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SIMPLIFIED DYNAMICS OF MULTILAYERED ORTHOTROPIC 
VISCOELASTIC PLATES? 

M. A. BIOT 

Avenue Paul Hymans 117, 1200 Brussels, Belgium 

Abstract-Based on a new approach to plate theory, procedures are developed for the dynamic analysis of 
multilayered plates. They provide analytical simplifications as well as refinements of the physical description 
which includes the skin effect. The various layers may be anisotropic and each of them may be constituted by 
thinly laminated materials with stress couples. The damping due to viscoelasticity is evaluated by a method 
which brings out the effectiveness of each component material. Detailed end conditions may be imposed at the 
supports at various points across the thickness. It is shown that a plane strain analysis provides immediately 
solutions of three-dimensional dynamics for multilayered plates with rectangular, triangular and circular plan 
forms. 

1. INTRODUCTION 

THE fundamentals of a new approach to the mechanics of multilayered plates were outlined 
previously [l] in the context of static problems. The methods may be applied to dynamical 
problems and provide simplified procedures for the evaluation of natural modes and 
vibration absorption of multilayered elastic and viscoelastic plates. The layers may be 
orthotropic. This includes the case where the anisotropy of the individual layers is due to 
a thinly laminated structure. In addition microelastic properties of such layers are introduced 
by the use of stress couples. 

As already pointed out [l] an adequate theory should take into account the skin effect 
of anisotropic solid mechanics. On the other hand the evaluation of damping requires 
improved accuracy of the stress field analysis. This is due to the fact that for heterogeneous 
materials, with uneven distribution of dissipative properties, resonance damping is quite 
sensitive to localized values of the stress field. Finally the coupling of adhering layers, to 
be evaluated correctly, should take into account the cross-sectional distortion which is 
usually overlooked. 

While accuracy is thus improved, simplicity of analysis is nevertheless retained. This is 
in part due to the fact that it is sufficient to solve the problem for plane strain with a 
sinusoidal distribution along the span. When this has been done solutions are readily 
obtained for plates with various end conditions and for three-dimensional problems of 
plates of various plan forms. This leads to the concept of “intrinsic wavelength” defined by 
the corresponding plane strain solution. 

The damping of viscoelastic plates is evaluated by a procedure of linearization which 
brings out the influence of each individual layer on the overall vibration absorption 
properties. This is illustrated by treating the single layer and the threelayered plate. 

7 This research has been sponsored by the A.F. Office of Scientific Research @REM), 1400 Wilson Boulevard, 
Arlington, Virginia 22209, through the European Office of Aerospace Research, OAR, United States Air Force, 
under contract F 61052-69-C-0030. 
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For three-dimensional problems the damping is the same or about the same as in the 
plane-strain solution with the corresponding intrinsic wavelength. Note that the method 
includes automatically the stretch-bending coupling of plates with asymmetric layers as 
illustrated for the case of two layers [l]. 

A considerable refinement is obtained by using exponential branch solutions. This it 
becomes possible to satisfy very detailed end conditions at the supports. For example we 
may impose restraints such that zero displacements are prescribed at several points of 
the end cross-sections. The same refinement is applicable to the edge condition in the 
three-dimensional problem of a multilayered plate of circular plan form. 

2. BASIC EQUATIONS AND APPROXIMATIONS 

Plane strain in an elastic plate of thickness h is described by the displacements com- 
ponents u, u with the x axis directed along the span and the y axis normal to the plate. 
The strain components are 

au au 1 au au 
e =- 

. xx ax eyy=s exy=~;j;T+qa ( 1 (2.1) 

We assume the material to be elastically orthotropic with directions of symmetry along 
x and y. If we neglect the stress gyY normal to the plate we may write the stress-strain 
relations in the simplified form 

cr XX = 4Me,, 

(2.2) 
0 XY = 2Le,,. 

The coefficient M may be expressed by means of the anisotropic elastic coefficients of 
the material [l]. The dynamical equilibrium equations are 

do,, acxy a2u 

ax +dyT? 

aoxy do,, a2v 
ax+ay = Pa,i 

(2.3) 

where p is the mass density. We note that the assumption cyy = 0 is introduced only in 
the stress-strain relations (2.2) and not in the equilibrium equations (2.3). 

The plate considered here may be inhomogeneous in such a way that it is either con- 
tinuously or discontinuously stratified. Hence the coefficients M(y)L(y) and the mass 
density p(y) may be functions of y. 

Let the field be an harmonic function of time and sinusoidally distributed along x. 
Hence we put 

u = U(y) sin Ix eiat 

(2.4) 
v = I/ cos Ix e’“‘. 
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An additional approximation is introduced here by assuming V to be a constant equal to 
the average displacement u across the thickness. The second of equations (2.2) yields 

I 
C XY = z(y) sin lx eiat (2.5) 

with 

By eliminating o,.. and U between equations (2.2) and the first of equations (2.3) we obtain 

with 

9Jl=Ml-&. ( I 

(2.7) 

(2.8) 

Let the boundaries of the plate be located at y = f h/2 and assume the shear r1 = z(h/2), 
z2 = z( - h/2) to be given at the top and bottom faces. With these boundary conditions 
the function r(y) is obtained by integration of the differential equations (2.7) where M, L, 
1, a and I/ play the role of parameters. 

We finally integrate the second equilibrium equation (2.3) along y. We obtain 

f 

th/2 
4= - r(y) dy - a2G’ 

-h/2 

where 

s th/2 

Pt = _ h,2 P(Y) dy 

is the total mass per unit area of plate face, while 

[0YY]r - [fryY12 = q cos Ix eiat 

(2.9) 

(2.10) 

(2.11) 

represents the total normal load applied to the same unit area. Since r(y) is known in 
terms of I/‘, equation (2.9) determines the deflection when the load q is given. When we 
know (TRY, the values of oXX and u are determined by combining the first of equations (2.2) 
with the first of equations (2.3). We obtain 

1 dz 
U= 

ZKPdy 

M dz 
0 = - XX - cos Ix. 

YJIl dy 

(2.12) 

(2.13) 

Static analogy 

An important aspect of these results as will appear ,in the applications resides in the 
fact that equation (2.7) for r and the value (2.12) of U are the same as for the static case 
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(a = 0) except that M is replaced by the “dynamic” coefficient !lX. We also note that 

where up = a/l is the phase 
the velocity of longitudinal 
may use the approximation 

U2P 

( I 

2 

VP 
4M12= VM 

(2.14) 

velocity of bending waves in the plate and vM = 2,/(M/p) is 
compressional waves. In many problems vP/vM << 1 and we 

‘%R = M. (2.15) 

In this case the only difference with the static case resides in the additional term a’p,‘v of 
equation (2.9). 

3. MULTILAYERED PLATES AND VISCOELASTICITY 

The foregoing results may be used to analyze the plate constituted by a superposition 
of adherent homogeneous layers. Consider first a single layer of thickness h and constant 
elastic coefficients M and L. The shear stress at the top and bottom of the layer are denoted 
by z1 and z2, respectively. The differential equation (2.7) is readily integrated in this case. 
Results are formally identical to those for the static case [l]. We find 

where 
r = C, cash /?ly+ C, sinh ply- lLI/ (3.1) 

C1 = 

1 c, = $T1 -z2)- 
sinh /I7 

y =;lh 
(3.2) 

B = qmJvL). 

From equation (2.12) we derive the values U, and U, of U at the top and bottom of the 
layer. They are 

U1 = 41J(%RL) l 
l (z a+z,b)+cV 

u2 = -4zJ(mL) z1 l ( b+z,a)-CT/ 

where 
1 

a = tanhby+- 
tanh fly 

1 
b = tanh By-- 

tanh by 

c = 1 tanh By. 
B 

(3.3) 

(3.4) 



Simplified dynamics of multilayered orthotropic viscoelastic plates 495 

The normal h .d q cos Ix applied to this layer is obtained from equation (2.9) we find 

q = -(z,+z,)c+12hLV 
( 1 

1-c -c?phV. 
Y 

(3.5) 

For a plate constituted by it adhering layers the ith layer of thickness hi is characterized 
by coefficients Li, Mi and a mass density pi. Corresponding parameters are ai, b,, ci, %I&. 
We denote by Zi and zi+ 1 the shear stresses at the top and bottom of the ith layer respectively 
and by Ui and Ui+ 1 the displacements at the corresponding faces. The condition of 
adherence of layers i and i + 1 are obtained by equating the displacements at the interface. 
Applying equations (3.3) we derive 

where 

Bizi+(Ai+Ai+,)zi+,+Bi+1Zi+2 = -(Ci+Ci+t)ll/ (3.6) - 

4 = 4J(giLi) bi 
Bi = 4J(%RiLi) (3.7) 

The recurrence equations (3.6) lead to the evaluation of the n- 1 shear stresses ri at the 
interfaces provided z1 and z,, 1 at the outerboundaries are given. The values zi are found 
in terms of the single unknown I/ The latter is evaluated by considering the total load 
q cos lx applied to the multilayered plate. It is the sum of the individual loads qi cos Ix 
acting on each layer. Hence 

where according to (3.5) 

4=C4i (3.8) 

qi = -(Zi + Zif t)Ci + lZhiLi l- ’ V- a3pihiV. ( I Yi 
(3.9) 

We may write 

where 

. q = - ~(zi+zi+,)ci+12Kv-LY2p,v (3.10) 

(3.11) 

and pt = 2 pihi is the total mass per unit area of the plate. Since ri is a known function 
of I/ while q is given, equation (3.10) determines V. 

Viscoelastic materials 

Viscoelastic properties of the layers are taken into account by substituting operators 
for the elastic coefficients M and L in the elastic theory. The general form of these operators 
was derived from the principles of linear irreversible thermodynamics [2]. They are 

Q= I m P -M(r) dr + M” + M’p 
0 p+r 

(3.12) 

2= 
s 

* P -L(r) dr + L” + L’p 
o p+r 
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where p = d/dt. For harmonic oscillations p = ia and the operators become complex 
quantities. In this case we may write 

ti = M+AM 
(3.13) 

2 = L+AL 

where AM and AL denote the imaginary parts of i@ and 2. 
In practice two important simplifications may be introduced. Since M and L are generally 

slowly varying functions of the frequency we replace them by constants equal to their 
values in the vicinity of the significant frequency of the problem. For these real values and 
assuming I/ to be known we solve equations (3.6) and (3.10) as in the elastic problem. 
We then consider the imaginary increments, Azi Aq AL, AM, to be small and linearize all 
equations for these quantities with the same value of I/. Using the solution of equations 
(3.6) and (3.10) we derive the imaginary part Aq of q. This yields the complex values q + Aq 
of the force required to produce the deflection V. 

Laminated layers 

The layers themselves may be composed of thinly laminated materials. Such a material 
may be constituted by repeated groups each of which has a thickness h’ and contains k 
layers. The jth has a thickness hj and elastic coefficients Mj and Lj. The laminated material 
may then be replaced by an anisotropic elastic continuum of coefficients M, L, given by 

M = i Mjaj 

(3.14) 

;+ 
.l 

where clj denotes the fraction of the total thickness h’ occupied by the jth layer. In addition 
we must take into account the couple stress i.e. a moment per unit area equal to 

JJ&!? 
aX2' 

(3.15) 

In the present dynamic case the couple stress coefficient may be evaluated exactly as 
before [l]. The same value is obtained as in the static case 

(3.16) 

The equilibrium equations (2.3) are also modified by the couple stress and as a consequence 
equation (3.10) must be replaced by 

q = - ~(ri+ri+,)ci+12KV--Z2plV+14-V~bihi (3.17) 

where bi is the couple stress coefficient of the ith layer. 
This is immediately extended to viscoelastic laminated media replacing the coefficients 

by the operators Ai, Zi, pi. 
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4. EXAMPLES OF EVALUATION OF DAMPING 

We shall illustrate the method of evaluation of the damping on some specific cases of 
simply supported plates. Consider the homogeneous anisotropic plate. The span s equal 
to half the wavelength is 

SC71 
1’ (4.1) 

According to the general procedure embodied in equations (3.6) and (3.10) the load q 
is obtained by using the expression obtained for the static case and adding a dynamic 
term -cr’p,V. Hence 

4 = PhLV( l-y) -aZp,v. (4.2) 

Although it is not essential we shall simplify the analysis by assuming m = M hence 

P = 2 J(MIL). 
For a viscoelastic material M and L are replaced by M +AM and L+ AL where AM 

and AL are the purely imaginary terms. The imaginary part of the load q is represented by 
Aq and evaluated by linearizing equation (4.2) with respect to AM and AL. We find 

Aq = (F, AM+ F, AL)12hV (4.3) 

with 

F =z tanhfiy 1 

l P” ( BY -~ cosh2 j3y 1 
(4.4) 

F = l_3tanhpy+! ’ 
2 

2 BY 2 cash’ By 

at resonance q = 0 and the deflection V is entirely due to the load Aq. Expression (4.3) 
provides an immediate evaluation of the relative importance of the longitudinal damping 
AM or the shear damping AL on vibration attenuation. The values of F, and F, depend 
on the anisotropy as measured by MfL and on thickness to span ratio h/s = 2~171. Some 
numerical values are given in Table 1. 

TABLE 1. VALUES F, AND F, AS FUNCTIONS OF M/L AND y 

MfL = 4 M/L = 16 

Y FI F, Y F-1 F, 

1 0.125 0.63 0.5 0.0625 0.63 
0.6 0.190 0.402 0.3 0.095 0.402 
0.3 0.192 0.210 0.15 0.096 0.210 
0.2 1.131 0.039 0.10 0.065 0.039 
0.1 0.046 0.007 0.05 0.023 0.007 

It can be seen that for short spans the shear damping becomes predominant while the 
opposite is true for large spans. 

This result is applicable to the laminated plate where the values of L and M are those 
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of the equivalent continuum given by (3.14). In addition we must introduce the complex 
stress couple coefficient (3.16). The expression (4.3) of Aq will then contain an additional 
term 14V’h Ab where Ab is the imaginary part of the stress couple coefficient (3.16). 

As another example we consider the three-layered symmetric plates composed of a 
core of thickness h, and coefficients M,L, sandwiched between two identical layers of 
thickness h, and coefficients M,L,. Following the static analogy rule we write for the 
load q 

8(c,+ c21* 5 = alI&flLl)+ W2c21,/W2L2) 
+2&,,,( 1-z) +Ih,L*( 1-z) -9. (4.5) 

The first three terms are the same as for the static case derived previously [ 11. The resonant 
frequency is obtained from equation (4.5) by putting q = 0 and solving for a. For simplicity 
we have introduced the approximation !JJI = M. The damping is derived by evaluating the 
imaginary increment Aq of q in equation (4.5) due to imaginary increments AM, AL, 
AM, AL, using linearized expansions with respect to these increments. The result is 
obtained in the form 

Aq lT/ =dl AM, +s&‘* AM,+B;, AL, +g2 AL, (4.6) 

which brings out separately the influence of the longitudinal and shear damping in each 
of the two materials. The coefficients&‘1,&2, S?i, B2 are easily evaluated functions of L,, 

M,, L,, M2, h,, h2 and 1. 
Again the result is applicable to the case where the layers themselves are constituted 

by two different types of thinly laminated media, using the coefficients of the equivalent 
anisotropic continuum for each layer and adding on the right side of equation (4.6) the 
term (2Ab, h + Ab2h2)13 representing the damping due to the stress couples. 

The result (4.6) is greatly simplified if the layers are composed of isotropic incompressible 
materials, in which case we may put 

M, = L, = pl 

M, = L, = ,u2 (4.7) 

In this case expression (4.5) becomes 

4 (tanh 27, + tanh 2y,)* 
Iv= 1 tanh 2~~ 

+ 2pl(2y, - tanh 27,) + ~~(27, - tanh 2y,) - a*p,/l. (4.8) 

pl tanh 4~~ 
+- 

11* 

The imaginary part Aq of the load is given by 

f&2&2 (4.9 
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4. EXAMPLES OF EVALUATION OF DAMPING 

We shall illustrate the method of evaluation of the damping on some specific cases of 
simply supported plates. Consider the homogeneous anisotropic plate. The span s equal 
to half the wavelength is 

S2 
1’ (4.1) 

According to the general procedure embodied in equations (3.6) and (3.10) the load q 
is obtained by using the expression obtained for the static case and adding a dynamic 
term -a’p,V. Hence 

4 = PhLV( 1-y) -2p,v. 

Although it is not essential we shall simplify the analysis by assuming !JJI = M hence 

P = 2J(M/L). 
For a viscoelastic material M and L are replaced by M + AM and L + AL where AM 

and AL are the purely imaginary terms. The imaginary part of the load q is represented by 
Aq and evaluated by linearizing equation (4.2) with respect to AM and AL. We find 

Aq = (F, AM + F, AL)12hV (4.3) 

with 

(4.4) 

F = l_!tanhBy+! ’ 
2 

2 BY 2 cash’ By 

at resonance q = 0 and the deflection V is entirely due to the load Aq. Expression (4.3) 
provides an immediate evaluation of the relative importance of the longitudinal damping 
AM or the shear damping AL on vibration attenuation. The values of F, and F, depend 
on the anisotropy as measured by M/L and on thickness to span ratio h/s = 2~171. Some 
numerical values are given in Table 1. 

TABLE 1. VALUES F, AND F2 AS FUNCTIONS OF M/L AND y 

M/L = 4 MJL = 16 

Y F, F, Y Fl F2 

0.5 0.0625 0.63 
0.3 0.095 O-402 
0.15 0.096 0.210 
0.10 0.065 0.039 
0.05 0.023 0.007 

1 0.125 0.63 
0.6 0.190 0.402 
0.3 0.192 0.210 
0.2 1.131 0.039 
0.1 0.046 0.007 

It can be seen that for short spans the shear damping becomes predominant while the 
opposite is true for large spans. 

This result is applicable to the laminated plate where the values of L and M are those 
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of the equivalent continuum given by (3.14). In addition we must introduce the complex 
stress couple coefficient (3.16). The expression (4.3) of Aq will then contain an additional 
term 141’h Ab where Ab is the imaginary part of the stress couple coefficient (3.16). 

As another example we consider the three-layered symmetric plates composed of a 
core of thickness h, and coefficients M,L, sandwiched between two identical layers of 
thickness h, and coefficients M,L,. Following the static analogy rule we write for the 
load q 

8(c, + ~2)’ 
5 = 4/wf,~,)+ W,c2/&42~2) 

+2&,,,( 1-z) ..,,,( 1-z) -9. (4.5) 

The first three terms are the same as for the static case derived previously [l]. The resonant 
frequency is obtained from equation (4.5) by putting q = 0 and solving for CI. For simplicity 
we have introduced the approximation 9JI = M. The damping is derived by evaluating the 
imaginary increment Aq of q in equation (4.5) due to imaginary increments AM, AL, 
AM, AL, using linearized expansions with respect to these increments. The result is 
obtained in the form 

Aq V=&1AM,+~2AM2+~,AL,+C%2AL2 (4.6) 

which brings out separately the influence of the longitudinal and shear damping in each 
of the two materials. The coefficients&1,&2, SY1, g2 are easily evaluated functions of L,, 

Ml, L,, M2, h,, h2 and 1. 
Again the result is applicable to the case where the layers themselves are constituted 

by two different types of thinly laminated media, using the coefficients of the equivalent 
anisotropic continuum for each layer and adding on the right side of equation (4.6) the 
term (2Ab, h + Ab2h2)Z3 representing the damping due to the stress couples. 

The result (4.6) is greatly simplified if the layers are composed of isotropic incompressible 
materials, in which case we may put 

M, = L, = p1 

M, = L, = p2 

p1 = p2 = 2. 

(4.7) 

In this case expression (4.5) becomes 

4 (tanh 27, + tanh 2~~)~ 

Iv= 1 tanh 2Y2 + 2p1(2y i - tanh 27,) + ~~(27, - tanh 2~~) - a2p,ll. (4.8) 
+p 

pl tanh4y1 p2 

The imaginary part Aq of the load is given by 

(4.9) 
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with 

sdl = 
GFz2 

11: tanh 47, 
+2(2y,-tanh2yJ 

d2 = s tanh 27, +(2y, - tanh 2y,) (4.10) 

V= 
tanh 2y, + tanh 2y, 

1 
+L tanh 2y, 

pl tanh 4y1 p2 

The intrinsic damping of the materials is measured by the imaginary parts Api and Ap2 
of the complex moduli fil and fi2. Expression (4.9) provides an immediate evaluation of 
the effectiveness of each material in the overall vibration absorption. The coefficients. 
~@‘r and d2 depend on the rigidities p1 and p2 as well as the wavelength and on the thickness 
of each layer. 

Non sinusoidal lo&j,ng 

The foregoing results assume a simply supported plate with a loading distributed as a 
half-sine wave. The method is obviously valid for an arbitrary loading provided the latter 
is expanded in a series along the span. The results are then applied the various Fourier 
components with a suitable value of 1 corresponding to each wavelength. 

5. PLATES WITH BUILT-IN AND OTHER END CONDITIONS 

Until now we have considered a plate of span s simply supported at both ends. However 
the procedures developed for this case are quite general and may be extended to include 
very sophisticated end conditions. It is best to illustrate the method by treating first a 
simple example. We shall consider an homogeneous anisotropic plate without stress 
couples. At both ends of the span s the plate is built-in meaning by this that at these points 
it is rigidly attached so that the displacement of its faces are both zero. 

In order to satisfy such boundary conditions we must consider another type of solution 
which is exponential along the span instead of sinusoidal. Such solutions are immediately 
derived from the trigonometric solutions (2.4) and (2.5) if we replace 1 by ik. We write 

u = I/ cos ikx eiat = V cash kx eiat 

u = iU(y) sin ikx eia’ = U(y) sinh kx eiat 

0 xy = - h(y) sin ikx eiat = z(y) sinh kx e”‘. 

(5.1) 

As can be seen, in order to obtain real solutions, we must also replace U and r by -iU 
and - iz, respectively. 

The corresponding load distribution is 

q cos ikx eiat = q cash kx e’“‘. (5.2) 
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As a consequence the solution for the homogeneous 
simply replacing 1 by ik in equation (4.2). The load is 

anisotropic plate is derived quite 

(5.3) 

Putting q = 0 in the two equations (4.2) and (5.3) yields the resonant frequency c1 for the 
sinusoidal and exponential solutions. We now write the condition that the resonant fre- 
quencies are the same for both solutions. This yields the equation 

(5.4) 

which relates 1 and k. Strictly speaking this equation still contains the unknown a through 
the parameter %R as shown by equation (2.8). However as a first approximation we may 
put ‘$JI = M. As the reader can easily ascertain this simplification is not essential since 
putting q = 0 in equation (4.2) provides an additional equation for a. However numerically 
the procedure becomes much more cumbersome. In practice it is justified to put ‘9JI = M 
and if a refinement is needed we may correct the value of ‘%I after the frequency a has been 
determined and thus obtain a second approximation. 

Under these conditions we may consider (5.4) to be a functional relation defining k 
as a function of 1. We may write it in the form 

X(X - tanh X) = Y(tan Y - Y) (5.5) 

with 

X = &3lh Y = )j?kh. (5.6) 

Numerical values of Y as a function of X are shown in Table 2. The function Y has an 
infinite number of branches. Only the first two Y, and Y, have been tabulated. 

TABLE ~.FIRST TWO BRANCHES OFTHE SOLUTION OF EQUATION (5.5) 

0 0 4.49 
0.5 0.48 4.49 
0.8 0.70 4.50 
1.0 0.85 4.50 
1.5 1.06 4.51 
2.0 1.22 4.52 
2.5 1.33 4.53 
3.0 1.40 4.54 
3.5 1.44 4.56 
4.0 1.47 4.58 

Consider now the combination of two solutions, one a sinusoidal solution with 
1 = 2X//?h, the other an exponential solution corresponding to the first branch YI with 
k, = 2YJkh. The deflection D corresponding to the superposition of these two solutions is 

u = V’cosIx+T/,coshk,~. (5.7) 
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For simplicity the factor eia’ has been omitted. The associated spanwise displacement u is 
provided by equations (2.4), (2.12) and (3.1), putting z1 = r2 = 0 and substituting suitable 
imaginary variables for the exponential portion of the solution. This yields 

sinh fily sin /?k,y 
’ = ‘jj cash +fll/, sin lx - v, ,J cos )Bk,h sinh krx’ (5.8) 

Denote the span by s and let the origin of x be located at the center of the span. The plate 
is assumed to be built-in so that the displacements of the faces at the ends are equal to 
zero. This is expressed by the conditions 

u=v=o for x=fs/2 y = *h/2. 

Introducing these conditions in equations (5.7) and (5.8) yields 

I/ cos $1~ + Vi cash $k,s = 0 

(5.9) 

(5.10) 
V tanh $lh sin 31s - VI tan +/3k,h sinh ik,s = 0. 

Elimination of V and V, leads to the characteristic equation 

tanh &3lh tan $1~ + tan Q/3k,h tanh $kk,s = 0. (5.11) 

Since k is a function of 1 this determines the unknown 1. There are an infinite number of 
roots corresponding to the natural modes of vibration of the plate. 

It is interesting to consider the limiting case for large span, hence for small values of lh. 
In this case equation (5.4) is reduced to 

1 = k, (5.12) 

and the characteristic equation (5.11) becomes 

tan 31s + tanh 31s = 0 (5.13) 

which is equivalent to 

cash 1s cos 1s = 1. (5.14) 

This result coincides with the value obtained from the classical theory of thin plates with 
built-in ends [3]. The smallest root different from zero is in this case 

1s = 4.730. (5.15) 

Consider a case where the span is not large, for example 

s = 5.9h 
(5.16) 

M 
-= 
L 

6. 

The first characteristic root of equation (5.11) yields the values 

1s = 3.944 
(5.17) 

k,s = 2.40. 
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For increasing anisotropy (M/L + co) the shape of the first mode approaches a half sine 
wave. 

The method outlined here is very general. We may for example satisfy a number of 
end conditions a lot more detailed than the one assumed here. This can be done by intro- 
ducing a number of higher branches for the values of k. Equations (5.7) and (5.8) are then 
replaced by 

2, = I’cosIx+CI+~oshk~x 

(5.18) 

u = VC(y) sin Ix+ c &Ci(y) sinh kix 

where the functions C(y) and C,(y) are similar to those in equation (5.8) and k, are the various 
branch solutions of equation (5.4) as functions of 1. 

Using solutions (5.18) it is possible to derive the natural modes for very complicated 
boundary conditions. For example it is possible to impose the conditions u = 0 u = 0 of 
no displacement at several points of the cross section at both ends. This leads to a number 
of homogeneous equations with an equal number of variables I/ and v analogous to 
equations (5.10). The solution of these equations leads to characteristic values for I and 
determines the ratios I@! Hence 

y = &I/. (5.19) 

Also other types of conditions may be considered which involve the vanishing of certain 
stresses components at certain points of the end cross section or even mixed conditions 
for stress and displacement. 

In our example we have assumed the same end conditions at x = + s/2, with deflections 
proportional to cos Ix and cash kx. Unsymmetric end conditions may of course be treated 
by adding deflections proportional to sin lx and sinh kx easily derived from those of 
Section 2 by shifting the origin of x. 

The case of a laminated plate is also analyzed by only a slight change in the analysis. 
Equation (5.4) is simply replaced by 

(5.20) 

where b is the stress couple coefficient due to the laminations. 
The method is applicable just as readily to the completely general case of plates com- 

posed of any number of layers some of which may be constituted by laminated materials 
with stress couples. The expressions (5.18) for u and u are valid in this case. The function 
C(y) corresponding to the sinusoidal solutions is derived by solving the recurrence equations 
(3.6) expressing interfacial adherence. The functions C,(y) corresponding to the exponential 
solutions are obtained in a similar way by solving the same recurrence equations after 
replacing 1 by ik and zj by -izj. Hence again it is possible to satisfy detailed restraining 
conditions at the ends of the span by requiring for example that ZJ vanishes at a certain 
number of points of the end cross-sections. Note that for conditions which are different 
at each end, we simply need to complete expressions (5.18) by adding terms obtained by 
interchanging sin Ix with cos lx and sinh kix with cash kix. 
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Finally we must evaluate the damping for built-in end condition. This may be done 
by a straight forward procedure which again is applicable to the most general case of a 
plate with any number of anisotropic layers with stress couples. For simplicity we consider 
the case with identical boundary conditions at both ends. As we have just remarked this 
does not restrict the generality. Consider one of the undamped natural mode shapes. 
The deflection v(x) of this mode may be evaluated as outlined above. The result is 

u(x) = V-(x) (5.21) 

where f(x) is of the form 
I 

f(x) = cos Ix+ c Ri cash kix. (5.22) 

Let us evaluate the load distribution required to maintain the deflection (5.21) at a given 
frequency CI. 

This load distribution is obtained by adding the loads due to each of the terms cos lx 
and cash kix. They are evaluated from expression (3.17) after suitable changes for the 
imaginary values associated with the exponential terms. Hence the load distribution is of 
the form 

4(x) = [b(x) + P2twl If (5.23) 

where p = ia. We choose the amplitudes I/ of the various modes as generalized coordinates 
qi. The corresponding displacements and loads are 

(5.24) 

4itx) = qi[4itx) + Pzlc/i(x)l’ 

The following integral over the span s represents an operational invariant 

s s/2 ij 

gL$ 
_s,2C~iqjdx = ig(Zij+p’mij)qiqj. 

The Lagrangian equations of this system may then be written in operational form 

g= Qi 

I 

(5.25) 

(5.26) 

where Qi is the generalized force conjugate to qi. It is determined by the virtual work of 
the actual load applied to the plate for a particular variation 8qi. Since the generalized 
coordinates are the natural modes the matrices 2, and mij are diagonal. They correspond 
respectively to the potential and kinetic energies. Until now we have considered an elastic 
plate. However for viscoelastic materials equations (5.26) remain formally the same. 
This is a consequence of the general principle of viscoelastic correspondence introduced 
by the author [4, 51 in operator-variational form. In this case the matrix elements become 
operators Z,,. They are obtained by substituting operators for the elastic and stress couple 
coefficients of the various layers constituting the plate. Actually as done above it will be 
convenient to linearize the operator by writing 

2, = Zij+ AZ,, (5.27) 
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where AZij is. the imaginary increment expressed as a linear function of the imaginary 
increments of the operators for the various layers. The operational Lagrangian equations 
(5.26) are now 

i(Zij+AZij)qj+$ imijqj = Qi. (5.28) 

This yields the phase and amplitude of the generalized coordinates qi for given applied 
forces. Since equations (5.28) are in operational form they are well suited to the evaluation 
of transients, by using the standard procedures of the operational calculus. Near resonance 
the solution of this system is simplified. Consider for example resonance for the fundamental 
mode q 1 . The first equation (5.28) reduces to 

i AZijqj = Q1. (5.29) 

Since the resonant amplitude q, is large compared to the others, equation (5.29) is written 
approximately 

AZ 11q1 = Ql 
which yields immediately the resonant amplitude in terms of the applied forces. 

(5.30) 

6. EXTENSION TO THREE-DIMENSIONAL DYNAMICS 

We consider a triaxial coordinate system and a multilayered plate of completely 
general type with layers parallel to the xz plane. The y axis remains normal to the plate. 
The material of the various layers is assumed to be transverse isotropic. The stress-strain 
relations for a particular layer are 

d xx = 4Me,, + Cezz 

0 zz = 4Me,, + Cexx 

c7 XY = 2Le,, (6.1) 

0 
YZ 

= 2Le,, 

rs zx = 2L12ezx 
with 

au aw 
e = - xx ax ezz = z 

i a0 au 
e xy = _ -+- 

( I 2 ax ay 

(6.2) 
i aw au 

e yz = z y+az i I 
I au aw 

e .2x = --+-, 
( I 2 aZ ax 

The displacement components are u, v, w. 
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Isotropy in the xz plane requires the relation 

2M-3C = L,,. (6.3) 

The elastic coefficients are functions of y. 
Suppose we have determined a two dimensional 

(2.5). Omitting the time factor e”‘, it may be written 

u = U(y) sin lx 

zI= Vcoslx. 

sinusoidal solution such as (2.4) and 

(6.4) 

In this expression U(y) is expressed in terms of r(y) by equation (2.12) and z(y) itself is 
obtained by integrating the differential equation (2.7) across the plate. 

The corresponding normal load distribution is 

&c) = q cos lx (6.5) 

where q is given by equation (2.9) or (3.17). 
Since the material is transverse isotropic the solution (6.4) remains valid if we give it 

an angle of rotation 8 around the y axis. This solution is now 

u = U(y) cos 8 sin(& + [z) 

w = U(y) sin 8 sin(lx + cz) 

21 = v cos(& + lz) 
(6.6) 

4(x, 4 = 4 cos(5x +6-z) 

with 

5 = 1coso < = 1 sin 8. (6.7) 

The solution (6.6) may also be written 

u = -$qy); 

w = -&qy)g (6.8) 

q(x, z) = $I. 

Substitution of the displacements in equations (6.1) and (6.2) yields the corresponding 
stresses. These relations are invariant for any translation in the xz plane or rotation around 
the y axis. An important consequence is that they remain valid for the large class of three- 
dimensional solutions obtained by superposition of any number of two-dimensional 
solutions each of which is given an arbitrary rotation and translation. 

Rectangular plates 

A simple application of this result is to plates of rectangular plan form simply supported 
at the edges. We superpose two of the solutions (6.6) with values 9 and -8 for the angle 
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of rotation. The normal deflection is 

u = ~V[cos(~x + lz) + cosgx - .(z)] = I/ cos <x cos [z. (6.9) 

The vertical displacement vanishes for 

(6.10) 

This corresponds to rectangular plate of sides si and s2 supported at the edge. 
We derive 

(6.11) 

and from equation (6.7) 

(6.12) 

This expresses the wave number 1 of the basic two-dimensional solution. It may be referred 
to as the “intrinsic” wave number. The intrinsic wavelength is then 271/l. 

It is interesting to note that for a square plate (si = s2) the intrinsic wavelength is 
equal to the diagonal s,,/2. 

The resonant frequency for the two dimensional solution corresponds to q = 0. It is 
the same as for the rectangular plate. Away from resonance q # 0 and the forced oscillation 
corresponds to a loading 

q(x, z) = q cos 4x cos cz. (6.13) 

We have stated that the solution corresponds to a simply supported plate at the edges, 
hence free to rotate at these boundaries. That this is a good approximation follows from 
the fact that the solutions are antisymmetric with respect to the edges. Hence only shear 
stresses are present at the free edges. It is natural to assume that their cancellation is 
absorbed almost entirely by the reactions at the support and induces only a negligible 
plate deflection. 

Higher modes of the plate are obtained by considering solutions for which <si and 
is2 are multiples of 7r/2 as well as solution obtained by translations along x and z. 

Forced oscillations under arbitrary load distributions may be derived by expending 
q(x, z) in a double Fourier series and applying the foregoing solutions to each component. 

Finally the three-dimensional solutions are valid for viscoelastic materials. We simply 
substitute in expression (6.13) the corresponding complex value of q of the two-dimensional 
case. 

Triangular plates 

Three-dimensional solutions are similarly obtained for a plate whose edges constitute 
an equilateral triangle of side s which is simply supported at these edges. We write the 
two-dimensional deflection as 

2) = V sin lx (6.14) 
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and evaluate the corresponding loading distribution 

q(x) = 4 sin lx (6.15) 

where q is evaluated as indicated in Sections 2 and 3. 
The two-dimensional solution (6.14) may be written 

v = Vsin ln,r (6.16) 

where n, is a unit vector in the plane xz and r the coordinate vector in the same plane. 
It represents a solution which has been rotated so that the crests are normal to n,. We 
choose three vectors n, n2 n3 in such a way that 

n,+n,+n, = 0. (6.17) 

Hence they constitute an equilateral triangle and are oriented at 120” relative to each 
other. We then superpose the three solutions corresponding to n,, n2, n3. We obtain 

u(x, z) = V sin ln,r + I/ sin ln,r + V sin In,r. (6.17a) 

Using trigonometric identities and taking into account relation (6.17) we may write 

u(x, z) = -4V sin(+ln,r) sin(+ln,r) sin&r). (6.18) 

The corresponding load is 

q(x, z) = -4q sin(&n,r) sin&r) sin($n,r). 

The deflection V(X, z) is zero on the three lines 

#n,r = 7-c 

+ln,r = n 

$ln,r = 71 

(6.19) 

(6.20) 

which form an equilateral triangle. Let us orient n, along the x axis. Then u = 0 for x = 0 
and $1~ = x. Hence the length of the edges of the triangle is 

(6.21) 

Then the intrinsic wavelength is equal to [J(3)/2]s. 
By the same argument as for the rectangular plate it can be seen that the three-dimen- 

sional solution (6.18) corresponds to a plate simply supported at the three edges. 
For a viscoelastic plate q is replaced by the complex value of the two-dimensional 

problem of the same intrinsic wavelength. 

Circular plates 

The three-dimensional dynamics of a plate of circular plan form may also be derived 
from two-dimensional solutions. Consider first the sinusoidal solution 

u = V cos(lnr) (6.22) 
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where n is the unit vector in the xz plane. We superpose an infinite number of such solutions 
by integrating expression (6.22) for all directions of n in the xz plane. We obtain 

s 

2n 

Zl=V cos[lr cos(8-8,)] de (6.23) 
0 

where r is the magnitude of r and 8, is the angle between r and the x axis. The integral is 
independent of 0r and equal to 

v=v 
s 

2n 

cos[Zrcos e] de. (6.24) 
0 

This is the well-known integral representation of the Bessel function Jo. Hence 

v = 27cVJ,(lr). (6.25) 

In the present case we also need the exponential solutions represented by 

vj = Vj cash kjnr). (6.26) 

It is obtained by replacing 1 by ikj where kj are functions of 1 representing the various 
branch solutions of equations such as (5.19). 

By the same process of integration for all directions n in the xz plane we obtain 

vj = 2n:t$Io(kjr) (6.27) 

where I, is the modified Bessel function. For this type of solution equations (6.8) for the 
displacements and loads are replaced by 

Uj = ~,Uj(Y)~ 

J J 

q(x, z) = $vj. 
J 

The deflection v(r) obtained by superposition of the solutions (6.25) and (6.27) is 

o(r) = I/J,(h)+ i I$Zo(kjr). 

(6.28) 

(6.29) 

The factor 27c has been omitted since it may be incorporated in the values of V and I$ 
The corresponding radial displacement U, derive from equations (6.8) and (6.28) is of the 
form 

U, = VC(y)~(Zr) + 2 VjCjy)d+(kjr). (6.30) 

We may impose built-in conditions at the edge. This is expressed by putting v = a, = 0 
at the edge r = R and at certain points of the boundary cross sections i.e. for a number of 
values of y. This leads to homogeneous equations for V and Vj and a corresponding charac- 
teristic equation for 1. 
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For a simply supported edge we evaluate the radial stress (I~,. from the displacements 
using equations (6.1). We then put u = g,, = 0 for I = R and for a certain number of 
values of y. This again determines the characteristic equation for 1. 

Finally the forced oscillation of the circular plate is evaluated for viscoelastic materials 
using exactly the same procedure as in the two-dimensional case treated in Section 5. 

The simplicity of this procedure which opens the way to the analysis of extremely 
complex structures may be compared with current procedures [6, 71 which in spite of 
very restrictive assumptions are much more involved analytically. 
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A6cTpaKT-Ha OCHOBe HOBOrO IlOnXOAa K TeOptiki IInaCTHHOK AaH3TCII ClIOCO6blAAHaMR~eCKOrO aHaJIEi3a 

MHOrOCnOiiHbIX IInaCTUHOK. OHIl AafOT KaK aHanATWSeCKEie yIIpOUIeHJiN,TaK HyTO'IHeHHe @iisU'ieCKOti 

3aIlHCH,KOTOpOeyWSTblBaeT3‘$+eKT IlOBepXHOCTHOrO CnOll.Pa3HbIeCnOkIMOryTXBnlITCIIaHA30TpO~HbIMU 

II KaxAbIii I13 HHX MOmeT 6bITB COCTaBneHHbIfi El3 IUIaCTHH'laTbIX MaTepHanOB, C MOMeHTHbIMH Hanpff- 

XeHIIIIMA. DI-IpenenffeTCR 3aTyXaHHe, BCneACTBEie BH3KOynpyrOCTEf, MeTOAOM IIOKa3bIBaEOIWiM 3'+$eK- 

TABHOCTH Kamnoro COCTaBneHHOrO MaTepHana. nOnpO6HbIe Kpaeebre ycnosm MoryT 6bITB nonyreHb1 

"pH OIIHpaHHRXBpa3HbIX TOYKaX,nO TOnIUIIHe.~Ka3bIBaeTCII,YTO aHanH3 ~nOCKOrOAe~OpM~pOBaHHOr0 

COCTOIIHUR AaeT HeIlOCpeJ,CTBeHHble pelUeHHSI TpeXMepHOfi 3aJtaYH AHHaMkiKA, AnSi MHOrOCnOiiHbIX, 

IIpSiMOyrOnbHbIX,TpeXyrOnbHb~Xli KpyrnbIXlInaCTHHOK. 


	Foreword
	Papers:
	Titles
	Full Citation
	Abstracts

	About M.A.Biot
	Domains
	Keywords
	Copyrights
	Acknowledgments
	List of Papers:
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	20a
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179


