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A NEW APPROACH TO THE MECHANICS OF ORTHOTROPIC 
MULTILAYERED PLATES-f 

M. A. BIOT 

Avenue Paul Hymans 117, 1200 Brussels, Belgium 

Abstract-New methods are developed which provide a simplified treatment of the mechanics of multilayered 
and strongly orthotropic plates. It includes the case where individual layers are themselves constituted by thinly 
laminated materials each with their own orthotropic and microelastic properties. The fundamental “skin effect” 
of anistropic solid mechanics is taken into account. The theory is derived in the context of plane strain deforma- 
tions. Recurrence equations are obtained for an arbitrary number of layers and applied to plates with two and 
three layers. The microelastic stress-couple is evaluated for the case of laminated media. Characteristic physical 
features are discussed and the results are compared to a treatment based on the classical Euler-Bernouilli and 
Timoshenko models. 

1. INTRODUCTION 

COMPOSITE structures constituted by multilayered materials have come into extensive use 
in technology. This includes the use of thinly layered laminated materials whose bulk 
properties are strongly anisotropic with a microelastic bending rigidity. Exact methods of 
analysis of the dynamic properties of these structures by the theory of elasticity are in 
most cases impractical for usual design purpose. On the other hand, the classical “strength 
of materials” approach based on the Euler-Bernouilli or the Timoshenko beam model is 
not adequate. These classical models ignore the skin effect as analyzed and described 
earlier [l] which constitutes a fundamental feature in the mechanics of anisotropic solids. 
Hence they cannot predict the detailed stress-field distribution which is essential for the 
evaluation of local failures and overall damping capacity. In addition, the classical models 
do not take into account the cross-sectional distortion which plays an important role in 
the coupling of adherent layers. The present theory is an attempt to provide an approximate 
treatment which is much simpler than the one derived from elasticity theory while retaining 
the essential features. It is applicable to very complex structures with many layers such 
that the individual layers themselves may be constituted by thinly laminated materials 
with strongly orthotropic and microelastic properties. 

It should be pointed out that the advantages resulting from a simplified theory are not 
only computational. They are also conceptual, due to a better understanding of the physical 
factors involved, leading to design improvements. An important characteristic feature 
brought out by the analysis is represented by the concept of “transition wavelength” 
which marks the point where the skin effect becomes significant. 

For comparison, reference should be made to the rigorous analysis of multilayered 
media based on the theory of elasticity with initial stress as developed several years ago 

t This research,has been sponsored by the A.F. Office of Scientific Research (SREM), 1400 Wilson Boulevard 
Arlington, Virginia 22209, through the European Office of Aerospace Research, OAR, United States Air Force, 
under contract F 61052-69-C-0030. 
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by the author [3,6]. In this work, exact and complete solutions were obtained for problems 
of vibration and stability of systems of adhering orthotropic layers including the case where 
the outer layers adhere to one or two elastic half-spaces. The recurrence equations as well 
as the Thomas-Haskell matrix were evaluated thus providing numerical programming 
methods. The particular formulation also brings out the fundamental mathematical 
structure of the problem and the basic physical properties. By putting the initial stress 
and the frequency equal to zero the results coincide with those obtained from the classical 
linear elasticity theory, which may be compared with the approximate analysis of the 
present paper. As far as the single layer is concerned a critical comparison is provided in 
Table 1. In the case of multilayers the critical feature is adherence where the skin effect 
plays an essential role. Since it is verified that the approximate treatment includes this 
effect with good accuracy, it should provide the same accuracy for multilayered systems. 
Moreover the number of unknowns in the recurrence equations of the approximate theory 
are reduced by a factor two, while at the same time the coefficients in these equations are 
quite drastically simplified as illustrated in the particular case of equation (4.6). 

There have been numerous attempts in the past to treat problems of multilayered 
plates on the basis of the classical Euler-Bernouilli assumption. One such treatment [7] 
considers the most general case of anisotropy. However as shown by Table 1 the Euler- 
Bernouilli assumption has restricted validity for anisotropic plates. More recently an 
analysis based on elasticity theory has been developed [8] for the static problem with 
anisotropic layers elastically symmetric relative to their own plane. The case of three 
dimensional deformation based on elasticity theory has been treated for orthotropic 
layers with the same directions of elastic symmetry [9]. 

It should be added that this paper is intended only as an introduction. The method has 
been applied to problems of vibrations of elastic and viscoelastic multilayered plates 
including the effect of end conditions distributed across the thickness. Furthermore the 
plane strain solutions are immediately applicable to three-dimensional problems of 
transverse isotropic materials with rectangular, triangular and circular plan form. These 
results are presented in a companion paper to be published subsequently. 

2. BASIC EQUATIONS AND ASSUMPTIONS 

We consider an elastic plate of thickness h. The x axis is equidistant from the two faces 
and the y axis is normal to the faces. As a first step in the investigation, a plane strain 
deformation is assumed. The displacement components in the xy plane are denoted by 

u = 24(x. y) 

0 = v(x . y). (2-l) 

The elastic material is orthotropic and the stress-strain relations for plane strain are 

a xx = Cllexx+ Cd,, 

a 
YY = GZexx+G2eyy (2.2) 

a 
XY 

= 2Le,, 
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where the strain components are given by 

au av 
e = - xx ax eYY = jj 2exy = au+!?! 

ax ay' 
(2.3) 

It is also assumed that the material is stratijied in such a way that the elastic moduli 
C,,(y)C,,(y)C,,(y) and L(y) are functions of y only. The corresponding stresses satisfy the 
following equilibrium conditions 

aa,, dozy ax +--0 
ay 

(2.4) 

%+?!k = 0. 
ay 

A fundamental characteristic feature of the mechanics of plates is the smallness of the 
stress components rryy normal to the faces. Hence we shall put 

cr 
YY = 

0 

as a basic approximation in the stress-strain relations (2.2). Thus they become 

(2.5) 

with a new modulus. 

0 xx = 4Me,, 

(2.6) 
CT XY = a&, 

M = 4c,, -GC, 1Czz - G2). (2.7) 

In the particular case of an isotropic material in plane strain, the stress-strain relations 
(2.2) are 

0 XX = (A + 2&k + le, 

oyy = k, + (A+ 2@, 

d Xy = 2peXy 

where 1 and ,U are the Lame constants. In this case we find 

(2-g) 

A+p 
M=p- 

1+2p 
(2.9) 

L = p. 

In terms of Young’s modulus E and Poisson’s ratio v, Lame’s constants are written 

Ev 

1 = (l+v)(l-2v) 

E 

p=2(iE) 
(2.10) 

Hence, 

M=!E E 

4 l-v2 
L=--- 

2(1+v) . 
(2.11) 



478 M. A. BIOT 

It is of interest to point out that for an incompressible isotropic material v = 3 and the 
values (2.11) become 

M&Z. (2.12) 

Under these conditions the following results are derived. Elimination of u between the 
two stress-strain relations (2.6) yields 

1 &,Y d CY 

( 9 

a2V 

Lax ay4M 72 
(2.13) 

Further elimination of cxx between this equation and the first equilibrium condition 
(2.4) leads to 

(2.14) 

In the present phase of the analysis we shall consider deformations which are sinusoidally 
distributed along x. Hence we put 

u = U(y) sin Ix 

v = V’(y) cos lx 

cr XY = z(y) sin lx. 

Equation (2.14) becomes 

d 1 dz l2 - __ 
dy [ 1 4M dy 

--zz = Pv'. 

(2.15) 

(2.16) 

As an additional assumption we replace V’ by a constant V equal to its average across 
the thickness h of the plate, i.e. 

1 

V = h s 

h/2 
V’(Y) dy. (2.17) 

-h/2 

Hence equation (2.16) is simplified to 

d 1 dr 1’ - -- 
dy [ 1 4M dy 

--XT = 131/. (2.20) 

This result is fundamental and provides a complete solution of the plate behavior as follows. 
The shearing stress z(y) is obtained by integrating equation (2.20) assuming the boundary 
values of r at the faces (y = &h/2) to be given as applied shear forces. This determines 
the function z(y) in terms of a still unknown parameter V. We now integrate the second 
equilibrium condition (2.1) across the thickness and obtain 

[o,J 1 - [oyJ2 = - j-y;,,% dy = 4 cos Ix (2.21) 

where 

s 

hl2 
q= -1 T(Y) dy. (2.22) 

-h/Z 
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The expression [Q~J~ -[a,,& represents the difference of the normal stresses applied at 
the faces. Hence 4 is the amplitude of the total normal load applied to the plate per unit 
area and directed along y. When this normal load is known the deflection I/ is determined 
by equation (2.22) hence also the distribution r(y) of the shear stress. The remaining 
unknowns are then easily derived. The first equilibrium condition (2.4) yields 

(T xx = ~%oslx 
ldy ’ 

Substitution of this value into the first stress strain relation (2.6) further yields 

(2.23) 

(2.24) 

which determines the x component u = U(y) sin lx of the displacement. The y component 
of the displacement may be assumed constant across the thickness in first approximation 
and equal to v = I/ cos lx. 

Thinly laminated material 

The foregoing results are applicable to a plate made of thin alternating layers. For one 
layer the elastic coefficients are M, and L, and for the other M, and L,. These layers 
occupy respectively fractions a, and CQ of the total thickness. If the layers are sufficiently 
thin the material behaves as an equivalent homogeneous anisotropic medium with elastic 
coefficients M and L. For the case of an incompressible medium they were derived earlier 
[2, 31. However in the present case the procedure of derivation is identical, and the result 
is formally the same. The equivalent coefficients are 

M = M,cl, +M,a, 
(2.25) 

L= LIL, 
L,a, + L,a,’ 

For a plate of laminated material we may apply equations (2.20) and (2.21) with the values 
(2.25) for M and L. The same procedure is applicable to a laminated medium composed of 
a repeated sequence of n thin layers each of which occupies a fraction a, of the total thickness 
and is characterized by the two coefficients Mi and Li. The equivalent coefficients of the 
laminated medium are then given by [3], 

M = C Micli 
(2.26) 

The equivalent coefficients (2.26) constitute of course a first approximation. The next 
approximation is provided in Section 6 below by introducing stress couples. The limits of 
validity of these concepts were brought out earlier [4] in the context of stability problems 
taking into account the additional feature of interstitial flow which enters into play for 
large rigidity contrast between layers. However for the plate bending the equivalent 
continuum with eventual addition of stress couples should be satisfactory in practice. 
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3. ANALYSIS OF MULTILAYERED PLATES 

The foregoing analysis may be applied to a multilayered plate. This includes the case 
where some of the layers may be constituted by thinly laminated materials. Within each 
layer the coefficients M and L are constant. Equation (2.20) is therefore applied to each 
layer separately while V is assumed to be the same for all layers. For M and L constant, 
equation (2.20) is readily integrated. 

The general integral is 

with 

z = C, cash ply + C, sinh /?ly - 1LV (3.1) 

p = 2 J; (3.2) 

and two integration constants C, and C,. 
The x axis is assumed to be equally distant from the two boundaries of the layer. 

Denoting by r1 and z2, the values of z at the top and bottom of the layer, we derive 

c, = 

1 
c, = $71 -z+--- 

sinh /?r 

where 

and h is the layer thickness. 

y = +lh (3.4) 

The normal stresses at the top and bottom boundary produce a total normal loading 
on the layer given by equation (2.22). Substitution of expressions (3.1) and (3.3) in this 
equation yields 

q = -(z,+z,)c+12hLV 

with 

c = 1 tanh By. 
B 

(3.6) 

The displacement amplitude U is given by equation (2.24). Its values U, and U, at the 
top and bottom of the layer are found to be 

” = 41,/(ML) ’ 
l (z a+z,b)+cV 

(3.7) 

” = -4lJ(ML) ” 
l ( b+z,a)-CV 
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with 
a = tanh j?y +cotanh & 

b = tanh By - cotanh j3r. 
(3.8) 

Consider now a plate composed of n orthotropic homogeneous layers. The layers are 
nun-’ I-ed from i = 1 to i = n. we may apply equations (3.7) to the ith layer. They become 

1 

“’ = 4 J(MiLi) 
(ZiUi+zi+,bi)+CilV 

(3.9) 
1 

ui+ ” = - $/(MJ,~) 
(Tibi+T i+lUi)-CilT/. 

In these relations I/ now represents the average value of the normal displacement across 
the whole multilayered plate. The elastic coefficients of the ith layer are M, and Li and its 
thickness is hi. The values of ai, bi, ci are obtained by substituting Bi = 2 J(M,/L,) and 
yi = ($hi into expressions (3.6) and (3.8) for a, b, c. 

We may write equations (3.9) in abbreviated form by putting 

T = +A$: + BiZiZi + 1 +&f+ 1 (3.10) 

with 

Ai = 4 J&La 
bi 

Bi = 4 J(M,&) 
(3.11) 

Equations (3.9) become 

uil = z+cilv 
I 

(3.12) 

ui+,l = +-CilV 
1+1 

At the interfaces between the layers i and i + 1 the displacement Ui+i is the same when 
considered as belonging to layer i or i+ 1. According to equations (3.12) this is expressed 
by the relations 

aq 
---cilv = $l+ci+llv a7 i+l I+1 

(3.13) 

or 

Bizi+(Ai+Ai+,)zi+,+Bi+,zi+z = -(ci+ci+,)lV. (3.14) 

Thus we have obtained n - 1 recurrence equations for the values Of Zi. Hence when the values 

r1 and T,+~ are given at the outerfaces of the multilayered plate the values of zi at the 
y1- 1 interfaces are obtained in terms of V by solving the n- 1 recurrence equations (3.14). 
For example if the shear stresses z1 and r,+ 1 at the outerfaces are zero the general expression 
for zj may be written 

zj = DjlV (3.15) 

where D, = Dn+l = 0. 
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Next we shall apply equation (3.5) to the ith layer. The normal load qi acting on this 
layer is 

qi = - (Ti + zi+ l)Ci - 2&c&T/ + LihilZ V. (3.16) 

Substitution of the value (3.15) for rj yields 

qi = [Ih,L, -pi+Lli+ l)ci- 2LiCi]lV. (3.17) 

The total normal load q applied to the multilayered plate is obtained by summation of the 
loads qi applied to each layer. We obtain 

4=i4i (3.18) 
i=l 

or 

q = w i$l [IhiLi-(Di +Q+ l)Ci -2&c,]. (3.19) 

This result yields the normal deflection I/ under a given normal loading. The shear stresses 
at the interfaces are then determined by equations (3.15). 

4. THE HOMOGENEOUS ANISOTROPIC PLATE 

We shall apply the foregoing results to the single homogeneous anisotropic plate of 
thickness h. The shear stresses applied to the faces are assumed to be zero. Hence putting 
zi = 0 and r2 = 0 in equation (3.5) we derive the normal load 

4 = (l-y)PhL,v. (4.1) 

For wavelengths large compared to the plate thickness, i.e. for small values of 1 we replace 
tanh /?y by the first two terms of its Taylor expansion. This yields 

q = +Mh314V. (4.2) 

For an isotropic material of Young’s modulus E and Poisson’s ratio v this becomes 

q = ; &hvv. (4.3) 

Expressions (4.2) and (4.3) coincide with the results obtained from the classical Euler- 
Bernouilli theory of plates where the cross-section is assumed to remain plane and normal 
to the neutral axis. 

It is of interest to compare the approximate result (4.1) which we write in the form 

4 
12hLV= 

1 _ tanh PY 

BY 
(4.4) 

with the exact value of the same quantity derived from the theory of Elasticity for the case 
of an incompressible material. This exact value obtained previously [2, 31 is 

4 A 
12hLI/=y (4.5) 
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where 

B2 = J[m - Jh2 - 1)l 

We may also compare these results with the value given by the 
which is obtained by retaining the first two terms of the Taylor 
equation (4.4) namely 

j& = fuw”. 

(4.6) 

Euler-Bernouilli theory 
expansion of tanh /?y in 

(4.7) 

The numerical values of expressions (4.4), (4.5) and (4.7) are shown in Table 1 for a number 
of cases. 

TABLE I 

MIL Y 1 - (tanh BY/BY) Ah 4(BYY 

1 0.3 0.107 0.114 0.120 

2.2 0.3 0.203 0.217 0.270 
2.2 0.6 0.474 0.532 1.08 
9 0.3 0.474 0.495 1.08 
9 0.6 0.714 0.750 4.32 

The value y = O-3 corresponds to a wavelength about ten times the thickness h. For y = 0.6 
the wavelength is about five times the thickness. We note that the error of the Euler- 
Bernouilli value is large except for the case M/L = 1 corresponding to an isotropic incom- 
pressible material. However the approximate value (4.4) remains adequate. 

We may verify that the accuracy of the approximate value (4.4) increases with increasing 
anisotropy. This is shown by evaluating the limiting value of the exact expression (4.5) 
for large values of M/L. In this case we write approximately 

(4.8) 

Assuming that y is restricted to the range 

the exact value (4.5) tends to 

Y < P/l0 (4.9) 

A -&$!z? 
Y 

(4.10) 

which is the same as the approximation (4.4). 
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It is also of interest to point out that in the limiting case of very large anisotropy and 
for wavelengths which are not too large, expression (4.4) may be replaced by unity. Hence 
in this limiting case 

4 = Z2hLV. (4.11) 

Physically this corresponds to a plate deflecting in pure shear. 

5. THE TWO- AND THREE-LAYERED PLATE 

Consider a plate composed of two layers. The material of the first layer of thickness h, 
is elastic and orthotropic of elastic constants M, and L,. The thickness and elastic constant 
of the second layer are denoted by h,, M2 and L,. The total thickness of the plate is 
h = hl + h,. The applied shear stresses at the outerfaces are put equal to zero 

zi = z2 = 0. (5.1) 

The shear stress z2 at the interface is found by equating the interfacial displacements U, 
considered as belonging to the first and second layer. Applying equations (3.7) we derive 

1 

“‘= 4 J(M,L,) 
z,a,+c,zv 

(5.2) 

“’ = 

1 

-4,/(M,L,) 
r2a1 -c,ZV. 

Equating the two values of U, yields 

z -- 
4(c, + c2) 

2 - a,lJ(M,Ll)+a2/~(M2L2JV’ 
(5.3) 

In this expression the values of a, and c2 are obtained from equations (3.6) and (3.8) sub- 
stituting M, , L, and h, for M, L and h. Similarly a2 and c2 are obtained by substituting 
M,, L, and h, in the same equations. 

The total normal load 4 is the sum of the normal loads q1 and q2 on each layer 

4 = 41 +q2. (5.4) 

Using equation (3.5) after substituting the value (5.3) of r2 we obtain 

4(c, + c2J2 

$ = al,~(~l~l)+a2,~(~2~2)+~~L’h~ +L2h2)-2@‘,c, +L2c2). (5.5) 

This determines the deflection V when the normal load and the wavelength are given. 
Consider now a threelayered plate composed of a layer of thickness h, and elastic 

coefficients M,, L, sandwiched between two layers of thickness h, and elastic coefficients 
M,, L,. Because of the symmetry, the interfacial shears are z2 = z3 while zi = zq = 0 at 
the outerfaces. Using relations (3.7) we equate the interfacial displacements U, considered 
as belonging to layers 1 and 2. We obtain 

1 
~4~(M,LI)ZZal-C1~V = 

1 
4d(M2L2T2(a2 + b2) + C2lV. (5.6) 
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Solving for r2, taking into account the identity a2 + b2 = 2/I+,, yields 

4(c, + G) 

r2 = -all JPl-W+2P2c2/( JM2L2fv* 
(5.7) 

According to equation (3.18) the total normal load is 

4 = 2q,+q2. (5.8) 

By applying equation (3.5) with r1 = zq = 0 and the value (5.7) for z2 = z3 we derive 

$ = 

W, + ~2)’ 

aI/ J(M,LJ +V2c21 ,/(M,L,) 

.,,,,L,( 1-z) +lh2Lz( l-;). (5.9) 

The last two terms represent the normal load corresponding to superposed layers with 
perfect interfacial slip. The first term represents the effect of adherence between layers. 
An interesting result is obtained for the limiting case of large wavelength, i.e. for small 
values of y1 and y2. In this case equation (5.9) becomes 

q = [2(/r, +h2)‘h, +$:I MJ4V+~M2h;l”V. (5.10) 

This is the same as obtained by assuming the cross-section to remain plane and normal 
to the neutral axis. 

6. EXTENSION TO THINLY LAMINATED MEDIA WITH STRESS COUPLES 

We consider a laminated medium constituted by an alternation of thin layer of thickness 
h, = a,h’ and h, = cc,h’. The total thickness of a pair of layers is h’ = h, +h,. Their 
elastic coefficients are denoted by M,, L, and M,, L,, respectively. In some cases use of 
the equivalent anisotropic continuum with elastic coefficients (2.25) will not be sufficient 
and the bending rigidity of the laminations must be taken into account. This can be done 
by introducing stress couples as follows. 

We first evaluate the bending moment JZ1 in the layer of thickness h,. We locate the 
x axis midway between the boundaries of the layer and write 

f 

hd2 

A?l = - a,,~ dy. 
-hllZ 

(6-l) 

The minus sign is chosen by defining .&?‘i as the couple obtained by reversing the stress oXX. 
The value (2.23) for crXX is introduced using expressions (3.1) and (3.3) for z. This yields 

Al = -F ~T~+r,)+lL,V 
[ I( l- tarh PIYI cos Ix PIYI I (6.2) 

where zi and z2 are the shear stresses at the top and bottom of the layer, while pi = 
2J(M,/L,) and y1 = &lh, . There are several important simplifications which may be intro- 
duced at this stage. We note that &r, +z,) sin lx = oXY represents the average shear stress 
of the equivalent continuum. Hence we may write 

+(r, + z2) sin lx = 2Le,, (6.3) 
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where e,.. is the average shear strain and L is given by equations (2.25). On the other hand, 
the case where the plate remains flat should produce only negligible stress couples. 
Therefore we need only take into account the normal displacement I/. As a consequence 
we may substitute the value 

Hence from (6.3) 

2e -CT = -lI/sink xy - ax 

+(r, +r,) = - LW. 

(6.4) 

(6.5) 

Another simplication is obtained by using the approximation 

1 _tanh Blyl 
PlYl 

= gy: = ; +:I” 
1 

which is valid for a thin layer if ply1 CC 1. 
Finally we may also put 

a% 
Q= - l2 I/ cos lx. 

With the values (6.5H6.7) the bending moment (6.2) becomes 

Jgl = f(L1 - qh:fi 
1 ax2 

Introducing the value (2.25) for L and putting h, = a,h’ we obtain 

J%e, = f/p (Ll - L2) 

3 a,L,+a,L, 
Ii41a21x:$. 

Similarly for the layer of thickness h, the bending moment is 

The total stress couple per unit thickness is therefore 

with the stress couple coefficient 

(6.6) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

This result coincides with the value derived previously by a different method for the 
particular case of an incompressible material [4]. 

If one of the layers is very stiff compared to the other M, >> M,, L, >> L, the value 
(6.12) is simplified to 

b = ‘h2M 
3 1 (6.13) 

where M = a,M, represents an elastic coefficient of the equivalent continuum. 
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The result is easily extended to the case where the laminated medium is composed of 
repeated groups of IZ thin layers. Each layer is denoted by the subscript i. The total thickness 
of the group being h’ the thickness of each layer is h, = qh’. Expressions such as (6.8) may 
be used for the bending moment J%‘~ in each layer. The total stress couple per unit thickness 
is therefore 

where 

(6.15) 

and L is the coefficient of the equivalent continuum given by equation (2.26). 
We shall now examine how the basic equations of Sections 2 and 3 must be modified 

in order to take into account the couple stresses. The only change is in the second equilibrium 
equation (2.4) which is now replaced by 

a,“:: ; dgYY - 0 

ay 
with 

a_4 
0 

XY 
-oyx = -. 

ax 

Elimination of gyX between these two equations yields 

$$=b$. 

(6.17) 

(6.18) 

For a laminated layer of thickness h and constant coefficients the value of 4 is obtained 
as in equation (2.2) by integrating the equilibrium equation (6.18) across the thickness. 
We obtain 

s 

h/2 
q= -1 z(y) dy + bh14 I/. (6.19) 

-h/2 

Since the value (3.1) of r remains the same 

q = -(z,+z2)c+lZhLV’ l-; +bh14V. 
i I 

For a multilayered plate where the various layers may be laminated each with a stress 
couple-coefficient bi the value (3.19) is replaced by 

4 = 1V ids [IhiLi-(Di+Di+,)~i_2Li~i] +14V ~ bihi. 
i=l 

(6.21) 

All other equations remain unchanged and the analysis follows exactly the same procedure 
as in Section 3. 
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7. DISCUSSION OF CHARACTERISTIC FEATURES 

Consider the case of the homogeneous anisotropic plate discussed in Section 4. The 
shearing stress distribution is obtained by putting z i = z2 = 0 in equations (3.1) and (3.3). 
We find 

(7.1) 

Substitution of this value in equation (2.23) yields the corresponding bending stress 
distribution. 

cr B 
sinh ply 

XX = cash #h 
1LV cos lx. (7.2) 

For large wavelengths, 1 is small, and for a given value of fi the distributions (7.1) and (7.2) 
tend to the limits 

(7.3) 
fs XX = 4My12 V cos lx. 

These linear and parabolic distributions are the same as derived from the classical theory 
of thin plates where the deflection u under a load distribution q(x) is governed by the 
differential equation 

;Mh3$$ = q(x). (7.4) 

The deflection V for a sinusoidal load in this limiting case is given by equation (4.2). 
Consider now the other extreme where 1 is fixed while the anisotropy increases inde- 

finitely, hence for p + co. In this case the deflection for a sinusoidal loading is expressed 
by equation (4.11) which corresponds to the differential equation 

Lh$ = -q(x). (7.5) 

It represents a plate deforming in pure shear. The value (7.1) of z is then almost constant 
over the cross-section and equal to 

r = -1LV (74 

except for a thin region near the boundaries where it rapidly drops to zero. Similarly the 
value (7.2) of the bending stress cXX is near zero except in the same thin region where 
(at the cross-section x = 0) it rapidly rises to the value 

at the boundary. 

CJ max = PlLV (7.7) 

These results coincide with the existence of a fundamental skin &ect derived and dis- 
cussed in a previous paper [l]. The thickness of the boundary layer corresponding to this 
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The result is easily extended to the case where the laminated medium is composed of 
repeated groups of n thin layers. Each layer is denoted by the subscript i. The total thickness 
of the group being h’ the thickness of each layer is hi = a$~‘. Expressions such as (6.8) may 
be used for the bending moment J& in each layer. The total stress couple per unit thickness 
is therefore 

where 

(6.14) 

(6.15) 

and L is the coefficient of the equivalent continuum given by equation (2.26). 
We shall now examine how the basic equations of Sections 2 and 3 must be modified 

in order to take into account the couple stresses. The only change is in the second equilibrium 
equation (2.4) which is now replaced by 

(6.16) 

with 

adi 
fs 

XY 
-rTyx = -. 

ax 

Elimination of gyX between these two equations yields 

a,";Y ; a"YY - a5ief 
ay ax2 

&d”” 
ax4' 

(6.17) 

(6.18) 

For a laminated layer of thickness h and constant coefficients the value of CJ is obtained 
as in equation (2.2) by integrating the equilibrium equation (6.18) across the thickness. 
We obtain 

s 

h/2 
q= -1 z(y) dy + bM4V. (6.19) 

-h/2 

Since the value (3.1) of z remains the same 

q = -(z,+z,)c+l%LV 
( I 

1-F +M4V. (6.20) 

For a multilayered plate where the various layers may be laminated each with a stress 
couple-coefficient bi the value (3.19) is replaced by 

i=l i=l 

(6.21) 

All other equations remain unchanged and the analysis follows exactly the same procedure 
as in Section 3. 
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7. DISCUSSION OF CHARACTERISTIC FEATURES 

Consider the case of the homogeneous anisotropic plate discussed in Section 4. The 
shearing stress distribution is obtained by putting r i = r2 = 0 in equations (3.1) and (3.3). 
We find 

(7.1) 

Substitution of this value in equation (2.23) yields the corresponding bending stress 
distribution. 

0 P 
sinh ply 

XX = cash $Blh 
1L v cos lx. (7.2) 

For large wavelengths, 1 is small, and for a given value of p the distributions (7.1) and (7.2) 
tend to the limits 

(7.3) 
rs XX = 4My12 V cos lx. 

These linear and parabolic distributions are the same as derived from the classical theory 
of thin plates where the deflection u under a load distribution q(x) is governed by the 
differential equation 

;Mh3gb = q(x). (7.4) 

The deflection V for a sinusoidal load in this limiting case is given by equation (4.2). 
Consider now the other extreme where 1 is fixed while the anisotropy increases inde- 

finitely, hence for j? -+ co. In this case the deflection for a sinusoidal loading is expressed 
by equation (4.11) which corresponds to the differential equation 

Lh$ = -q(x). (7.5) 

It represents a plate deforming in pure shear. The value (7.1) of r is then almost constant 
over the cross-section and equal to 

r = -1LV (7.6) 

except for a thin region near the boundaries where it rapidly drops to zero. Similarly the 
value (7.2) of the bending stress (T,, is near zero except in the same thin region where 
(at the cross-section x = 0) it rapidly rises to the value 

at the boundary. 

0 max.= PILv (7.7) 

These results coincide with the existence of a fundamental skin effect derived and dis- 
cussed in a previous paper [l]. The thickness of the boundary layer corresponding to this 
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skin effect was found to be 

(7.8) 

The same value is also derived from expressions (7.1) and (7.2). 
Another characteristic feature is brought out by considering equation (4.1) which 

provides a relation between the load 4 and the deflection V. For values z < 5 a suitable 
approximation is 

tanh z 
I-- = 

Z2 

3 + 1.18~~’ (7.9) 
Z 

Hence equation (4.1) may be written approximately 

Mh314 

’ = 3 + 1.18(M/L)12h2 ’ 
(7.10) 

For a given ration M/L and sufficiently large wavelength this value coincides with equation 
(4.2) obtained from the classical bending theory. However as the wavelength decreases 
the term 1.18(M/L)12h2 in the denominator enters into play and the correction is of the 
order of 10 per cent if 

(7.11) 

This determines a transition wavelength 

(7.12) 

below which the shear deformation becomes significant. This concept of transition wave- 
length was already discussed earlier in connection with geological problems of folding 
instability [5]. It is essentially related to the skin effect as can be seen by writing condition 
(7.11) in the form 

h = 6. (7.13) 

Hence the transition wavelength is reached where the boundary layer thickness is of the 
order of the plate thickness. It should be pointed out that for large anisotropy this transition 
wavelength is not small. For example for M/L = 9 we find 9 = 6nh which is about eighteen 
times the plate thickness. 

It is interesting to compare these results with a “Timoshenko beam” approach which 
may be formulated by the following equations 

dS 
-&+4(x) = 0 g+s=o 

(7.14) 

where q(x) is the distributed normal load, S the total cross-sectional shear force, Ji’ the 
bending moment, 4 the angle of rotation of a cross-section, v the deflection and K a 
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dimensionless coefficient. For a sinusoidal load distribution q(x) = q cos Ix and a corres- 
ponding deflection u = V cos Ix equations (7.14) yields the relation 

Mh314 

’ = 3 + M/KL12h2 
V. 

This coincides with equation (7.10) provided we put 

1 
- = 1.18. 
K 

(7.15) 

(7.16) 

Hence the present method provides the value of the unknown coefficient K which yields 
the approximately correct deflection. 

However the Timoshenko beam approach ignores the skin effect and does not provide 
the detailed structure of the stress field or the cross-sectional distortion which must be 
taken into account for an accurate estimate of failure stresses effective dainping and the 
interaction of adherent layers in multilayered plates. 

Characteristic features such as the existence of a transition wavelength and others 
examined here in the context of the homogeneous anisotropic plate should also be present 
in the mechanics of multilayered plates even for isotropic materials because of the overall 
anisotropy of such systems. 

A final remark is in order concerning non-sinusoidal load distributions and application 
to plates of finite span. It is clear that the half wavelength of the sinusoidal solution repre- 
sents the response of a plate of span n/l simply supported at both ends. A load which is 
not sinusoidal may be expanded in a Fourier series, each component corresponding to a 
wavelength which is a submultiple of the fundamental. The response of the plate is obtained 
by applying the present theory to each component. The result will usually converge quite 
rapidly. 
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A6cTpaKT-Paxpa6oram.I HOBbIe MCTOAbI, IIpl#BOnSlIL(rte K ,‘IlpO,&HHOii TpaKTtipOBKe MHOrOCnOkHblX II 

CHIIbHO OpTOTpOnHblX ILJIaCTRHOK. npeRJIaraeMaR TeOpea y’IBTbIBaeT CJIyqafi, KOrna 3TI.I OTAeJIbHbIeCJIOH 

COCTOBJIRIOT co6oit TOHKO IIJIaCTHHYaTbIe MaTepHanbI, 113 KOTOpbIX K%KAblCi 06nanaeT CBOIIMH CO6CTBeH- 

HbIMH CBOikCTBBMH OpTO~pOIIFikf A MkiKpOyIIpyrOClH. YYMTbIBaeTCSI OCHOBHOfi “3t$@KT IIOBepXHOCTHOrO 

CJIOII” MeXLlHUKEl aHH30TpOnHbIX TBepAbIX TWI. BblBOAMTC54 TeOpLUI AJISI CJIy’EUI IIJIOCKHX ,l&OpMaqEIk 

~OJIy’IkUOlCFI PeKyppeHTHbIe YpaBHeHHR, JUIR IIpOki3BOnbHOrO ‘IHUE, C,IOeB A IIpkiMeHflIOlCR K WIaCTBHKaM 

C @YMIl EUIA TPeMIl CJIOIIMH. OIIpeAeZWEOTCSl MMKpOyllp)‘rHe MOMeHTHbIe HZUIjk9KKeHHSI AJIR CJl)“GUI IIJIaCMH- 

HWlTOZt CpeAbI. 06cyxcnamTcn XapaKTepHCTA‘IeCKHe @43M’leCKMe CBOirCTBa. Pe3j’JIbTaTbI CpaBHtiBLUOoTCSl 

C IIOAXOAOM, OCHOBaHHOM Ha KSItiCCUYeCKUX MOAeJIllX 3tiJlepa-&qJHyJlJlH li TUMOmeHKn. 
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