
ACADÉMIE ROYALE DE BELGIQUE 

BULLETIN 
DE LA CLASSE 
DES SCIENCES 

9 Aie - Tome LIX 

1973-3 

EXTRAIT 

Lagrangian analysis of multiple scatter 
in acoustic and electromagnetic reflexion 

by MAURICE A. BIOT 

BRUXELLES - PALAIS DES ACADÉMIES 



Extrait du Bulletin de l’Académie royale de Belgique (Classe des Sciences) 
séance du samedi 3 mars 1973. 

Lagrangian analysis of multiple scatter 

in aconstic and electromagnetic reflexion 

by MAURICE A. BIOT 

Abstract. - A new method is developed for the analysis of multiple 
scatter in the reflection of acoustic waves from a rough surface. It is 
based on Lagrangian equations derived from Hamilton% principle and 
applied to a layer of fluid adjacent to the rough surface. The reflection is 
then considered to occur on this fictitions fluid layer. It is characterized by 
a second order two-dimensional symmetric tensor which embodies the 
distribution of the scattening elements. The procedure yields the coherent 
field as a first approximation under the assumption of large wavelengths. 
The energy of the incoherent scatter may then be evaluated as a second 
approximation by classical procedures. Results are more general than those 
derived from integral equations which express the interaction of scattering 
centers. Quantitative agreement is obtained by comparing the two methods. 
Approximate validity of the theory is also discussed for wavelengths which 
are not « large » relative to the size of the roughness. The theory is deve- 
loped in the context of acoustic waves but the same procedure is 
applicable to the reflection of electromagnetic waves on a rough perfectly 
conducting surface 

1. INTRODUCTION 

The problem of multiple scatter in wave reflection from a rough 
surface has been the subject of numerous studies. Because of intrinsic 
analytical difficulties there is no straightforward solution available. 
Essentially a wave incident upon a rough surface induces a large 
number of scattered wavelets. Each protuberance acts as a scattering 
tenter. However these scattered waves a11 interact with each other, 
since each scattered wavelet induces in turn additional scattered waves 
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at the other scattering centers. Hence the problem is expressed by 
integral equations. 

The interaction between scattering centers is of two types. One is 
non-radiative and corresponds to a close-range quasistatic interaction. 
The other which is a long range radiative one, is cumulative and is 
the source of one of the main difficulties in the analysis. 

The author has shown that for the limiting case of large wavelenghts 
the effect of the multiple scatter is obtained by simply introducing 
a wave boundary condition at a fictitious plane reflecting surface. 
This was done in the context of electromagnetic waves [l, 31 and 
acoustic waves [2, 4, 51. 

The purpose here is to show that this boundary condition for 
multiple scatter may be obtained and further extended by using 
Hamilton’s principle and Lagrangian dynamics, thus by-passing 
completely the integral equation formulation. The analysis is carried 
out in the context of acoustic reflection but the same procedure is 
applicable to electromagnetic waves by using the Lagrangian of the 
electromagnetic field. The principle of the method is to consider 
the reflection to occur at the plane boundary of a fictitious fluid 
layer of small thickness which is adjacent to the rough surface. 
The roughness size is assumed sufficiently small relative to the layer 
thickness. The dynamic properties of the layer are then determined 
by Lagrangian analysis. These properties are different from those of 
the fluid because of the interactions of the fluid and the rough surface 
through what is generally called the apparent mass effect. This refers 
to the apparent increase of mass of an immersed solid accelerated 
relative to the fluid. Conversely a fluid moving relative to a solid 
also displays an apparent mass. 

The result thus obtained agrees entirely with the earlier ones [5] 
based on the integral equation formulation, thus showing that the 
apparent mass effect represents an essential feature of multiple scatter. 
In addition the equations obtained are more general and establish 
rigorously the fact that the reflection properties are represented by 
a second order two-dimensional symmetric tensor. This is valid for 
any arbitrary shape of roughness. 

The Lagragian equations for the layer dynamics are established 
in section 2 and the basic boundary condition for the reflection is 
derived. Fundamental properties already described earlier such as 
the grazing incidence phase reversa1 are briefly discussed in section 3. 
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The foregoing analysis deals only with the evaluation of the coherent 
portion of the reflected wave. As pointed out in section 4, the incohe- 
rent scatter in a11 directions may be evaluated directly by classical 
methods as a second approximation once the coherent reflection has 
been evaluated. The conclusion follows that the incoherent reflection 
tends to dissapear at grazing incidence. In fact it is shown how the 
present Lagrangian analysis should remain approximately valid in a 
range of wavelengths which are not physically large relative to the 
scattering centers, in which case the energy in the incoherent part 
of the reflected wave is not negligible. 

2. LAGRAGIAN EQUATIONS FOR COHERENT SCATTER 

We consider the problem of acoustic reflection on a rough surface. 
The roughness is represented by small protuberances located on top 
of the X, y plane. They are arbitrary except for the fact that they are 
small relative to the wavelength. The half-space countains a com- 
pressible lluid in which acoustic waves may propagate. The equation 
of propagation of acoustic waves is 

a24 a24 a24 i a24 
dX2+2+&?=&? ay 

(24 

where 

c= A 
J P 

is the sound velocity, 1 is the fluid bulk modulus and p its specific 
mass. The gradient of the scalar 4 represents the fluid displacement. 
For periodic waves of circular frequency CD, the scalar 4 contains 
the time factor exp (iot). Omitting this factor, equation (2.1) is written 

where k = O/C is the wave number. 
The essence of the procedure is to distinguish 

fluid separated by the fictitious plane boundary 

z=h 
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Hence one part of the fluid is a layer of thickness h, countaining the 
surface roughness, while the other is in the remaining half space. 
The problem of reflection of acoustic waves on the rough surface Will 
be analysed by considering the reflection to occur on the boundary 
z = h of the fluid layer instead of the solid and to consider the layer 
as having its own reflecting properties when the roughness is taken 
into account. The reflecting properties of the layer are then obtained 
by deriving the Lagrangian dynamics of the layer. The layer thickness h 
is assumed to be small relative to the wavelength of the acoustic waves 
but at the same time of sufficient magnitude SO that the microvelocity 
disturbance due to the roughness is negligible at the boundary z = h. 
Hence at this boundary the fluid displacement is approximately 
parallel to the X, y plane. The x and y components of this displacement 
are denote by U, and U, and the normal displacement along z at 
z = h is denote by w. The component w is small with respect to U, 
and U,. The velocity field in the layer is composed of two parts. 
The first part is represented by the field 

rj -aux 
x at 

Ij,23 
dt 

(2.4) 

parallel to the X, y plane. The second part is a small scale velocity 
field v, v, v, which represents a disturbance due to the roughness. 
There is of course an additional z component of the velocity propor- 
tional to W = aw/at. However it may be neglected in comparison 
with v, v, v,. This is a consequence of the fact that the microvelocity 
disturbance is of the same order as U, U, while 3 is smaller of a 
higher order. 

We shah consider a domain D of the fluid layer limited by the rough 
surface and the planes z = h, x = x1, x = x2, y = y,, y = yz. 
The size of the domain is assumed small relative to the wavelength SO 
that the undisturbed velocity U, U, may be assumed constant within 
this domain. The actual velocity distribution is obtained by adding 
a small scale velocity field v, v, v, due to the geometry of the roughness. 
In the subsequent derivation we shah make use of an important 
property of this field which may be described as follows. 

First it should be pointed out that when an acoustic wave is incident 
upon a fixed scattering tenter of small size relative to the wavelength, 
the velocity field induced by the scattering solid in its immediate 
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neighborhood is the same as if the solid were immersed in a Perfect 
incompressible fluid at rest, and moving relative to the fluid with 
a velocity equal and opposite that of the unperturbed incident acoustic 
wave. The same property is of course applicable to the rough surface. 
Hence the small scale velocity field V, U, a, is given by the potential 
flow in a Perfect incompressible fluid at rest when the rough surface 
moves with a velocity of components -0, and -o,,. We conclude 
that the velocity disturbance due to the roughness is expressed by 
the following linear functions of tiX and 0,. 

V, = a,CJ, + BJJ, 

~ 0, = a&Jx + p,u, (2.5) 

2), = c&, + /GJy 

where a, and pi are functions of X, y, z determined by potential flow 
theory and by the geometry of the roughness. 

The kinetic energy of the fluid in the domain D is 

XZ y2 h 
. 

T=$ dx dy 
Jss 

[(&+vJ2+(~,,+vJ2+v;]dz (2.6) 

Xl Y1 h’ 

where 
z = h’(x,y) (2.7) 

is the equation representing the rough surface. 
The kinetic energy (2.6) may be written 

T =;p(I,+I2+1,) 

where 

v,dz 

XI YI h’ 

Xf YZ h 

+ 2ti,, dx dy 
sss 

v,,dz 

XI YI h’ 

(2.8) 

(2.9) 
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x2 Y?. h 

1, = dx dy 
s s s 

(v:+u;+u;)dz 

X1 Y1 h’ 

The values of these integrals are found as follows 

1, = S(h-z)(CJ;+ 0;) 

where S is the area of the domain D in the X, y plane 

(2.10) 

X2 y2 

S = dx 
s s 

dy 

x1 Y1 , 

and z is the average volume of the roughness per unit area as defined 

bY 
X2 Y?. h 

ST = dx dy 
sss 

dz (2.11) 

X1 Y1 0 

In order to determine Iz, we take into account the incompressibility 
property of the small scale velocity field u, zly v,. This leads to the 
following relation 

Y2 h 

s s 

Y2 h 

dy (&+v,)dz = dy ti,dz 
s s 

(2.12) 

YI h’ Y1 0 

The left side integral is assumed to be evaluated at an abscissa 
x which constitutes the axis of a strip of width dy on which the 
roughness is distributed while the remaining surface is flat and 
coincides with the X, y plane. The width dy is assumed adequate to 
generate locally the correct velocity disturbance due to the protuber- 
ances of the surface and their interactions. The integral on the right 
side of equation (2.12) is evaluated on the plane surface z = 0 at a 
certain distance from the rough strip. Hence equation (2.12) is a conse- 
quence of the incompressibility of the flow. From equation (2.12) 
we derive 

Tdy/uXdz = fJ,J;drSdz 

YI h’ y1 0 

(2.13) 
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Hence 
XZ Y?. h 

sss 

dx dy v,dz = iT,Sz 

XI YI h’ 

(2.14) 

A similar result is obtained replacing v, and U, by v, and U,,. Using 
these results we may Write 

1, = 2s@J;+ oy> (2.15) 

The term I3 is determined by substituting expressions (2.5) for v, v,, v,. 
The value obtained may be written in the form 

13 = sz(cLlliTx+2~,,~~u,+~zz~y) (2.16) 

The corresponding term in the kinetic energy (2.8) is 

This expression has a fundamental physical significance. We may 
choose principal directions for x and y such that piz = 0. In this 
case the quantities pz,uI, and pzp 22 are the apparent masses of the 
rough surface due to the fluid, per unit area in the x, y plane and for 
motions respectively in the x and y directions. In general this apparent 
mass Will be anisotropic (i.e. pll # ,uz2). 

With the foregoing values of I,, Iz, IJ, the total kinetic energy (2.8) 
is 

with 

T = ~pSh(a,,UX+2a,p~x~~+a~~~2,) (2.18) 

ail = 1 + i(l+~“~~) 

e2 = 1 + i(l+~,,) (2.19) 

z 
a12 = -k2 

h 

In order to obtain Lagrangian equations of motion of the fluid layer 
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we must also evaluate the elastic potential energy V of the fluid 
domain D of the layer. The hydrostatic stress in the fluid is 

0 = Ae (2.20) 

where e is the change of volume per unit volume. 
Its evaluation is obtained by considering the rate of volume change 

of the fluid domain D. Its value is 

d = 
[ 
(x2-xl)az + (y2-y,)% + sti 1 (2.21) 

where 
Y2 h 

F, = 

SS 

dy (Ux+ u,)dz = U,h(y, - yJ (2.22) 

YI h’ 

F, = Tkc 

h 

SS 

(iJy+vy)dz = Uyh(XZ-X1) (2.23) 

x, h’ 

The latter equations are based on relation (2.12) and the similar one 
for the y direction expressing local conservation of volume. Since 
(h -7) S is the initial volume of the domain D, we derive 

Hence 

(2.24) 

g=- (2.25) 

In the evaluation of e we must take into account the slow variation 
of U, and U, with x and y. However, the values of e and o may be 
considered as constant within the domain D. The potential energy 
of the fluid in this domain is 

V = ‘2 S(h - z)le’ (2.26) 

From equations (2.18) and (2.26) we derive the kinetic and potential 
energies of the layer per unit area of the reflecting surface. They are 

T’ = iph(a,,ti' +2a,2~x~y+a22iT~) 

V’ = $h-7)ne2 = -f-(h-r)o” 

(2.27) 
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Using these results we may now formulate Hamilton’s principle 
for the fluid layer, in the form 

s SS 
dt [6(T’-V’) + a’6w] dxdy = 0 (2.28) 

The integral is extended to an arbitrary area of the reflecting surface, 
and equation (2.28) expresses that it is stationary for arbitrary 
variations 6U, 6U, 6w. The term 0’6w is the virtual work of the 
traction exerted by the incident and reflected wave on the boundary 
z = h of the layer. By the usual procedure of integration by parts used 
in the variational calculus the variational principle (2.28) yields the 
three equations 

p(a,,üX+a,,üY) = g 

(2.29) 

p(a,,ü,+a,,ü,) = 5 

0 = CT’ 

If we restrict the application to harmonie time dependence and omit 
the time factor exp(iot) the first two equations (2.29) become 

po2(a,,U,+a,2UY) = 2 - 

(2.30) 

- po2(a,2U,+a22UY) = $ 

In the inverse form these equations are written 

where 

- po2UX = bll g + b12- 
ay 

- po2U,, = b12g + bz2 - 
ay 

bll = a22/(a,,a22-&) 

b22 = a,,/(a,,a22-&) 

b12 = - a12/(a~~a22--&) 

(2.31) 

(2.32) 
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Introduction of the values U, and U, from equations (2.31) into 
expression (2.25) for CT yields 

b,,$+26,,- 
axay 

(2.33) 

The hydrostatic stress in the fluid outside the layer is 

oI = A ( a24 ; a2 + a@ 
ax2 ay a22 > 

(2.34) 

Using the wave propagation equation (2.2) it becomes 

0’ = - M%j (2.35) 

According to the third of equations (2.29) (r = (r’, hence (at z = h) 

CT= - Ak2q5 (2.36) 

Since 4 is a displacement potential, w is (at z = h) 

a4 
WC_ 

aZ 
(2.37) 

By substituting the values (2.36) and (2.37) in equation (2.33) we 
derive 

a4 
~+k2(h-++= -h (2.38) 

This relation constitutes a boundary condition for the potential C$ 
of the incident acoustic wave at the boundary z = h of the fluid layer. 
It may be transformed into a boundary condition at z = 0 by taking 
into account the identity (2.2) which constitutes the propagation 
equation for 4. The value of k2$ derived from this equation is intro- 
duced into the boundary condition (2.38). This yields, at z = h, 

!?b-ha~qy 
aZ a22 

a3+2a ~+G122!?ff+&,$ 
l1 a2 l'axay az2 

(2.39) 

where 

a,, = W-Q a22 = h(l-bz2) a,, = - Ml2 (2.40) 

In first approximation considering z/h to be a small quantity in 
expressions (2.32) we derive 

a11 = a+Pll) a22 = M+P22) %2 = *A412 (2.41) 
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On the other hand to the first order we may Write 

(2.42) 

Furthermore because &j/az is a small quantity, the value of 4 at 
z = 0 may be considered the same as the value at z = h. Under these 
conditions the boundary condition (2.39) at z = h may be replaced 
by the following one at z = 0, 

C!L CI a2’ + 2a 
aZ 112 3 + a22 a3 + zk24 

12axay ay 
(2.43) 

Note that in this equation the parameter h has disappeared. Hence, 
as should be, the boundary condition at z = 0 turns out to be indepen- 
dent of the choice of the thickness h of the fictitious layer. 

The boundary condition (2.43) may be further simplified by again 
taking into account equation (2.2) of acoustic propagation. The 
condition (2.43) may then be written 

The coherentreflective properties of the rough surface are thus charac- 
terized by the symmetric tensor plj which depends solely on the 
geometry of the roughness and represents physically an apparent mass 
e#èct of the roughness in the surrounding fluid. 

3. DISCUSSION AND COMPARISON WITH OTHER METHODS 

Equation (2.44) constitutes a boundary condition which takes into 
account, the multiple scatter i.e. the mutual long range and short 
range interaction of the scattering centers upon each other. As cari 
be seen this is equivalent to solving the integral equation for the 
mutual interaction. A theory based on such an integral equation was 
developed by the author in the context or both acoustic and electro- 
magnetic waves [l-5]. It was shown that the solution of the integral 
equation leads to a boundary condition of the same type as (2.44). 
However by that method the symmetry of the tensor pL1j is derived 
only for a particular case of roughness while the present derivation 
is quite general. 
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Attention should be called to the fact that the reflection condition 
(2.44) yields only the coherent part of the reflection which occurs here 
without loss of energy. Actually a small amount of energy is scattered 
in other directions by incoherent scatter. This incoherent scatter may 
be evaluated by classical procedures once the coherent field has been 
determined. 

The coherent reflection was already discussed previously in the 
case of two-dimensional reflection. It is useful to recall some of the 
important properties of such reflection and verify at the same time 
that the present Lagrangian analysis yields the same result quantita- 
tively as obtained from the earlier formulation based on integral 
equations. 

An interesting feature is readily brought out by considering a plane 
wave at normal incidence. In that case 4 depends only on z and the 
boundary condition (2.44) at z = 0 reduces to 

(3.1) 

If z is small the left side is the value of &j/az at z = z. Hence in this 
case the reflection is the same as on a plane surface without roughness 
located at z = z. In other words it is the same as if the volume of the 
rough material were spread smoothly on the reflecting surface. 

Consider now the case where x is a principal direction of the 
roughness tensor ,Uij* The two-dimensional reflection in the X, z plane 
is now governed by the boundary condition 

Consider a plane incident wave 

& = A exp (inz - ilx) (3.3) 

The wave number components are 

n = k COS 8 

1 = k sin 0 (3.4) 

where 8 is the angle of incidence. The coherent reflected wave may be 
written 

dr = A exp (- inz - ilx + 2$i) (3.5) 
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where ~I+!I is a phase shift to be determined. The total acoustic field 

9 = 91 + 4, (3.6) 

satisfies the reflection condition (2.44). Substitution of 4 into this 
condition yields the value of II/. We find 

exp (2tji) = 
n - z(p, 1l2 - n2)i 

n + 2(p1112 -n2)i 
(3.7) 

Hence 

tan+= -T(pllz-n) (3.8) 

or 

tan+= -7 
k sin2 8 

P,~-- 
k cos e 

COS e > 
(3.9) 

For grazing incidence 0 = 7~12 the phase angle tends to 

2$= -lZ (3.10) 

This corresponds to a retardation with phase reversal. Thus a large 
effect due to multiple scatter occurs in this case no matter how small 
the roughness. In this case the amplitude of the total wave, incident 
plus reflected, tends to vanish at the reflecting surface. Physically 
this may be considered analogous to an antiresonance generated by the 
cumulative superposition of the scattered waves along the surface in 
the direction of propagation. This effect was already derived earlier 
by a different method [l-5]. 

It is important to show that the present result also agrees quantita- 
tively with the previous analysis based on the integral equation 
formulation. 

The agreement is readily brought out by considering a surface 
composed of hemispherical protuberances on a plane. Al1 we need 
to do is to introduce the apparent mass of a hemispherical solid. For 
the spherical solid, it is well known that the apparent mass is half 
the mass of fluid displaced by the solid [6]. Because of the symmetry 
the same factor applies to the hemispherical bosses. Hence in this 
case ,a1 1 = 1/2. With this value equation (3.9) coincides quantitatively 
with the earlier result [5]. We have assumed here that the spacing 
between hemispherical bosses is such that the non radiative close range 
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interaction is negligible. This interaction has been evaluated in the 
earlier analysis [2-51. 

We also note that no phase change occurs ($ = 0) for an angle 
of incidence given by 

tane= _!_ 
J Dl1 

(3.10) 

In this case the phase retardation due to the apparent mass effect 
compensates the phase advance illustrated by equation (3.1) due to 
the volume z of the roughness. 

The existence of a surface wave may also be derived from the boun- 
dary condition (2.44). The derivation Will not be repeated here since 
this was analyzed and discussed in detail earlier [4-51. 

When the plane of incidence is not in a principal direction of pij the 
incident wave is respresented by 

where 
& = A exp (inz - imy - ilx) (3.10) 

k2 = l2 + m2 + n2 

and - 1, -m, n are proportional to the direction cosines of the incident 
ray in the reversed direction of propagation. The reflected wave is 

4, = A exp (- inz - imy - ilx + 2$i) (3.11) 

and contains a phase II/ to be determined. Substitution of C$ = & + 4, 
in the boundary condition (2.44) yields the value 

I(~11ZZ+2~,,lm+P22m2) - n 
n 1 (3.12) 

which generalizes equation (3.8). Again at grazing incidence (n -P 0) 
the phase angle 2$ tends to the value - rc. 

The evaluation of the parameters zpfj in the boundary condition 
(2.44) results from the determination of the apparent mass effect. 
In the principal directions, this apparent mass is represented by the 
mass of fluid of volumes zy,, TP,,. They are not the same if the 
roughness is not statistically isotropic. For a certain number of 
geometric shapes such as hemispheres, half ellipsoids, for example, 
these apparent masses are available from the classical litterature. 
Note that the volume of the roughness may be zero z = 0, while 
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rp,j remains finite as for example in the case of half circular discs 
distributed normally to the reflecting surface. The apparent mass is 
zero in directions parallel to the discs, while in the normal direction 
it is equal to the mass of a fluid sphere of the same radius [6]. It was 
also pointed out earlier [5] that an isotropic shape of individual 
scattering protuberances such as hemispheres may lead to anisotropic 
reflecting properties if the distances between hemispheres in a given 
direction is small enough. 

In the foregoing analysis we have assumed that the roughness is 
uniformely distributed statistically. If this is not the case the boundary 
condition (2.44) must be replaced by 

(3.13) 

where x1 = x, x2 = y, while r and pclij are functions of x1, x2. If the 
distribution of roughness is periodic with a wavelength of the order 
of that of the acoustic wave, the boundary condition (3.13) should 
lead to selective reflection of the coherent wave in certain directions 
in analogy with an optical grating. 

4. INCOHERENT SCATTER 

Until now we have only dealt with the coherent wave generated 
by the reflection and multiple scatter. This coherent reflection involves 
no energy loss since only a change of phase is produced. Actually 
a small amount of first order energy is scattered in a11 directions and 
the amplitude of the coherent reflected wave is diminished by a 
corresponding amount. 

The incoherent scakter may be readily evaluated from the amplitudes 
U, and U, of the coherent wave at z = 0. This displacement induces 
a source and dipole distribution proportional to I_I, and U,, which 
generates a radiation with an incoherent component. In is of interest 
to point out that for grazing incidence the components U, and U, 
at z = 0 tend to vanish because of the phase reversal. As a consequence 
the incoherent scatter in this case also tends to vanish. There are 
classical methods for the evaluation of the incoherent radiation from 
more or less randomly distributed sources and dipoles, which involve 
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correlation coefficients for the geometry of the roughness. These 

methods being well known we shall not carry out this analysis. 

Extension and range of validity of the anal_vsis. Throughout sections 2 

and 3, it has been assumed implicitly that the size of the roughness 

is small relative to the wavelength and that this smallness is understood 

in the mathematical sense. In addition the thickness of the fictitious 

fluid layer is also assumed large relative to the roughness and at the 

same time small relative to the wavelength. However the nature of 

the physical mode1 used in the foregoing Lagrangian analysis leads 

to a possible extension of the applicability of the theory to a range 

of wavelengths which is not necessarily very large compared to the 

size of the roughness and the thickness h of the fluid layer. In the 

first place if we examine streamlines of flow patterns derived for 

potential flow around an obstacle such as a sphere we notice that the 

disturbance of the velocity field due to the obstacle is not important 

beyond a distance of about two diameters. Hence on the basis of 

physical intuition we may conclude that the Lagrangian analysis is 

approximately valid if we choose a layer thickness h of the order of 

two or three times the roughness size. Furthermore, instead of applying 

the boundary condition (2.44) at z = 0, we may use the boundary 

condition (2.3) at z = h with the values (2.40) for the coefficients tlii. 

By this procedure and on the basis of the foregoing physical reasoning 

the theory should remain approximately valid for wavelengths equal 

to only several times the roughness size along the reflecting surface. 

However in such a case the energy loss of the reflected coherent wave 

may be significant. 
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