&J 01 

M= )a30 0, 
(34 

the potential of the scattered field becomes 

cp=M+vF+MF. (3b) 

This represents the field radiated by a dipole and a 
source without any reference to the manner by which 
they are generated. The magnitude of the dipole is 
measured by the vector M and M measures the magni- 
tude of the source. They are both located at the origin. 

In order to analyze the reflective properties of a rough 
surface, we first consider that the radiating dipoles 

s J. W. Strutt, Lord Rayleigh, The Theory ofSound (Dover Pub- 
lications, Inc., New York, 1945), Vol. II, p. 276. 
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and sources are continuously distributed over the x-y 
plane. The dipoles are also assumed to be oriented in 
the same plane. Consider a dipole located at the point 
x= 5, y=v. The magnitude of this dipole is determined 
by the vector 

M=M,i+M,j, (3c) 

and the magnitude of the source is M. According to 
Eq. 3b, the velocity potential of the field radiated by 
this dipole and this source is 

the sources to the normal derivative of the potential. In 
the present case, this relation is 

a+Jaz= - 2rc. (31) 

The normal derivative a&/& must be evaluated on the 
side z>O of the surface. Using the value obtained from 
Eq. 3k for c, we substitute the variables x,y, instead of 
[,q, and write Relation 31 as 

p=M,dF/c3x+M~F/ay+MF. 

In the value of F we must now replace R by 

R= L-(x- F)2+ (y-~)~+a~lf. 

Hence, cp may also be written 

(34 

(3e) 

cp= -MdF/a&-M,aF/av+MF. (30 

We now assume that the dipoles and sources are con- 
tinuously distributed over the x-y plane with magni- 
tudes and orientation dependent on the location. The 
quantities M,([,v), M,,([,v), and M([,TJ) are now func- 
tions of [ and 7. If the distance between these radiating 
singularities is sufficiently small the total radiated field 
may be obtained by assuming a continuous distribution. 
If there are N dipoles per unit area, the vector density 

a4,,/a2= -22r(a&ax+ap,/ay) -2np. (W 

This fundamental relation, at any point x, y of the 
surface, between the normal derivative of the field and 
the local density of the dipoles and sources is now used 
in deriving the acoustic properties of a rough surface. 
It is shown that under certain conditions the effect of 
the roughness on acoustic reflection may be obtained by 
applying a modified boundary condition to a smooth 
surface. 

III. EFFECT OF ROUGHNESS REPLACED BY 
A BOUNDARY CONDITION 

clz=NMz(S,~), 

PY=N~~Y(L?), 
(3g) 

Consider a rigid reflecting surface coinciding with the 
x-y plane and an acoustic medium located in the half 
space z>O. An incident and reflected acoustic wave, 
whether plane or emanating from any set of sources in 
the acoustic medium, is represented by a velocity po- 
tential &. The boundary condition satisfied by this po- 
tential at the plane boundary (z=O) is 

measures the dipole magnitude per unit area. For the 
same number N of sources per unit area, their surface 
density is 

~=NM(t,rl). (3h) 

The total field radiated by such a continuous distribu- 
tion of dipoles and sources over the area S is obtained 
by surface integration of the potential (Eq. 3f) where 
densities are substituted in place of M,, M,, and M. 
The velocity potential of this total field is 

a4Ja2= 0. (44 

A simple model for a rough surface may be obtained by 
a distribution of rigid hemispherical bosses over the re- 
flecting plane. The centers of these bosses are located 
in the x-y plane, and the average number per unit area 
is assumed to be a constant value N. It is further as- 
sumed that the radius as well as the mutual distances 
of these bosses is small compared to the wavelength. In 
this case, the effect of the roughness is to add to the un- 
disturbed field 91 a field 4, radiated by a distribution of 
dipoles and sources. The field 4. is given by Expres- 
sion 3i. The density distribution pz, py, and ,J of the 
dipoles and sources is yet unknown. The total acoustic 
field including the effect of the roughness is 

Integration by parts yields 

&= //, V&%+/e F(--p&+&E), (39 

with 

P=a~z/af+a~y/a7+~. (3k) 

The line integral is evaluated clockwise on the closed 
contour C, which contains the area S. 

As can be seen, the scattered field is the same as if 
sources were distributed continuously over the area S 
and on its boundary C. For such a surface distribution 
of sources, there is a well-known relation, derived from 
Gauss’s theorem, which relates the surface density c of 

d=&S&. (4b) 

If we take into account the condition of Eq. 4a, we have 

a+/az = a+,/az. (4c) 

Hence, Relation 3m becomes 

a+/az= -2*faLc,/ax+aCl,/ay)-2~~. (44 

It remains now to relate the unknown density distri- 
butions pz, ,LQ,, and p to the unknown field 4. This can 
be done as follows. 

Consider the hemispherical boss of radius a centered 
at the point x, y on the reflecting plane. We shall 
assume that in the absence of the boss the velocity field 
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in a region of size 2a in the vicinity of the point x, y is 
approximately uniform. This uniform velocity field is 
parallel to the plane of reflection and may be repre- 
sented by the two components U Z and U y along the x 
and y directions. This velocity plays the Ale of Uo in 
Eq. 3a. Hence, the induced dipole due to the hemi- 
spherical boss located at the point x, y is represented by 
a vector M lying in the x-y plane of components : 

(44 

Similarly, the source corresponding to the hemispherical 
boss is given by 

M=$a3D > (4f) 

where D is the divergence of the velocity field at the 
point x, y in the absence of the boss. 

Combining Eqs. 3g and 3h with Eqs. 4e and 4f, we 
write for the density distributions 

(4g) 

The last step is to relate U,, U,, and D to the unknown 
field. 

If the bosses and their mutual distances are sufli- 
ciently small relative to the wavelength and if at the 
same time the bosses are not too close together, we may 
assume that U, and U, are velocities of the total field 
4 at z=O. Hence, 

u, = aqi/ldx, 

u,= a+/ay. 
(4h) 

When the bosses are close together, a correction factor 
may be applied that is evaluated in Sec. VI as a mea- 
sure of the nonradiative interaction. 

Under the same assumptions, the divergence D at 
z= 0 may be written 

D= Vt$. (49 
Hence, 

pZ = --$a3N8$/ldx, 

pu = - $a3N&&/la y, (4j) 

p = $a3Nv2& 

With these values, relation 4d becomes 

a~/az=~T(a2~/a$+a2~/lay2)-TV2~, (4k) 

where 
7= (2{/3)a3:V, (41) 

represents the volume of the bosses per unit area. 
The problem of evaluating the acoustic reflection for 

a rough surface is now equivalent to solving the wave 
equation for $, 

Vz++ k2+ = 0, (44 

with the boundary condition 4k at z= 0. 

By taking into account Eq. 4m, Relation 4k may also 
be written in either form 

or 

&j&z= 4~(a2~/ax2+a2~/ay2)+7k2~, (44 

@//dz= - +r (k%$+3a2+/i’dzZ). (40) 

Except for the numerical coefficients, the latter result 
is the same as derived previously.2 The difference is due 
to the addition of radiating sources. 

IV. PLANEWAVE REFLECTION WITH 
MULTIPLE SCATTER 

We apply the foregoing results to the reflection of a 
plane wave on a rough surface. The z axis is normal to 
the reflecting surface. The incident plane wave pro- 
pagates in a direction lying in the x-z plane and the 
angle of incidence is denoted by CL The incident wave 
is represented by the velocity potential 

&=A exp(izk COSW-ixk sim), (W 

and the reflected wave by 

& = B exp (- izk coso: - ixk sina), Gb) 

with complex amplitudes A and B. The total velocity 
potential is 

6=$i+&.. (SC) 

We substitute this value into the boundary condition, 
Eq. 40, at z=O. This yields the following relation 
between the coefficients A and B: 

B=A 
cow- &k( 1- 3 cos2a) 

cosa+$i7k (1- 3 coshj 
(54 

We may write this equation in the form 

with 

B=Aez”4 , 

tar+= --irk sin20r/cow+rk cow. (50 

The angle 2+ is the phase of the reflected wave relative 
to the incident wave. 

The first term in Eq. 5f represents a phase retardation 
and as we shall see it is due essentially to the coopera- 
tive interaction of the roughness elements and the multi- 
ple scatter. The second term represents a phase gain 

2#‘= 2rk COSCY. (5d 

Referring to Expressions 5a and Sb, we conclude that 
it is exactly the same as if specular reflection took place 
on a smooth plane that has been raised by an amount 
z= 7 above the original level z= 0. Since 7 is the volume 
of roughness per unit area, this raised reflecting surface 
is obtained by spreading the volume of the roughness as 
a smooth layer of uniform thickness. 
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At normal incidence, the first term in Eq. 5f dis- 
appears. Since $J is small, the actual phase gain is 

2+= 2$‘= 27k. (W 

Hence, in this case, the effect of the roughness is the 
same as raising the plane of specular reflection by an 
amount 7. 

There is an angle of incidence for which the two terms 
in Eq. 5f cancel each other and the change of phase 
vanishes. The angle of incidence a! at which this occurs, 
is obtained by putting +=O. Its value is given by 

coscx = l/v3 (5i) 

and is equal to about 55”. 
For angles of incidence larger than this value the first 

term in Eq. 5f predominates and leads to a phase re- 
tardation that increases rapidly, and for a=~/2 tends 
to the limit 

2#= -_g. (sj) 

Hence, at grazing incidence the reflection occurs with a 
complete phase reversal causing the total field to vanish 
in the vicinity of the solid. This effect was already de- 
rived earlier’ in an incomplete theory, using only the 
induced dipoles. It was pointed out that it is due to a 
resonance between the incident wave and the accumu- 
lation of disturbances produced by the roughness and 
subject to multiple scatter interaction. It should be 
kept in mind that this grazing incidence phase reversal 
occurs no matter how small the roughness. The rough- 
ness size determines only how close we must approach 
grazing incidence in order to observe the reversal. 

V. SURFACE WAVES DUE TO ROUGHNESS 

Because of the presence of roughness, a wave may 
propagate along the surface. This can be shown by con- 
sidering a velocity potential 4 of the type 

4=Ae-Pze-ilz. (6a) 

Again, the time factor exp(iwt) has been omitted. The 
solution must satisfy the wave equation (Eq. 4m); 
hence, 

82=/2-k2. (6b) 

For l> k, the value of p may be chosen real positive and 
the field (Eq. 6a) dies out exponentially with the dis- 
tance z from the surface. The phase velocity along the 
surface is 

‘v= w/l = (k,‘l)c, (6~) 

or 

v=c(l+/P)f. (6d) 

Hence, it is smaller than the velocity of sound. 
The value of @ is obtained by substituting Expression 

6a for C$ into the boundary condition (Ea. 40) at z=O. 

1620 Volume 44 Number 6 1968 

Taking into account Relation 6b, we derive 

2@-2p+TP= 0, 

and 
(6e) 

/3=[lf(l-2&2)*-J/27. (6f) 

Validity of the theory requires the wavelength to be 
large relative to the roughness size. Hence, 71<<1 and 
the two values of p are approximately 

Pr%/r, 

&Z&/2. 
(68) 

The value ,8r must be excluded because it implies an 
imaginary value of the phase velocity (Eq. 6d) as can 
be seen by writing 

/31/z= 1/7Z>>l. (6h) 

With the second value ,& for /3, the phase velocity 
becomes 

v=c(l-$T”l”)*. (69 

Hence, I’ depends on the wavelength 2?r/l and the prop- 
agation is slightly dispersive. 

VI. NONRADIATIVE INTERACTION 

When the distance between hemispherical bosses is 
reduced, there comes a moment when their mutual 
nonradiative interaction must be taken into account. 
This interaction is caused mainly by the dipoles. This 
can be seen if we consider one hemispherical boss located 
at a certain point P. The velocities induced by the 
sources associated with the surrounding bosses tend to 
cancel out, while the velocities due to the dipoles tend 
to add up. This effect was evaluated in an earlier paper.1 
If we denote by U, and U, the uncorrected velocity 
components as defined above in Sec. 3 and by U,’ and 
U,‘, the velocity components, taking into account the 
nonradiative interactions of the bosses, we derive 

where 

KUZ’= u,, 
KUyf= u,, 

K = 1 + ?r2a3/4b3. 

(74 

0) 

In this expression, b is the average distance between 
boss centers, and it is assumed here that the distribution 
is isotropic in all directions in the plane of reflection. In 
this case, the coefficient K measures a shadow eject that 
reduces the actual velocity U,‘, U,’ as compared to the 
uncorrected values U,, U, by a factor 1,'~. 

The dipole-moment densities induced by the cor- 
rected velocities U,’ U,’ are obtained by substituting 
these values of the velocity in Expressions 4g. We 
derive 

p2= - ia3NO’,‘= - (1/2K)a3Nu,, 

pus -$a3NU,‘= - (1/2K)a3Nu,. 
(7c) 
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The source density p is unaffected. Proceeding as in 
Sec. III we obtain the boundary condition 

d4/a2= 3 (T/K) (a2~/ax2+a2~/ay2)+Tk2~. (7d) 

This condition includes the nonradiative interaction 
represented by the factor K. Since this factor depends on 
(~/b)~, the effect vanishes rapidly for distances between 
bosses that exceed a few radii. 

By including this factor K, the theory is applicable to 
cases where the distances between bosses is comparable 
to their radii. We shall refer to K as the close interaction 
factor. As already pointed out for an isotropic distribu- 
tion of bosses this close interaction corresponds to a 
mutual shielding or shadow effect and a value of l/~ 
smaller than one. In general, the effect does not always 
amount to a shielding. For example, if the distribution 
of bosses is not isotropic they may be close together only 
in one direction. For a velocity perpendicular to this 
direction, the close interaction factor will give a value 
of l/~ larger than one. Hence, there will be two values 
of K attached to two mutually perpendicular directions, 
resulting in anisotropic properties of the reflection. This 
will be analyzed further in Sec. 9. 

VII. SHAPE FACTOR 

Until now, the roughness has been represented by 
bosses of hemispherical shape. However, this restriction 
is not necessary and the method may readily be ex- 
tended to arbitrary shapes. As an example, let us choose 
a needle-shaped protuberance perpendicular to the 
surface. We first consider the case where the pro- 
tuberances are isotropic; i.e., they are bodies of revo- 
lution about an axis perpendicular to the surface. The 
nonisotropic case is discussed in Sec. IX. 

We denote again by U, and U, the velocity at the 
location of the needle when the latter is removed. The 
presence of the needle induces radiating dipoles dis- 
tributed along its axis as can be derived by applying 
the theory of diffraction by a cylindrical obstacle. At a 
certain distance from the needle, the integrated effect 
is approximately the same as that obtained from a single 
dipole at the surface of reflection. The magnitude of this 
dipole as related to the velocity U,, V, is different from 
that of the hemispherical boss. This may be formulated 
by generalizing Expressions 4g for the dipole densities 
writing them in the form 

pu,= - (37/47r)UUZ, 

I_c,= - (37/47&V,, 
@a) 

where T now denotes the volume of the protuberances 
per unit area. The influence of the shape is represented 
by a shape factor u. For the particular case of hemi- 
spherical bosses, u= 1, and 7 is given by Eq. 41. For 
sharp roughness, a> 1, and for flat roughness, a< 1. 

We may also include the nonradiative interference. 
This is obtained by writing 

I*.= - (37/4n)aUz’= - (3/4+(&u,, 

pv= - (37/4n)d,‘= - (3/‘h)T(U/K)u,, 

(gb) 

using the values obtained from Eq. 7a for U,’ and U,‘. 
The source density p depends only on the volume r and 
is written as before 

/.l= (1/2)7i-TD. (8~) 

These results combined with Eqs. 4d, 4h, 4i, and 4m 
lead to the following boundary condition: 

a~//aZ=g,T(a2~/ax2+a2~/ay2)+Tk2~, (84 

with 

‘y = U/K. W 

In this equation, the parameters are T the volume of 
protuberances per unit area; and y, which represents 
the combined influence of the shape factor u and the 
close interaction factor K. We refer to y as the geometric 

factor. 

VIII. NONUNIFORM ROUGHNESS 

Heretofore, it was assumed that T, the volume of the 
roughness per unit area, as well as the shape and close 
interaction factors u and K are constant. In order to 
extend the theory to nonuniform roughness, we must 
distinguish between two types of nonuniformity. 

Consider first the local geometry restricted to an 
averaging domain that is small relative to the wave- 
length. Within this domain, we may assume that the 
protuberances vary in size. For example, hemispherical 
bosses of various radii ai may be distributed in a certain 
way over the unit area. In the absence of nonradiative 
interaction equations, (Eqs. 4g), expressing the dipole 
and source densities, may be generalized as follows : 

* 37 

The summation is extended to all the bosses over the 
unit area. The value of T as before represents the volume 
of the bosses per unit area. It is defined as 

7=x 74, Pb) 
where 

Ti= jr&’ (9c) 
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represents the volume of each hemispherical boss of 
radius ai. 

If nonradiative interaction is present, each boss is 
associated with a close interaction factor Ki. In addition, 
the bosses may be replaced by protuberances of various 
shapes each associated with a shape factor ni* We 
assume isotropic properties of the roughness. This 
amounts to saying that pi and ui are the same for all 
directions. 

In this case, it is possible to generalize the definition 
of the geometric factor y (Eq. se) by writing 

*y= i ri(UJKi). (9d) 

This factor y is a weighted local average of the shape 
and close interaction factors. The dipole densities may 
then be written 

Pz = - (3/47r)r 7UZ, 

/.Ly= - (3/4n)7&7,. 
(9e) 

As before, 7 is the volume of the roughness per unit 
area. The value of p is unaffected by shape and non- 
radiative interaction and remains as given by the third 
of Eqs. 9a. 

The second type of nonuniformity that we now 
consider is quite different. It is represented by a con- 
tinuous variation of the parameters 7 and y over the re- 
flecting surface. Hence, they are functions of x and y: 

7=&Y), 

Y=Y(x,Y). 
@f) 

This means that the local average size and average 
geometry are not uniform. However, applicability of 
the theory requires that the distributions ~(x,y) and 
y(x,y) be sufficiently smooth. More precisely, they must 
contain only wavelengths that are sufficiently large 
relative to the size of the roughness. Using the values 
obtained from Eq. 9e for pccz and pLy and the third of 
Eqs. 9a for P, Relation 4d becomes 

This is the boundary condition for nonuniform 
roughness. 

Since yr may be represented by a spectral distribu- 
tion, this result opens the way to an analysis of multiple 
scatter including a noncoherent reflection due to non- 
uniformity of the roughness. 

IX. ANISOTROPIC ROUGHNESS 

Assume the bosses to be half-ellipsoids lying with the 
flat sides on the plane of reflection and their axes 
parallel to the x and y directions. The induced dipoles 
are different in these two directions. We write 

(104 

The geometric factors yZ,, and yuv are different in the x 
and y directions. They are defined by equations similar 
to Eq. 9d: 

ryzz= i 7;Z, 
Kzi 

(lob) 

where cZ; and K=< are shapes and close interaction factors 
of the ellipsoidal bosses, in the x direction, with corre- 
sponding designations uyr and ~~~ of these factors in the 
y direction. As before, T denotes the volume of the 
bosses per unit area and r; the volume of individual 
bosses. The geometric factor is obviously a two-dimen- 
sional symmetric tensor Ykj=Tjk and in general we may 
write Eq. lob in the form 

Pk= - (3/h)Tyk,Ul, (104 

with the usual summation convention. The value of p 
is the same as given by the third of Eqs. 9a. By intro- 
ducing these results in Eq. 4d we obtain 

~~/~~=$(~/~~k) (~-,‘kZh$/dxl)+~~2~. (104 

We designate by x1 and x2 the x and y coordinates. 
Note that hemispherical bosses may give rise to 

anisotropic properties if, for example, in the x direction 
they are closer together than in the y direction. In this 
case, the shape factors are uZ;=ul/i= 1. But if the bosses 
are close enough along x, the nonradiative interaction 
yields two different coefficients Ksi and KU;; hence, yZZ 
and yru will be different. 

The boundary condition (Eq. 10d) is obviously quite 
general and applies to bosses that are not ellipsoidal. It 
generalizes Eq. 9g to the case where in addition to the 
nonuniformity of size and shape the directions of the 
local axes of anisotropy vary continuously over the 
surface of reflection. 
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