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Abstract. The theory of crack propagation in orthotropic media is developed by 
applying the theory of incremental deformations in the vicinity of a state of initial 
stress. This is carried out in the context of a new approach to analytical methods and 
a physical analysis which takes into account plastic deformation under prestress. The 
state of initial stress is triaxial along the directions of elastic symmetry, and the crack 
is parallel to these directions. An additional shear component for the initial stress is 
also taken into account and general conditions are derived for crack propagation, 
including the case of fluid injection into the crack. The analysis is first carried out 
for an homogeneous medium. The nonlinear influence of the initial stress appears in 
two ways: first, through a fundamental purely elastic effect related to the occurrence 
of surface instability, and second, through the influence of the initial stress on plastic 
behavior. The particular cases of an isotropic elastic medium with finite initial strain 
and an orthotropic incompressible medium are discussed. The analysis is extended to 
a crack between dissimilar orthotropic media with initial stress. The method of analysis 
leads to a number of simplifications and brings out new properties of the solutions for 
this type of problem. For incompressible media without initial stress, the typical oscil- 
latory behavior disappears. Uniqueness of the solutions is also derived. 

1. Introduction. The theory of crack propagation was first developed by Griffith 
[l] [2], who considered the problem of failure of a brittle elastically isotropic material. 
Since that time an abundant literature has become available on crack mechanics based 
on the classical linear theory of elasticity. The stress distribution in the vicinity of a 
linear and circular crack was evaluated by Sneddon [3] and the case of a linear crack 
with nonuniform internal pressure was discussed by Sneddon and Elliott [4]. The latter 
analysis is based on the solution of simultaneous integral equations obtained by Bus- 
bridge [5]. The case of a circular crack was also treated by Sack [6]. Important contribu- 
tions concerning both physical and mathematical aspects of these problems were made 
by Barenblatt; an extensive account of these contributions is presented in a review 
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paper [7]. Many original contributions are also found in a book by Sneddon and 
Lowengrub [S]. 

The problem of crack mechanics at an interface between dissimilar isotropic media 
was investigated by Salganik [9], Rice and Sih [lo], Erdogan [ll] and England [13]. 
The same problem for two bonded media with two-dimensional anisotropy was solved 
by Gofoh [13]. The particular case of an isotropic medium bonded to an anisotropic 
medium was treated by Clements [14], who considered the application to bonded isotropic 
and transverse isotropic media. Erdogan and Gupta [15] have analyzed stresses due 
to cracks in a medium composed of a number of adhering layers of isotropic media. 

The main purpose of the present paper is to analyze crack propagation in homo- 
geneous and bonded orthotropic media taking into account the nonlinear influence 
of the state of initial stress by applying the theory of incremental deformations [16, 17, 
18, 19, 201 developed by the author. A physical discussion is also included which provides 
a novel outlook and considers the influence of initial stress on the plastic separation 
energy. The whole theory is developed in the context of a new analytical approach 
which greatly simplifies the analysis in a large variety of problems of crack mechanics. 

The basic analytical procedure is outlined in Sec. 2. It starts from the solution for 
a halfspace with sinusoidally distributed tractions along the surface. Solutions were 
derived by the author for a large number of cases of orthotropic and initially stressed 
media. They are all analytically of the same type and differ only in values of the coeffi- 
cients. By use of these coefficients it is then possible to formulate an equivalent problem 
by means of Laplace’s equation. The same analytical procedure therefore becomes 
applicable to a large variety of problems. Fundamentally, the fact that this is possible 
is due to the similarity property of linear problems for any homogeneous halfspace, 
namely that the surface displacements under given sinusoidal surface tractions are 
proportional to the wavelengths. General expressions are obtained for the shape of a 
crack under any arbitrary internal loading. The case of uniform loading is obtained 
in a remarkably simple way. Conditions for uniqueness of the solution and its behavior 
at infinity are examined in detail. 

The physical aspects of crack propagation are discussed in Sec. 3 in the context of 
linear isotropic elasticity. This provides an extension of the concepts advanced by 
Irwin [al], Orowan [22], Dugdale [26] and Goodier and Field [27] to include plastic 
properties. The influence of initial stress on the separation energy is discussed. Similarity 
considerations lead to a separation energy which depends linearly on crack size. The 
crack propagation condition is derived on the basis of energy balance for given initial 
stresses and given interval fluid pressure in the crack. The influence of initial stress 
may be quite large, since plastic properties of materials are known to increase by a 
large order of magnitude, for example, under high hydrostatic stress. 

A preliminary analysis based on linear elasticity theory is presented in Sec. 4 for 
crack propagation in orthotropic media. In addition to illustrating the simplicity of 
the method, the result provides an insight into more complex cases. Expressions for 
the shape of a crack under an internal loading of arbitrary distribution are immediately 
derived from the results of Sec. 2. 

In Sec. 5, the influence of initial stress is evaluated by applying the author’s theory 
of incremental deformation. This theory is essentially nonlinear with respect to the 
influence of initial stress. However, it is linearized with respect to small incremental 
strains in the vicinity of the state of initial stress. The material is assumed to be ortho- 
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tropic for incremental strains, with principal initial stress along the axes of symmetry. 
The crack is parallel to a plane of symmetry and its edges are parallel to an axis of 
symmetry. An additional initial shear stress is also taken into account under the assump- 
tion that it is small enough that the orthotropic symmetry is not disturbed. Fluid 
under pressure is also injected into the crack. The crack propagation condition is derived. 
The particular case of an isotropic medium whose initial condition is one of finite strain 
is discussed in Sec. 6. Some new features in crack propagation are also discussed which 
are related to the phenomenon of surface instability of an initially stressed half-space. 
As expected, the resistance to crack propagation is diminished when the condition of 
surface instability is approached. However, the effect of a shear component for the 
initial stress is much less pronounced than the effect of the normal stresses or the fluid 
pressure. 

In order to complete the analysis the case of crack propagation between two dis- 
similar adhering materials is developed in Sec. 7. Both materials are orthotropic for 
incremental deformations. The axes of symmetry for incremental properties and for 
the state of initial stress coincide with the coordinate axes for each material. The interface 
and the crack are in the xz plane and the edges of the crack are parallel to the z direction. 
The state of initial stress in each of the media may be different except for the stress SZa 
normal to the interface. The procedures used in the foregoing section are generalized 
to this case and a solution is obtained for the crack deformation due to the application 
of internal loading with arbitrary distribution. This internal loading includes the case 
in which it is represented by an increment of fluid pressure in excess of the initial value. 
The procedure used here provides again an analysis which is remarkably simple. It 
leads to a classical Hilbert problem by diagonalization of a two-by-two Hermitian 
matrix which is shown to be positive-definite. Hence the characteristic values are posi- 
tive. Furthermore, their product turns out to be unity. The solution of the Hilbert 
problem is obtained from Muskhelishvili [23]. Uniqueness of the solution is also discussed. 
Except for the values of the coefficients, the analytical solution turns out to be funda- 
mentally the same as for the case of initially stress-free isotropic media. The same 
singular behavior with violent oscillations occurs near the crack tips: this singular 
behavior is due essentially to the presence of a coupling term in the Hermitian matrix. 
Under certain conditions this coupling may vanish or be negligible. In this case the 
oscillatory singular behavior disappears and the crack propagation condition may be 
derived immediately without further calculations. This is verified rigorously for in- 
compressible materials without initial stress. Thus if the effects of initial stress on 
incremental deformation appear only in a change of value of the elastic coefficients, 
the theory of crack propagation at an interface between orthotropic incompressible 
materials is drastically simplified. 

2. Basic procedure. The method of analysis will first be presented in the context 
of the classical problem in isotropic elasticity. It will be shown that the crack problem is 
readily solved once we have determined solutions for the elastic halfspace which are 
sinusoidally distributed along the surface. Since a large number of such solutions were 
derived earlier [16, 18, 19, 201 for the very general case of orthotropic initially stressed 
media, the solution of the crack problem for such cases follows immediately. 

We shall consider the plane strain problem of an elastic half-space occupying the 
region y < 0, the x axis lying along the free surface. The displacements along x and y 
are denoted by u and v and the stress components are uZo , gvv , =zv * Surface tractions 
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normal to the free surface are applied with a sinusoidal~distribution along x. Hence at 
the free surface the stress is 

=uv = q cos lx (2.1) 

while the normal displacement is 

v = v cos lx. (2.2) 

The relation between the amplitude q of the surface traction and the amplitude V of 
the surface displacement is readily evaluated by the classical theory of elasticity. We find 

q = KZV (2.3) 

with 

K = E/2(1 - v”), (2.4) 

where E is Young’s modulus and v is Poisson’s ratio. 
We note that by shifting the origin by a distance r/21, i.e. by replacing x by x - u/21, 

Eqs. (2.1) and (2.2) become 

=,u = q1 sin lx, v = V, sin lx, (2.5) 

where the relation between q1 and VI is the same as (2.3), i.e. 

ql = KlV, . (2.6) 

An arbitrary distribution of v may be represented by a Fourier integral 

v= 
s .- [V(I) COB lx + V,(l) sin lx] dl. (2.7) 

Hence, according to Eqs. (2.1), (2.2), (2.3), (2.5) and (2.6), the corresponding normal 
surface traction is 

QW = K lrn WV) cos lx + IV,(l) sin Ix] dl. 

Let us define a function 4(x, y) in the halfplane y > 0 by the relation 

(2.8) 

cos Zx + V,(l) sin lx] dl. (2.9) 

The function 4 is harmonic and satisfies Laplace’s equation 

(a”4/ax”> + (d24/dy8) = 0. (2.10) 

Moreover, it vanishes at y = 03. From Eqs. (2.7) and (2.8) we derive the following 
basic property: 

21 = 4(x, 0), CVU = -K(84/@) at y = 0. (2.11) 

Hence the relation between normal displacements and tractions at the surface of the 
halfplane is the same as between a harmonic function and its normal derivative. Note 
that this result does not depend on the particular nature of the elasticity problem. 
It is essentially due to the fact that the factor KZ in Eq. (2.3) is inversely proportional 
to the wavelength; this in turn is a consequence of dimensional similitude. Hence the 
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result should be valid for any homogeneous medium in the absence of any characteristic 
dimension. This is of course applicable to any homogeneous halfspace whether isotropic 
or not. 

Eqs. (2.11) may be expressed in terms of holomorphic functions in the plane 9 > 0. 
We denote by Z(z) such a function of the complex variable z = 2 + iy. Eqs. (2.11) 
for z = x become 

where 

v=z+z* ia , Ill/ = K(Z’ - .r*>, (2.12) 

Z’ = dZ/dz (2.13) 

and * denotes the complex conjugate quantity. 
A very simple solution of Eq. (2.12) is obtained for the case where -Q,, is equal 

to a constant pressure p on the x axis in the interval 1x1 < c while v = 0 for 1x1 > c. 
We put 

z = -(p/2K)i[x - (2” - cz)1’2], (2.14) 

where the argument of (z” - c’)l” is chosen between 0 and u in the halfplane y > 0. 
Since we have 

2 - (Z” - c2)1’2 = c2/[2 + (2” - C2)1’a], (2.15) 

the value of Z vanishes at 1.~1 = 00 as l/z. That this is the required behavior and leads 
to a unique solution is shown below in the last paragraph of this section. Moreover, 
substitution of (2.14) in Eqs. (2.12) with z = 2 yields 

v=o for 1x1 > c, 

-guu = P for IzI < c, (2.16) 

-v = (p/K)(c2 - 22)1’s for 1x1 < c. 

Because of the symmetry relative to the x axis this solution corresponds to a crack of 
length 2c subject to a uniform internal fluid pressure p. The crack assumes an elliptic 
shape of width distribution 

w = -2v = (2p/K) (c2 - z2)? (2.17) 

In order to solve the more general problem of an arbitrary distribution of uuu along x, 
we first consider the case of a concentrated point load at x = t (ItI < c), i.e. 

a,,(z) = --6(x - t), (2.18) 

where 6 is the Dirac function. For this case the second of Eqs. (2.12) is satisfied if we put 

dZ/dz = (l/2&) [(c2 - t”>/(c” - z2)]“2(z - t>-‘. (2.19) 

This is easily verified since we may write 

l/(2 - t> = (d/dz)[log (2 - t)] = (d/d2z)[[log r + i&l, (2.20) 

where 

2 - t = T exp (i0,). (2.21) 
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Note that Eq. (2.19) is in agreement with the required condition that Z vanishes as 
l/z at infinity. As shown below in the last paragraph of this section, this insures that 
the solution (2.19) is unique. In order to obtain Z we must now integrate (2.19). A 
standard procedure is to rationalize the equation, There are several ways to do this 
but the most suitable in this case is to use the conformal transformation 

z = (c/2)& + 1/r> (2.22) 

which transforms the unit circle on the segment 1x1 < c on the real axis. Also consider 
the relation 

t = (c/2)(7. + l/T) (2.23) 

where r is the point on the unit circle corresponding to the point x = t on the real axis. 
On the unit circle t, T and T* may be written 

{ = exp (iti), 7 = l/r* = exp (ie’). (2.24) 

They correspond to the points 

x = c cos 8, t = c cos 8’ (2.25) 

on the x axis. With the new variables the differential equation (2.19) becomes 

dZ/d{ = (1/27&)[1/(3- - 7) - l/(S - r*)]. (2.26) 

Hence 

2 = (l/27&) log ((I - r)/(f - T*)). (2.27) 

This result satisfies the condition v = 0 on the real axis for 1x1 > c, as required. It also 
embodies a wellknown solution in potential flow problems where a source and a sink 
are located at points r and r* on a circle [24]. With this value of Z the width distribution 
w of the crack is obtained from the first of Eqs. (2.12) and may be written 

w = -2v = (2/7rK) log [R(x, t)] (2.28) 

where 

Wr, 0 = II - 7*1/K - rl . (2.29) 

In these expressions the values of r and r are defined by Eqs. (2.24) and correspond to 
points on the circle. Hence they may be expressed in terms of the angles 6 and 0’ by 
means of the following relations, which have an obvious geometrical interpretation: 

Is - TI = ](s - 7)({* - 7*)/“2 = 2sin ]$(e - #)I, 
(2.30) 

1s - T*] = ](r - 7*)(c* - 7)]*/2 = 2sin j$(e + e/)1. 

Therefore 

R(x, t) = sin I+(e + e’>I/s;l j+(e - et)/ . (2.31) 

Since 0 and 0’ may be interchanged we derive the reciprocity property 

R(x, t) = ziqt, 2) (2.32) 

as required by the theory of elasticity. For a continuous distribution p(x) of the load 
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along the crack the width is obviously derived by superposition of solutions (2.28) for 
the point load. Hence 

In many problems the pressure distribution is symmetric, i.e. 

P(Z) = P(--2). 

In this case the width distribution (2.33) becomes 

where 

R, = 
tan I+(0 + 19’)[ Jsin 19 + sin 0’1 
tan ]+(e - e’>j = lsin e - sin e’l’ 

(2.33) 

(2.34) 

(2.35) 

It is interesting to compare this expression with results obtained by other investigators. 
We make use of the identity 

c t’l(t’ - x)l(t’ - t) c-w 
= log [R&, 01 (2.36) 

where x = c COB 0 and t = c cos 8’ while 

l(x)=0 for x<O 

= 1 for 2 > 0 
(2.37) 

is the Heaviside unit step function. The identity is easily verified by the substitution 
of 2 = (t’” - $y/(p _ ty as the variable of integration. By introducing the value 
(2.36) into the integral (2.34) we derive 

w = -$ z0 v t;d$)l,2 s s t’ 

(0 
o (p 2”_ tz)l/z dt (2.38) 

which coincides with the expression given by Sneddon [8]. 
In the foregoing analysis we have assumed that the load applied to the crack is in 

the nature of a fluid pressure, i.e. that it acts normally to the surface of the crack. 
The same procedure is readily applied to the case of purely tangential tractions a%,, 
equal and opposite acting on the bottom and upper faces of the crack. Because of sym- 
metry the faces remain in contact, i.e. the width remains zero, but the surfaces slip 
relative to each other by an equal amount in opposite directions. To show this, consider 
a sinusoidally distributed tangential load 

=zll = 7 cos lx, =lUJ = 0 (2.39) 

applied to the halfspace y < 0 at y = 0. The corresponding tangential displacement is 

u = u cos lx (2 40) 

with 

r = KUJ (2.41) 
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and the same value (2.4) for K. Hence, except for some sign differences, all expressions 
derived above for the normal load are applicable. For example, if the tangential traction 

QZU is a constant, the relative slip distribution of the crack surfaces is 

,ii = 2u = (2cZy/K)(c2 - ~~)l”. (2.42) 

For an arbitrary distribution of a,,(~) the relative slip is given by the integral (2.33) 
where w and p(t) are replaced by ti and gZ,(t) respectively. 

Uniqueness of solution. Physical conditions on the x axis and the definition (2.9) 
require r$ to vanish at infinity. As a consequence Z = cp + & must also vanish at infinity 
since 

a4ldx = a+,/ay, a4/ay = -ah/ax. (2.43) 

The condition a+/ax = @/ay = 0 implies a&/ax = a&/ay = 0. Hence at infinity & 
is a constant which may be chosen equal to zero without affecting the physical problem. 
The function Z is defined in the upper halfplane. We may extend it to the lower halfplane 
by a Schwarz reflection. At the point Z* the value in the lower halfplane is defined 
as -Z*(z). The conditions 2 + Z* = v = 0 or 2 = -Z* on the 2 axis for 1x1 > c imply 
that the function Z is holomorphic throughout except at a cut 1x1 < c on the x axis 
where it is discontinuous. According to Eqs. (2.12) the value of the discontinuity is 

V(Z) = Z(x) + z*(r). (2.44) 

Since 2 vanishes at infinity its value is expressed by the Cauchy integral (see [23]) 

For jzl > c we may write the expansion 

Z(2) = -2; s_” v(x) ax - 2Gi s_” xv(x) dx - - ** . 
c c 

(2.45) 

(2.46) 

Since the volume of the crack is not zero, the coefficient of 2-l does not vanish. Hence 
2 is of the order z-’ at 1x1 = co. That these results imply uniqueness of the foregoing 
solutions can be seen as follows. Consider two solutions 9 satisfying the boundary 
conditions 

v = +(z, 0) = 0 for 1x1 > c, 

Quu = -K(a+/ay) for 1x1 < c, y = 0. 

The difference &, of these two solutions satisfies the conditions 

&(x, 0) = 0 for 1x1 > c, 

a$Jay = 0 for 1x1 < 0, y = 0. 

Let us apply Green’s theorem to & . We may write 

(2.47) 

(2.48) 

(2.49) 

where C is a contour composed of the x axis and an infinite half-circle centered at the 
origin in the half-plane y > 0, a&Jan is the normal outward derivative on the contour 
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and A is the area inside the contour. On the infinite half-circle & and a&/an are of the 
order l/z and 1/x2 respectively; therefore the line integral vanishes on this half-circle. 
On the x axis it also vanishes because of the boundary conditions (2.48). Hence grad 
&, = 0, and since & is zero at infinity it vanishes everywhere in the half-plane. Therefore 
the solution C#J is unique. The same conclusion holds for the solution corresponding to 
a given distribution aZ,(x) of shear stress at the crack. 

3. The physics of crack propagation. The classical Griffith theory of crack propa- 
gation [l] [2] assumed a brittle isotropic perfectly elastic material and derived a propaga- 
tion criterion under static conditions, based on energy balance. Along the same lines, 
the influence of plasticity was considered by Irwin [21], Orowan [22], Dugdale [26], 
and Goodier and Field [27]. The physical analysis may be extended to include the 
influence of anisotropy and initial stress on the plastic deformation. Similarity properties 
also provide some new insights. 

We assume an isotropic material with a crack subject to a uniform fluid pressure p. 
The volume of the crack per unit thickness measured normally to the x, y plane is 

‘u = ?rpc’/K (3.1) 

where K is the coefficient (2.4). This value of V is derived from Eq. (2.17). The elastic 
energy stored in the medium is 

w = $pV. (3.2) 

When the crack size progresses by an amount dc we may write the following energy 
balance equation: 

p(au/ac> - (aw/ac> = 2&,. (3.3) 

The left-hand side is the work done by the pressure minus the change of energy stored 
elastically. On the right the quantity E, is the work necessary to separate a unit area 
of the medium. We have introduced a subscript n to indicate that E, represents the 
energy required for separation of the crack surfaces in a direction normal to the crack. 
This is to distinguish it from the case where the separation occurs by shear which will 
be considered below. By substituting expressions (3.1) and (3.2), Eq. (3.3) yields 

p = (2&,K/?rc)? (3.4) 

This is the critical pressure required for crack propagation. 
An important aspect of the problem resides in the significance of E,, which we shall 

call the energy of normal separation. For physical reasons it is obvious that in general 
it will be a function of the size c of the crack. 

Let us start with the case of a perfectly brittle material. The separation requires 
the creation of two free surfaces, each with a surface energy equal to the surface tension. 
Hence we may write 

E, = 2T. (3.5) 

With this value the critical pressure (3.4) becomes 

p = (4TK/m)“‘, (3.6) 

which coincides with the classical Griffith result [2]. A slight correction to this result 
may be introduced by taking into account the acoustic energy radiated during the 
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cracking process. We denote this energy by A(c) to indicate that it may depend on 
the size of the crack. Hence 

&, = 2T + A(c). (3.7) 

For a large category of materials plasticity plays an important if not dominant role. 
Therefore we write 

6, = 27’ + Q;~,(c), (3.3) 

where Q,(c) includes the energy dissipated in plastic deformation and acoustic radiation 
for normal separation. In a first approximation it is natural to assume that Q,(c) is 
proportional to the size of the crack, i.e. 

Q,(c) = CL&. (3.9) 

The physical justification of this assumption is based on the fact that the size of the 
plastic region surrounding the crack tip must be proportional to the crack size, as 
required by the principle of similitude. If these assumptions are valid it is of interest 
to note that the critical pressure (3.4) required for crack propagation does not decrease 
indefinitely with increasing size of the crack but tends toward a constant value given by 

p = (2a,K/GT)“a (3.10) 

Actually, the value of a,, also depends on p (see [27]). However, throughout the present 
analysis this dependence will be considered as a separate problem. 

Before proceeding any further, a remark is in order regarding the value (3.2) of 
the elastic energy which is based on the assumption that the material behaves throughout 
according to the linear theory of elasticity. This is obviously not the case, because of 
the existence of the plastic region surrounding the crack tip. Actually the value of W 
should be corrected by substracting the elastic energy which would be present in the 
plastic region if it remained elastic. While such a correction may be introduced formally, 
we shall not do so explicitly in the present analysis. 

The influence of the state of initial stress on crack propagation is twofold. In order 
to avoid confusion it is important to distinguish two entirely different aspects of the 
problem. One aspect resides in the influence of initial stress on the purely elastic portion 
of the stress field. This requires a more elaborate analysis based on the theory of incre- 
mental deformations [20] which will be developed in Sec. 5. The other is the dependence 
of the separation energy G, on the magnitude of the initial stress. In the present section 
we shall limit ourselves to a preliminary discussion which considers only this second 
aspect of the problem. This will provide a clear physical basis for the more elaborate 
analysis of Sec. 5. 

Since the classical test results obtained by von K&man [25], it is wellknown that 
the ductility of materials increases considerably under large hydrostatic pressure. 
Materials which are brittle originally may become plastic under pressure. As the latter 
increases the work required to reach failure may be multiplied by a large factor. This 
means that the separation energy (3.8) should be written 

G = 22’ + %(Pi ) C) (3.11) 

where the plastic energy 52, is a function of the initial hydrostatic stress pi . In particular, 
expression (3.9) becomes 
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Q2, = c&h> (3.12) 

where the coefficient a,, is now a function of pi . The value of this coefficient may greatly 
increase and become dominant for increasing pressure pi . 

When a fluid pressure p > pi is applied inside the crack the crack tends to propagate. 
An important feature here is due to the fact that for a moderate pressure increment 

P - pi the elastic portion of the stress field behaves exactly as in the classical linear 
theory of elasticity for isotropic materials. This property, which is evident intuitively, 
was also derived rigourously by the author [20]. As shown in Sec. 5 below, the incremental 
elastic coefficient 

PC = K(Pi) (3.13) 

now depends on the initial pressure pi . The shape of the crack remains elliptical and 
the volume ‘u is given by an expression similar to (3.1), namely 

‘u = n(p - Pi)C2/K. (3.14) 

The incremental elastic energy stored in the solid due to the incremental pressure p - p, 
is 

w = i(Pi + P)U. (3.15) 

With the values (3.15) and (3.14) the energy balance equation is the same as (3.3). 
We derive 

p - pi = (2&,K/7rc)1’2 (3.16) 

where p is the critical propagation pressure while 8, and K are expressed by (3.11) 
and (3.13). Note again that the dependence of a,, on p is to be considered as a separate 
problem. 

We now consider a more general case where S1 , S,, , S,, are principal stresses 
present initially along the x, y, x directions, the crack itself lying in the x, z plane and 
extending to infinity along x. In addition we also assume that an initial shear stress 
S12 is present along the x and y directions. In such a case the behavior of the incremental 
stress field is fundamentally different from that assumed in the foregoing analysis. As 
shown below in Sec. 5, a medium initially isotropic becomes generally anisotropic. In 
addition, certain new physical features, related to the existence of surface instability, 
enter into play. 

Under certain assumptions, however, it is possible to neglect these more sophisticated 
features, thus providing an approximate preliminary analysis. Let 

Pi = -(XII + 822 + &2> (3.17) 

be the average hydrostatic component of the initial stress. We assume that pi + Sll , 

pi -I- 822 , pi + Sa3 and S,, are sufficiently small that the material remains isotropic 
for incremental deformations. Moreover, the excess p + S22 of the pressure p of the 
fluid in the crack should not exceed a magnitude beyond which a linear theory of incre- 
mental deformations breaks down. Keeping these limitations in mind, we may proceed 
as follows. As in Eqs. (3.1) and (3.14), the volume of the crack generated by the fluid 
pressure is 

V = ?r(p + S22)cP/K. (3.18) 
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We also evaluate 

s +C 

(u= 
us,2c2 

tidx=- 
--c K ’ 

(3.19) 

where zi is the relative slip (2.42) of the faces of the crack under application of a shear 
load. 

The increase in elastic energy due to the application of the fluid pressure p and the 
disappearance of the tangential load Sa at the faces of the crack is 

w = $(p - S,,)u - &$u. (3.20) 

It is important to note that there is no coupling term between the tangential and 
normal displacements. This follows from the fact that the load p - Sza is associated 
with a displacement u which is an odd function of x on which SL2 produces no work. 
Similarly, the load Slz produces a normal displacement v which is also an odd function 
of x on which p - Szz produces no work. 

The energy balance equation is 

p(lXJ/dc) - (alV/ac) = 2&,, (3.21) 

where E,, is the energy for combined normal and shear separation of the crack surfaces. 
Substitution of the values (3.18) and (3.20) yields 

(p + Smj2 + S:, = 2G,,K/rc. (3.22) 

This is the condition for crack propagation. The energy E,, of combined separation 
will in general be a function of SllS22S33S12 and c. In analogy with (3.11) and (3.12) 
we may write 

6,. = 27’ + st,.(S,, , 822 , 82 , 812 , 4, 

4, = ca,,(S,1S22SJaS12). 
(3.23) 

Again we must keep in mind the foregoing remark concerning the possible dependence 
of a,,, on p. The incremental elastic coefficient K = K(pJ may also be assumed to 
depend on the average initial pressure pi . 

In particular, if p = S,, = 0 Eq. (3.22) becomes 

s,, = (2&JC/7r)‘? (3.24) 

This is the value of the critical tensile stress acting normally to the crack which produces 
spontaneous crack propagation. Similarly, for p = S,, = 0 Eq. (3.22) becomes 

812 = (~G.K/#‘~ (3.25) 

which is the initial shear stress for spontaneous crack propagation. In this case E, is 
the energy for pure shear separation. 

A final remark is in order here regarding Eqs. (3.24) and (3.25). We have assumed 
implicitly that we are dealing with a static propagation. Spontaneous propagation may 
occur under dynamic conditions in which case plastic materials may become brittle, 
with a corresponding drop in the values of E, and G. as soon as the propagation starts. 
The failure thus acquires a more or less explosive character, an occurrence which is not 
infrequent in prestressed structures. 
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4. Crack propagation in orthotropic media. In the preceding section the problem 
of crack propagation under initial stress was analyzed in preliminary form for an isotropic 
material. As was pointed out, under certain conditions the linear theory of elasticity 
remains applicable. Under the same assumptions this preliminary analysis may be 
extended to orthotropic media. Such a simplified preliminary treatment is useful in order 
to bring out more clearly certain essential features which result from anisotropy and are 
distinct from those brought out by the more elaborate treatment in Sec. 5. A separate 
analysis for orthotropic media is also of particular importance because a medium orig- 
inally isotropic acquires anisotropic properties under a non-hydrostatic state of initial 
stress. 

Consider the problem in the context of the linear theory of elasticity for orthotropic 
symmetry. The method outlined in Sec. 2 is based entirely on the validity of Eq. (2.3) 
which itself is a consequence of a basic similarity law. Hence it should be valid for a 
large class of homogeneous materials. In particular, it is applicable to orthotropic media 
for which the stress-strain relations in plane strain are 

uz, = Ge,, + C12evv , u,, = C12e,, + C22eyy , usy = 2&e,, . (4.1) 

With the displacements u, v the strain components are 

au au 
e II=--? ax euu = - , 

dY 
e,, =a(g+$)* 

Again, we may solve the problem of the halfspace for the region y < 0 by applying at 
the surface (y]= 0) the sinusoidally distributed stresses 

=zu = 7 sin lx, vu, = q cos lx. (4.3) 

Thelcorresponding surface displacements are of the form 

u = U sin lx, v = v cos lx. (4.4) 

The displacement amplitudes U and V are related to the stress amplitudes r and q by 
the equations 

7 = (o,,U + a,,V)Qk q =@WJ + a,,V)Ql, (4.5) I 
where 

a CllcBl + s2> 
l1 = Cl, + &PA ’ 

C22@1 + P2MlS2 
a’2 = Cl, + QBda ’ 

Cld%P2 - Gl 
‘lz = C,, + Q/31& * (4.6) 

With positive values of the square roots the quantities /31 and p2 are given by 

p1 = (m + [m” - lc2y2y2, 
(4.7) 

a2 = cm - 
[m2 _ k2]1/2)1/2 

where 

2m = (llQC22)[GL’22 - Z&C,2 - Ctl, 
(4.3) 

k = (C,,/C,,)““. 

The derivation of the values (4.6) of oii is obtained in routine manner from the two- 
dimensional theory of anisotropic elasticity. It may also be obtained as a particular 
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case of the more general results established by the author for anisotropic elasticity with 
initial stress [18] [20]. This amounts to putting equal to zero the initial stress in Eqs. 
(5.14) below. 

For our purpose we need the solution for the case where the shear stress at the surface 
is put equal to zero (T = 0). Introducing this condition in Eqs. (4.5) yields 

q = KJV (4.9) 

with 

K1 = ((a,,%, - &)/o&A (4.10) 

With the value K, instead of K the result is exactly the same as that of Eq. (2.3). 
Similarly, we obtain the solution for the case where the normal stress is put equal 

to zero (uuu = q = 0) at the surface. For this case Eqs. (4.5) yield 

with 

r = K,lU 

K, = ((a,,~, - a~,)la,&?. 

Note that we may shift the origin along x, thus replacing 
and (4.12) are therefore valid for the shear distribution 

UZU = 7 cos lx 

and the corresponding displacement 

u = u cos lx 

(4.11) 

(4.12) 

sin Zx by cos lx. Eqs. (4.11) 

(4.13) 

(4.14) 

More explicitly, values of K, and K2 are derived by substituting expressions (4.6) for 
aii taking into account the relations 

(2(m + ,))l’Z = P1 + PZ , k = PIA . (4.15) 

We obtain 

K _ 2(m + wGlC22 - (Cl2k - Cll>” 
1- 1/2oG,(Gl + QIC) QJ (4.16) 

K2 = K,/k. 

It is interesting to verify that this result yields the value (2.4) of K for an isotropic 
medium. In this case the elastic moduli are written 

C11 = c22 = 2i.J + A, Cl2 = A, Q = P> (4.17) 

where X and p are Lame’s constants for isotropic elasticity. Expressions (4.16) become 

K, = K2 = (2(11 + A>/(&.4 + X>>/.L. (4.18) 

In terms of Poisson’s ratio v and Young’s modulus E we find 

K1 = K, = K = E/2(1 - v”), (4.19) 

which coincides with expression (2.4). Under an arbitrary distribution of the loads 
(T,, and Q,# applied inside the crack, the width w and slip ti are given as in Eq. (2.33) 
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except that K must be replaced by K1 and K, for normal and tangential loading respec- 
tively. 

The crack propagation analysis may now be carried out by following the same pro- 
cedure as in the preceding section. The state of initial stress is represented by the com- 
ponents S,, , Szz , Sz3 and S,, . The principal stress components Sll , ~9,~ , S,, are oriented 
along x, y, x, which are also the directions of orthotropic symmetry. The hydrostatic 
component (3.17) of these initial stresses may be large. However, their differences, as 
well as the initial shear component S,,, are sufficiently small that the foregoing results 
derived from linear elasticity are not modified. The volume of the crack generated by 
the fluid pressure p is obtained as in Eq. (3.18). Its value is 

‘u = ?r(p + Szz)c2/K1 . (4.20) 

The quantity p + L&s represents the excess fluid pressure over the initial compression 
-S,, normal to the crack. As before, we must also assume that the magnitude of p + Szz 
does not exceed a limit beyond which linear elasticity is not applicable. We also need 
the value u defined by Eq. (3.19). In this case it becomes 

‘U = d&/K~. (4.21) 

Eqs. (3.20) and (3.21) for energy balance are formally the same in this case. We derive 
the crack propagation condition 

(p + S&K, + S&/K, = 2Ll?rc (4.22) 

or 

(p + S,,)” + kS;1, = (2Ll~c)K1. (4.23) 

The combined separation energy E,, is an expression of the form (3.23), while k 
and K, may be functions of the initial hydrostatic component pi . The case p = 0 
while Szz is positive represents a state of initial tension normal to the crack. 

Incompressible medium. By assuming incompressibility the crack propagation 
condition (4.22) is considerably simplified. For this case the stress-strain relations (4.1) 
are replaced by 

a,, - u = 2Ne,, , UUU - CT = 2Ne,, , UZY = 2Qezy . (4.24) 

The condition of incompressibility is 

e,, + eUu = 0; (4.25) 

hence 2u = uzz + CT,, . Note that the left-hand side of Eqs. (4.24) is a two-dimensional 
form of the stress-deviator which is not the same as its usual three-dimensional definition. 
For the incompressible medium Eqs. (4.5) become 

T = 2(NQ)“2ZU, p = 2(NQ)““ZV. (4.26) 

Hence 

a,, = ~222 = 2(N/Q)““, a,2 = 0, (4.27) 

K1 = K, = 2(NQ)*‘2. (4.28) 
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These results were derived earlier [16, 18, 201. With the values (4.28) the crack propaga- 
tion condition (4.23) becomes 

(p + S,,)’ + S;, = (4~,,/?rc)(NQ)~“. (4.29) 

Except for the replacement of K = E/2(1 - Y”) by 2(NQ)l” it is exactly the same as 
condition (3.22) for the isotropic medium. 

It is of interest to point out that the case of incompressibility may also be derived 
directly from expressions (4.16) following a procedure indicated by the author [18, 201. 
We write 

Cl, = c22 = X + N, C,, = x - N, 

and substitute these values in Eqs. (4.1), imposing the condition that 

(4.30) 

u = X(e,, + e,,) (4.31) 

remains finite while x goes to infinity. This yields the stress-strain relations (4.24). 
Moreover, when we substitute expressions (4.30) with x = 0~ into Eqs. (4.16) we obtain 
the value (4.28) for K, and Kz . 

5. Application of the theory of incremental deformations. The foregoing results 
were obtained by applying the linear theory of elasticity. However, beyond a certain 
range of initial stress the validity of the linear theory breaks down and the analysis 
must be based on the general theory of incremental deformations. Such a theory was 
developed by the author [16, 17, 18, 19, 201 for an initially-stressed continuum. 

We consider an orthotropic medium with directions of symmetry along the x, y, z 
directions. The medium is initially stressed by three principal stresses Sll , Szz , Ss3 
along the same directions. This includes the particular case of a medium which is isotropic 
before application of the initial stresses. Small incremental deformations may be super- 
imposed with displacements u, v in the 2, y plane. This produces a state of incremental 
plane strain defined by expressions (4.2). In addition, a rotation field is produced of 
magnitude 

6J = $((av/ar) - (du/@)). (5.1) 

Each small element of the medium is rotated by this amount. Initially the stresses on 
this element are S,, , Sza , S,, . If the element is rotated rigidly by the amount w about 
the x direction the stresses remain unchanged. In other words, the stress components 
referred to coordinate axes rotated along with the element retain the initial values 
,!& , Szz , & . However, since the element is deformed the stresses increase by an amount 
sii which is also referred to the locally rotated axes. Because we restrict ourselves to 
incremental plane strain we need only consider the incremental stress components 
sll , saz and sLa . We have shown [16, 18, 201 that they are expressed in terms of the incre- 
mental strains by the relations 

sll = &ezz + Blzevv , 822 = Bnle,, + Bz2evv , s12 = 2&e,, , (5.2) 

The existence of an elastic potential for incremental deformations requires that the 
incremental elastic coefllcients Bdi satisfy the relation 

B12 = B21 + P, (5.3) 
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where 

P = s,, - &I. (5.4) 

Again we consider the analysis of the halfspace y < 0 with the normal stress S,, 
applied initially at the boundary y = 0. An incremental plane strain is thus produced 
by applying additional tractions on this free surface. These tractions per unit initial 
area are represented by the components Aff. , Afu along fixed directions x and y. In 
terms of the deformations, it was shown [20] that Aff, and Af, are expressed as follows: 

Afz = Afz - &&v/ax), Aft, = A.?” + LLez2 , (5.5) 

where 

Afz = slz + Pe,, , Afu = szz . (5.6) 

A physical interpretation of these expressions is obtained by assuming that a distributed 
hydrostatic stress p(x) and a distributed tangential traction T(x) are applied at the 
surface 

Afs = p(avla4 + T, 

Substitution into Eqs. (5.5) yields 

Afu = -_p(l -I- e,,) - A%,. (5.7) 

Aj;z = (P + Sm>@vla4 + T, A.fv = - (P + &J(l + es,>. (5.3) 

The quantity p + S,, is the incremental pressure. In the context of incremental deforma- 
tions the product of this incremental pressure by dv/dx and ezz is considered to be of a 
higher order, and hence may be neglected. Under these conditions Eqs. (5.8) become 

Afz = T, Afu = --p - S,,. (5.9) 

Physically we may look upon the system as one composed of the solid and an adjacent 
fluid at a uniform pressure equal to - Sz, . The forces Afz , As= are the additional trac- 
tions applied to the solid at the interface. Note that substitution of the last of Eqs. (5.2) 
into the first of Eqs. (5.6) yields 

Afz = T = 2Le,, (5.10) 

with 

L = Q + +P. (5.11) 

This coefficient which we have called the “slide modulus” has therefore a simple physical 
meaning. 

As before we assume a sinusoidal distribution of Afz and AjV by putting 

Af* = T = r sin lx, Ajv = -p - s,, = q cos lx. (5.12) 

The surface displacements u and v are sinusoidal of the form (4.4). The relations between 
r, q and U, V were derived in the more general case of a plate of thickness h oscillating 

at a frequency CY [19, 201. By putting h = 00 and CY = 0 in these more general results 
we derive the solution for the static problem of the halfspace. The required relations are 

q = (a&J + a,,V)ZL (5.13) 
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where 

a11 = P,,@, + PdII@II + -mP2), %2 = vL@, + mMzll(~11 + -wP2), 

a 12 = @&Pa - mI(&, + -m%>. (5.14) 

The quantities p1 and p2 are given in terms of m and k by the same expressions as (4.7); 
however, the values of 2m and k are now 

2m = & P&2 - L(2&, + P) - &I, k = pe (1 - 31”‘. (5.15) 

In the plate theory the thickness h appears only in two parameters, x1 = & tanh (+filZh) 
and zZ = Pa tanh (&Jh) (see page 325 of the author’s book [20], also [18]). For the 
halfspace h = Q) we obtain z1 = p1 , z2 = fi2 . Note also that expressions (5.14) for the 
coefficients are obtained by cancelling the common factor /I1 - pa in the numerator 
and denominator which appears in the limiting values after substituting h = 00 in the 
more general plate theory. 

In order to analyze crack propagation we proceed exactly as in the preceding section. 
Consider first the case r = 0, we find 

q = KJV (5.16) 

with 

& = ((one,, - &)/a&. 

Next we consider the case q = 0. We find 

r = K&l 

with 

(5.17) 

(5.18) 

K, = ((~~22 - ~,2,)/~&. 

Introducing expressions (5.14) for aii , we derive 

(5.19) 

(5.20) 

We apply these results to crack propagation in a medium with the initial principal 
stresses Sll , S,, , Sz3 . In addition we assume the presence of an initial shear stress S,, . 
However, the latter is considered as an incremental perturbation which does not modify 
the values of the coefficients in the stress-strain relations (5.2). The crack is produced 
by injection of a fluid under a uniform pressure p. This amounts to applying constant 
values 

Ajz= T= -S,z, Aju = --p - &a. (5.21) 

The first equation expresses the fact that cancellation of the tangential initial stress 
S,, at the faces of the crack amounts to applying a constant tangential traction T = S,, . 

In order to express energy balance we remember that we may consider the system 
composed of the solid and the adjacent fluid as a system initially in equilibrium. The 
fluid is initially at the pressure -SZz and the solid is under the initial stress S,, , SZa , 
& , S,% . The additional tractions (5.21) are then applied at the interface. The additional 
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potential energy generated in the solid-JEuid system by the tractions (5.21) is 

W’ = $(p + s&U - $SlZU, (5.22) 

where ‘u is the volume of the crack and U the total integrated slip expressed by Eqs. 
(4.20) and (4.21) after introducing new values (5.20) for K, and K, . The second term 
in Eq. (5.22) is the loss of potential energy due to the cancellation of S12 . The energy 
balance equation is now 

(p + &,)(au/ac) - (alV’/ac) = 2E,,. (5.23) 

We derive the crack propagation condition 

(p + X,,)” + kX, = (2&.&/7rc) (5.24) 

where lc and K1 are given by Eqs. (5.20). The only difference in the condition (4.23) 
derived previously lies in the values of k and K, . 

The width and slip distribution of the crack with an arbitrary increment load dis- 
tribution p(z) + S,, and T(z) are given by an expression similar to Eq. (2.33) with 
suitable coefficients (5.20) replacing K. 

6. Discussion of some special cases. We shall now discuss some particular applica- 
tions which are based on the more general theory of incremental deformations as devel- 
oped in the preceding section. For example we shall consider the case of a material 
isotropic for finite deformations and that of an orthotropic incompressible material. 
The latter case brings out more simply certain qualitative properties due to the initial 
stress which are related to the phenomenon of surface instability. 

Material with finite isotropy. The general theory is applicable to this case and the 
incremental elastic coefficients appearing in Eqs. (5.2) may be evaluated quite simply 
from the finite stress-strain relations. The following results were derived in earlier work 
(see the author’s book [20, p. 3321 and [17]). An isotropic material is strained along 
principal directions x, y, z with finite extension ratios X1 , X2 , X3 . Because of the property 
of isotropy the corresponding principal stresses are expressed by a single function 
F(X, , X2 , A,). They are 

811 = F(X, , x2 , a, s,, = m2 , XI , h>, x33 = Jv, , Al , A,). (6.1) 

Isotropy requires that the function F must satisfy the identity 

F(X, , Xz , A,> = WI , X3 , U. (6.2) 

The incremental elastic coefficients are then given by 

&1 = &(a&,/aM, &, = Ma&,/&) 
(6.3) 

& = x,(a&,/eM, &a = Mu&,/&>. 

Relation (5.3) between BIa and B,, , w hich is a consequence of the existence of an elastic 
potential, imposes an additional condition on the function F. It must satisfy the relation 

(a/ax,) (x2&1) = (a/ax,) (MM. (6.4) 

As for the slide modulus L, we have shown (see 1171 or the author’s book [20, p. 931) 
that its value is 

L = (S,, - &)(Q(x: - 0). (6.5) 
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With these results it is possible to evaluate the coefficients (5.20), and hence to obtain 
the crack propagation condition (5.24) along one of the principal directions in terms 
of a given state of finite initial strain. As already pointed out, an initial shear stress S12 
may be introduced without modifying the values of the coefficients. 

Orthotropic incompressible material. We shall discuss the case of an incompressible 
medium, orthotropic along x, y, z with principal initial stresses Sll , Sz2 , Ss3 along the 
same directions. It was shown [16], [17] ( see also the author’s book [20, p. 1011) that in 
this case the incremental stress-strain relations become 

$11 - s = 2Ne,, , a22 - s = 2Ne YY , s12 = 2&e,, , (6.6) 

with the condition e,, + eUu = 0. Relations (5.13) retain the same form, but the coeffi- 
cients aii determined by Eq. (5.14) are considerably simplified. They become [16, 201 

with 

a 11 = (2(m + Jc))l”, a,, = k - 1, as2 = L(2(m + k))l”, (6.7) 

m = (2M/L) - 1, M = N + :P, 

k = (1 - (P/L))1’2, L = Q + +P. 

By introducing expressions (6.7) into the values (5.17) and (5.19) we obtain 

(6.f3) 

where 

K1 = 2$(ML)l”, Ka = K/k, (6.9) 

+=2k(m+1)+k2--le 
Mm + Ic)Y2 (6.10) 

Surface instability and crack propagation. According to the basic equation (5.22), 
a decrease in the value of K1 corresponds to a smaller value of the fluid pressure p 
required for crack propagation. On the other hand an initial state of stress, for which 
K, = 0, represents a surface instability of the half space. For the incompressible material 
Eq. (6.9) shows that surface instability occurs if 

2k(m + 1) + k2 - 1 = 0. (6.11) 

Eq. (6.11) and the corresponding phenomenon of surface instability were discussed 
extensively in earlier work ([16], see also the author’s book [20, p. 2041). It was shown 
that it occurs under a critical value of the compressive stress P = -fill active in a 
direction parallel to the crack. Hence a compressive stress in this direction lowers 
the value of K, and therefore tends to weaken the crack. On the other hand, a tensile 
stress along the same direction increases the value of K, and tends to strengthen the 
crack. Note that in the case of a triaxial initial stress the same conclusion holds provided 
the compressive stress is replaced by P = S,, - S1, . The stress S,, acting initially on 
the surface is obtained physically by applying a fluid pressure -S,, . It is interesting 
to compare two different cases. In the first the crack propagation is entirely due to the 
injection of a fluid with excess pressure p + Sz2 while S12 = 0. The crack propagation 
condition (5.22) becomes 

(P + S22)” = 2E,,K,/nc. (6.12) 
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As we approach surface instability K, tends to vanish and the excess pressure p + Sz2 
required for crack propagation tends to zero. 

On the other hand, in the presence of an initial shear stress S,, and an excess pressure 
maintained at zero value (p + Ss2 = 0) the stress propagation condition (5.22) becomes 

kS;s = 2&,,K,/?rc. (6.13) 

A study of surface instability [16], [20] shows that when it is approached (hence when 
K, tends to zero) the value of k becomes small. However, the value K, = 0 is obtained 
before k vanishes. Since k and K1 both diminish at the same time, Eq. (6.13) shows that 
the effect of initial stress on crack propagation is much less pronounced for this case. 
The same conclusions regarding the qualitative influence of initial stress on crack strength 
remain valid for the more general case of a compressible material. According to Eq. (5.20) 
the condition K, = 0 for surface instability is 

2(m + k)kB,,Bm - (B,,k - B,,)’ = 0. (6.14) 

When this condition is approached the crack is weakened, while it is strengthened in 
the opposite direction. Eq. (6.14) for surface instability is equivalent to the result 
derived in the context of dynamics for surface waves in a halfspace with initial stress [19] 
(see also the author’s book [20, p. 3341). Surface instability is derived for zero value of 
the frequency. 

7. Crack propagation between dissimilar media. We shall analyze the case of two 
adjacent orthotropic media with directions of elastic symmetry along x, y, z. The lower 
medium occupies the halfspace y < 0. The upper medium occupies the halfspace y > 0. 
There is complete adherence at the interface y = 0. Principal initial stresses S,, , Sz, , if& 
along 2, y, z are present in the lower medium. In the upper medium similar initial stresses 

8, , S22 , S& are also present. For reasons of equilibrium the component SL. normal 
to the interface is the same in both media, but S,, and Ss3 may be different from S:, 
and S& . The problem of crack propagation will be analyzed by applying the more 
accurate theory of incremental deformations of Sec. 5. 

Consider first the lower halfspace. The incremental stress-strain relations (5.2) .are 
applicable. As already explained in Sec. 5 we may reason on a physical model composed 
of this halfspace and fluid at the pressure - SA2 occupying the other halfspace. Additional 
tractions Aj= and AjV are then applied to the lower halfspace at the interface. We assume 
arsinusoidal distribution and write as before 

AfZ = r sin lx, AjU = q cos lx. (7.1) 

The corresponding displacements at y = 0 are 

u = U sin lx, v = v cos lx. (7.2) 

Eqs. (5.13) are valid, i.e. 

7 = (o,,U 4 a,J)ZL, q = (a& + %,V)I& (7.3) 

where aii are given by expressions (5.14). 
Similarly, equal and opposite surface tractions - Afz and - AJ’# are applied at a 

solid-fluid interface of the upper medium. The displacements at the interface are now 

u’ = U’sin lx, v’ = V’ cos lx (7.4) 
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with 

7 = (-C&U’ + a:,V’)zL’, q = (a:2 U’ - a:, V’)lV. (7.5) 

These equations are the same as derived earlier ([16] [18] [19] [20]). The coefficients L’ 
and aii are given by the same expressions (5.11) and (5.14) where the elastic coefficients 
are replaced by those of the upper medium and P is replaced by 

P’ = s22 - s:, . (7.6) 

We now invert Eqs. (7.3) and (7.5). They become 

UlL = A.117 + .&,q, VZL = Amr + Amq (7.7) 

and 

U’ZL’ = -A:17 + A:Pq, V’EL’ = Ai2r - A:,q. (7-Q 

We derive 

(7 -9) 

where 

0 = u - U’, P = v - V’. (7.10) 

By inversion, Eqs. (7.9) are written 

7 = (D,,D + D,,B>Z, q = (%o + D,,P)l (7.11) 

By taking into account expressions (7.1), (7.2), (7.4) and (7.10), Eqs. (7.11) may be 
written 

Aj= = ED,,Osin lx + lD,,Psin lx, 
(7.12) 

AjU = lD,,t? cos lx -I- lD,,v cos lx. 

A similar set of equations is obtained by shifting the origin of x replacing lx by lx - (7r/2). 
This amounts to the substitution for sin lx and cos lx respectively of -cos lx and sin lx. 
Hence 

Ajz = - ID,, ul cos lx - ID,, VI cos lx, 

AjU = lD,,rf, sin lx -I- ID& sin lx. 

Adding expressions (7.12) and (7.13), we obtain 

A& = ZD,,ii(l, x) - D&/ax)a(Z, x), 

AjU = D&/ax)zx(Z, z) + ID,&, x) 

where 

(7.13) 

(7.14) 

$I, x) = D(z) sin Ix - O,(1) cos Ix, 
(7.15) 

$1, x) = P(z) cos k + P,(l) sin Ix, 
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with 0, 0, , 7, PI denoting arbitrary functions of 1. We now introduce the functions 
$(x, y) and 6(x, y) defined by the Fourier integrals in the region y > 0: 

#(z, y) = lrn iz(Z, z)e+ dl, C#J(X, y) = lm O(Z, z)e+ dl. (7.16) 

They vanish at y = m and satisfy Laplace’s equation 

(a”J//az”> + (e”$GQ/“> = 0, (a24/ax2> + (d2$&y2) = 0. (7.17) 

According to Eqs. (7.16) the corresponding values of the displacement differences 
(at y = 0) 

ti = u - u’, ~=v-v’ , (7.18) 

are 

fi = fi(? 0), 0 = 4(X, 0). (7.19) 

From Eqs. (7.14) we derive the corresponding values of Ajz and AjU : 

Ajz = --&@#/a~) - Q20b/W, (7.20) 

where the values are taken at y = 0. 
The problem of determining ti and 0 for a given distribution of tractions Ayz and Af,, 

is solved if we can find the functions $ and 4. This may be accomplished by introducing 
two analytic functions Z,(z) and Z,(z) of z = 2 + iy and putting 

iz = l$Q = 2, + 2:) e = cp = 2, + 2% , (7.21) 

where the asterisk denotes the complex conjugate quantities. By introducing the complex 
derivatives 

2: = (dZ,/dz), 2: = (dZ,/dx), (7.22) 

Eqs. (7.20) may be written in the form 

iA$ = M,& - M&Z;* (7.23) 

where Afz = Ajl , AjV = Af2 and Mbi are the elements of the matrix 

W,,l = [i;;: +I]. (7.24) 

It is Hermitian, since 

Mki = M,$ . (7.25) 

The matrix is also positive definite. This can be shown by considering the sinusoidal 
displacements corresponding to Eqs. (7.12). The energy input into the system over one 
wavelength is 

1 
s 

2*/l 

L 

(Afz, sin lx + Ay#v cos Ix) dx = 

Note that this represents the energy input by the interfacial forces Ajz and AfV into 
a solid-fluid system represented by the two solids and a fluid at the pressure -S,, in 

; (Dllo2 + 20,20p + D22p). (7.26) 
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between. We may assume that the fluid is connected to a large reservoir so that its 
pressure remains constant. If the magnitude of the initial stresses is below the critical 
value of surface instability of either the lower or upper medium, expression (7.26) is 
positive definite. Hence 

D,, > 0 D,, > 0, D,,D,, - D:, > 0. (7.27) 

Until now the functions 2, and Z, were defined in the upper halfspace y > 0. They 
may be extended to the total plane by analytical prolongation. The values in the upper 
halfspace at a point x are denoted by Z+, . In the lower halfspace at the symmetric point a* 
we define Zi as 

Zf = -z;*. (7.28) 

In addition, it is assumed that on the x axis in the range 1x1 > c we have 

z; = 2;. (7.29) 

This insures that the functions Zi defined by Z: and Z; are analytical throughout except 
along a cut 1x1 < c, y = 0, where they may be discontinuous. From (7.28) and (7.29) 
we derive 

z;+ z,+*= 0; (7.30) 

hence 

ii = C = 0 for 1x1 > c, y = 0. (7.31) 

This corresponds to the problem of a crack along 1x1 < c. From Eq. (7.28) we derive 
for y = 0 

(azy/a$) = - (az;*/&) = - (az,‘*/ax) (7.32) 

or 

Z;* = -Z!_ t * (7.33) 

Hence Eqs. (7.28) may be written 

iAj;, = MkiZ;+ + M$Z:-. (7.34) 

This equation may be simplified by diagonalizing the matrix [Mki]. This requires the 
solution of the equations 

MkTC;i = KMgisi s (7.35) 

The characteristic equation is quadratic with two characteristic roots K = K~ and K = ~~ 

and corresponding values ti = .$ , ii = ff of the characteristic vector. Since Mki is positive 
definite the roots ~~ and ~~ are real and positive. A fundamental property of the charac- 
teristic solution is obtained by writing Eq. (7.35) in the form 

(l/K)itf& = M,*,.$ . (7.36) 

This shows that the two characteristic roots and the corresponding vectors satisfy the 
relations 

KS = l/Q , g = g*. (7.37) 
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The characteristic vectors also satisfy orthogonality relations 

M&P = J/f;&* = 0 

and may be normalized so as to satisfy 

M&4”,’ = 1 

the equations 

(no summation for p). 

(no summation for p). 

(7.38) 

From Eqs. (7.35) and (7.39) we derive 

&&f;[:’ = K, 

(7.39) 

(7.40) 

We now introduce the transformation 

2; = {;a, (7.41) 

with two new holomorphic functions bI and a2 . With this substitution Eqs. (7.34) 
lead to 

Taking into account 
Eq. (7.40) we obtain 

3: 

Mki[it;*BJ’ + Mkit;(;*a; = i&*Ajbis. (7.42) 

the orthogonality property (7.38), the normalization (7.39) and 

The values of ~~ and K~ may be written explicitly by solving the characteristic equation. 
We find 

Ky = l/K2 = (1 + Cl)/@ - a), a = 1~121/(~11&)““. (7.44) 

According to the inequalities (7.27) we have 0 < a! < 
(7.43) is a classical Hilbert problem. The solution is 

1. Hence ~~ > 1. Solving Eqs. 

dt, 

with X,(z) and X,(z), holomorphic functions except on the cut (y 
they satisfy the condition 

= 0, 1x1 < c), where 

-K1 = x:/x;, -KS = -(l/Kl) = xi/x,- . (7.46) 

(7.45) 

Since 2, and 2, vanish as l/z at infinity, aI and a2 vanish as l/z?. Therefore the functions 
X, and X, must be chosen to vanish as l/x. As follows from the remark in the subsequent 
paragraph, this insures uniqueness for the solutions $ and 4. The required values of 
X1 and X, are 

xl = cz _ c)-*/*-i7(z + 4-*/2+f7 

x2 = cz _ C)-*/a+ir(Z + ,)-l/+ir, 
(7.47) 

with 

7 = (1/2?r) log KI . (7.48) 
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A particular branch of the functions must be chosen defined by values 

2 - c = r1 exp (ie,), 2 + c = r2 exp (i&) (7.49) 

where 19~ and e2 are between zero and 21r. This insures that X1 and X, behave like l/z 
at infinity. 

The values (7.45) and Eqs. (7.41) determine 2, and 2, by integration. In principle 
we may therefore determine the shape of the crack for constant values of Ajz Aj,, . 

By the same reasoning as previously we may derive a crack propagation condition of 
the type (5.24). However, in this case attention should be called to the following remarks. 
First, we note that the values (7.47) contain a factor of the type 

(2 - c>-+(z + c)i’ = exp [ir log (r21r1) + Y(el - e,)]. (7.50) 

Near the crack tip, i.e. near the points x = c, x = -c this factor oscillates violently. 
As already shown by Erdogan [ 111, this behavior also occurs for the case of two dissimilar 
isotropic media and involves interpenetration of the two faces of the crack. However, 
in practice it may be disregarded, since it occurs in an extremely small region where 
the linear theory breaks down. 

A second remark concerns another type of interpenetration. If a constant distribution 
of tangential forces Ajz is applied to the faces, the normal displacement of the faces 
produces a s-shaped curve with an inflection at x = 0. However, the amplitudes are 
not the same if the materials are dissimilar so that there is interpenetration of the two 
faces. This will not occur, however, if simultaneously a normal force Aj,, of sufficient 
magnitude is also applied. 

Uniqueness of solution. The fi and 4 as defined by expressions (7.16) vanish at 
infinity in the halfplane y > 0. The argument developed in the last paragraph of Sec. 2 
is applicable here and shows that $ and 4 vanish as l/z. This also implies uniqueness 
under the conditions #(r, 0) = $(r, 0) = 0 for 1x1 > c while Afz and AjV of Eqs. (7.20) 
are given functions of x for 1x1 < c. To show this, consider two functions fi and two 
functions 4 satisfying the same boundary conditions, and denote the differences of these 
functions by J/d and 4d . They satisfy Eqs. (7.20) with AjZ = AjV = 0. Hence for 1x1 < c 
on the x axis we derive 

(7.51) 

On the other hand, applying Green’s and Stokes’ theorems we may write 

where 

. 
ss, (F, + F2) dx &/ = s, Fa 6 (7.52) 

(7.53) 
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The counterclockwise contour C is composed of the x axis and an infinite half circle in 
the halfplane y > 0 centered at the origin. The domain A lies inside this contour. The 
derivatives along the outward normal at C and along the arc s are denoted by a/an 
and a/as. The value of the contour integral is zero. This follows from the fact that #d 
and +d vanish as l/z on the half circle and in addition on the x axis & = $d = 0 for 
1x1 > c, while for 1x1 < c the integrand vanishes according to Eq. (7.51). Hence the 
surface integral of Eq. (7.52) also vanishes. Because of the inequalities (7.52) the quad- 
ratic forms F, and F, are positive-definite. Therefore the functions #d and & must be 
<constants and, in addition, equal to zero, since they vanish at infinity. We have thus 
shown that under the assumed boundary conditions any two solutions must be identical. 

Simplijied cases. It can be seen that considerable formal complications arise if 
y # 0 in expressions (7.47). This is due to the coupling term D,, in Eqs. (7.20). If the 
materials are such that 

&IL = AL/L’, (7.54) 

then D,, = 0 and y = 0. In this case the oscillatory behavior disappears. From Eqs. 
(7.9) and (7.11) we also write 

l/D11 = (&IL) + (GIL’), (7.55) 
l/Dzz = (A&) + (&IL’). 

Under these conditions the integrands in Eqs. (7.45) are identical to expression (2.19) 
except for the coefficient K and the difference in sign, which is due to the negative value 
(2.18) of uuu . In practice it may also happen that Eq. (7.54) is approximately valid. 
The solution is thus drastically simplified and becomes the same as for an homogeneous 
medium, with the substitution of the values (7.55) of D,, and D,, in place of $K2 and $.K, . 
Condition (5.24) for crack propagation becomes in the present case 

(p + S22)2/2% + S:,/2D,, = 2~,,/?rc. (7.56) 

There is a case where the condition D,, = 0 is always rigorously verified. This is 
for two orthotropic incompressible materials if the initial stress in each material satisfies 
the conditions 

P = Saz - Sll = 0, P’ = s,, - s:, = 0. (7.57) 

According to Eqs. (6.7) and (6.8) it follows that aI2 = a{, = 0; hence, also, D,, = 0. 
We derive 

1 1 1 1 ~=-= ~- 
D,, & 2(NQ)“’ + 2(N’Q’)“’ 

where N, Q and N’, Q’ are the coefficients in the incremental stress-strain relations (6.6) 
for each of the two materials. The crack propagation condition is obtained by substituting 
the values (7.58) in Eq. (7.56). Conditions (7.57) are also verified for zero values of the 
initial stresses or if we neglect the effect of initial stress on incremental deformations. 
The problem is then similar to the one treated in Sec. 4. The drastic simplification of the 
theory in this case is worth noting. 
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