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1. Introduction. In the linear range a general theory of thermoelasticity 
based on irreversible thermodynamics was developed and discussed extensively 
in some earlier work ([3], [4], [9]). It was assumed that the elastic solid is initially 
in a stress-free equilibrium state at uniform temperature. Completely linearized 
perturbations in the vicinity of this equilibrium state are then analyzed assuming 
the strains, the rotations, the displacements and temperature variations to be 
small of the first order. The case of similar first order perturbations for a solid 
in equilibrium at uniform temperature but in a state of initial stress was also 
analyzed in the context of the analogous case of a fluid saturated, porous medium 

m41, D51). 
The general irreversible thermodynamics of linearized perturbations in the 

vicinity of equilibrium was developed by the author [7] for the case of either 
stable or unstable equilibrium. Instability is the consequence of the property 
that a new thermodynamic function of the perturbation is not a positive quad- 
ratic form. Moreover this thermodynamic function has been shown to represent 
the total entropy change of the system and its environment. The general 
mechanics of an initially stressed medium including unstable behavior was 
developed for elastic and viscoelastic media in the general context of irreversible 
thermodynamics. For an elastic solid under initial stress isothermal and 
adiabatic behavior were discussed [7] but heat conduction is not introduced 
explicitly although it is implicit in the thermodynamic context. 

Our purpose here is to develop a non-linear theory of thermoelasticity which 
takes into account the non-linear geometry of the deformation while maintain- 
ing at the same time the validity of the linear irreversible thermodynamics. 

? 
In a vast category of practical problems such a non-linear theory embodies 
the major physical features without complicating unduly the analytical treat- 
ment. The theory includes the non-linear thermoelasticity for an elastic solid 

2 either stress-free or already stressed in the initial state. The latter case leads 
to the non-linear thermoelastic analysis of post-buckling behavior. As a con- 
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sequence a more thorough analysis is also derived of elastic instability for 
completely linearized perturbations in the vicinity of an unstable equilibrium 
state. The existence of isothermal and adiabatic buckling as well as the as- 
sociated thermoelastic creep buckling already discovered earlier by the author 
([7], [14], [15]) are further confirmed a,nd clarified. The phenomenon is illustrated 
by the analogy with the line&rized perturbation theory of an initially stressed 
porous medium containing a viscous fluid, which itself is a particular case of 
a recently developed thermodynamic theory of porous solids for finite deforma- 
tions [16]. The non-oscillatory character of elastic instability is also established 
as a particular case of a general property of thermodynamic instability. The 
instability is related to the statistical probabilistic concept of entropy for a 
system with minimum entropy at equilibrium. 

A variational formulation analogous to the principle of virtual work and 
d’alembert’s principle with corresponding Lagrangian equations provide a 
complete description of the behavior of the thermoelastic system by means 
of generalized coordinates. As already pointed out [9] such generalized co- 
ordinates are sufficient to describe a physical system macroscopically if we 
take into account the fact that there is a “resolution threshold”. The Lagrangian 
equations also lead to an equivalent formulation analogous to Hamilton’s 
principle. 

An important simplification is obtained by using a Cartesian definition of 
finite stress and strain ([5], [6], [7]) referred to locally rotated axes. This ap- 
proach, in conjunction with the principle of virtual work, avoids the more 
ponderous techniques of the classical tensor calculus. In the context of ir- 
reversible thermodynamics the Cartesian description of finite strain puts the 
problems of elastic stability in a new perspective. It should also provide a new 
impetus for a unified treatment of non-linear problems of thermal stress analysis. 
The Lagrangian equations are particularly well suited to obtain approximate 
solutions for complex technological systems. They also lead to a variety of 
formulations by means of “finite elements”. 

As already pointed out [7, p. 4831 the choice of the local rotation is not unique. 
A number of alternative choices are discussed in the Appendix. 

From the thermodynamic viewpoint the present treatment goes beyond 
classical concepts by taking into account Onsager’s principle, and by using a 
thermoelastic potential [3] which differs from the classical thermodynamic 
functions. This is in contrast to some other attempts to formulate non-linear 
theories of thermoelasticity in the context of classical thermodynamics ([17], 
[lS], [19], [20], [al]). One exception is represented by the work of Schapery [22], 
who has considered applications of irreversible thermodynamics to non-linear 
rheology. 

2. Stress and strain referred to locally rotated axes. For our purposes we 
shall first present an outline and further extensions of the Cartesian definition 
of finite stress and strain as introduced by the author ([5], [6], [7]). 
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Let an elastic medium be deformed in a continuous fashion so that a material 
point initially at the point xi is displaced to a point of coordinates. 

(2.1) ti = Xi + Ui(Zk) 

The displacement is ui(x,). The local differential transformation is 

(2.2) d{i = (6<i + aii) dxi 7 

where 

(2.3) 
aui 

aii = dzi’ 
From the standpoint of local behavior it is equivalent to consider the finite 
linear transformation 

(2.4) Ii = (aij + aii)Xj 

with nine coefficients aii . Hence it is sufficient to analyze a finite element 
originally a cube of unit volume oriented along the coordinate axes with one 
vertex at the origin subject to the linear transformation (2.4). We shall refer 
to this cube of unit volume as the unit element. 

The transformation (2.4) is now considered to be the result of two successive 
transformations. The unit element is first deformed according to the linear 
transformation 

(2.5) li = (sij + Eij)Xi j 

where 

(2.6) eii = Eii 

constitute six distinct coefficients. The transformation has the property that 
there are three orthogonal (principal) directions which do not change during 
the deformation. The deformed cube is now a parallelepiped on whose faces 
forces are applied represented by the nine components Tii’ . When the deforma- 
tion is varied the virtual work of these forces is 

(2.7) 

where 

(2.8) Tij = Tii = $(Tii’ + Tii’) * 

We define the finite strain by the six quantities ‘ii and the corresponding stress 
by the six components 7ii . The second transformation is a rotation of the 
deformed element and of the coordinate axes, as if they both constituted a 
rigid system. The new axes after rotation become xi’ . With respect to these 
rotated axes, the deformation is still defined by a linear transformation with 
the same coefficients ‘ii as in (2.5) while the stress components rii are unchanged. 
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As already pointed out [7] the present choice of a Cartesian definition of 
finite strain is not unique. Other alternatives are discussed in the Appendix. 

With the present definitions the first question which arises is how to express 
the stress components with respect to the original unrotated axes. The forces 
acting on opposite faces of the deformed unit element are equal and opposite. 
Referred to the unrotated axes xi these forces are represented by nine com- 
ponents fii . A particular component f ii denotes the projection on the xi axis 
of the force acting on the face originally in the plane zi = 1 perpendicular to 
the axis xi . The six strain components eii are functions of the nine coefficients 
ctii . These nine coefficients include three degrees of freedom corresponding 
to a rigid rotation, hence for which the six strain components remain invariant. 
Variations 6aii define corresponding variations 6eii and the virtual work of 
the stresses on the unit element is 

(2.9) 

We conclude 

(2.10) 

Note that these nine components are not independent, since their virtual 
work dissappears for a rigid rotation about each of the coordinate axis. Hence 
they satisfy identically the three conditions of equilibrium of moments about 
the axes. 

Relations (2.10) assume that we know ‘ii as functions of oii . In principle 
this relationship may be determined as follows. Because the transformations 
(2.4) and (2.5) differ only by a rigid rotation, the length of the vector & is the 
same for both. As a consequence we may write 

(2.11) 
EiEi = (8ki + eki)(8ki + kj)2iZj 

= (ski + Uki)(skj + akj)XiZj f 

Identity of the two quadratic forms imply the six equations 

(2.12) 2Eij + Ekiekj = U<i + Uii + UkiCJki 

which may be solved for the six unknowns eii . The inconvenience of course 
is the non-linear character of the equations. This difficulty may be circumvented 
by a procedure introduced earlier ([5], [6], [7]). We put 

(2.13) 
e,, = eii = $(Uii + Uji), 

Oii = -Wii = t(Uii - Uii). 

With these quantities equations (2.12) become 

(2.14) 2Eii = 2eij + ek&ki + e!&kj + WkiWki + ekzeki - EkiEki . 
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Considering ctii to be of the first order, a first order solution is 

(2.15) Eij = eii . 

Substitution of this value into ekieki on the right side of equations (2.14) yields 
the second order approximation 

(2.16) eii = eii + +ekjWki + &kiWkj + +WkiWkj . 

This process may be continued, by substituting again the value (2.16) of E,~ 
into the term Ekicki of equations (2.14) and SO on. Thus we may obtain cii to 
any order. 

The second order approximation (2.16) has been used extensively by the 
author in non-linear elasticity ([5], [6]) an in the mechanics of incremental d 
deformations [7]. In the vast majority of problems, expression (2.16) is quite 
satisfactory. It has the crucial advantage over the tensor (2.12) of the classical 
theory, that the spurious terms EkiEki have been eliminated. By contrast, in 
expressions (2.16) the higher order terms are due only to the rotation, thus 
providing a clear distinction between the non-linear effects resulting from the 
geometry and those resulting from purely physical properties. 

The dynamical equilibrium equations are obviously, 

(2.17) 

where @([J is the body force field per unit mass at the point ,$i = xi + ui 
and p is the mass per unit initial volume at the initial point xi . Introducing 

the values (2.10) of fii , equations (2.17) become 

(2.18) 
a 4 > TZk 2 + Pc%i(Xk + u,) = p 3, axi I, 

where aii are the nine partial derivatives (2.3). The equilibrium equations 
(2.18) are thus expressed by means of the stress components 7ii referred to 
locally rotated axes. The traction fi per unit initial area on a surface element 
whose outward unit normal is initially ni is given by 

(2.19) 

Equations (2.18) may also be derived from the following principle of virtual 
work 

where the integrals are extended to the domain Q and its boundary A in the 
5 space of initial coordinates xi . The variational principle (2.20) is the same as 

obtained earlier ([5], [6], [7]). It leads to the equilibrium equations in curvilinear 
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coordinates by substituting values of eii and oii for curvilinear coordinates 

u71, I241). 

3. Thermoelastic potential. During the deformation and heating of the 
unit element, its internal energy increases by the amount u and its entropy 
by the amount s. In the initial state the medium is assumed stress-free and 
at a uniform temperature T, . The thermodynamic function 

(3.1) v = u - T,s 

was proposed by the author ([l], [2], [3], [4]) in order to provide a general analysis 
of systems which are not at uniform temperature. In the present context in 
accordance with the previously introduced terminology [3] we shall refer to v 
as the specific thermoelastic potential per unit initial volume. The heat absorbed 
by the unit element in a reversible process is denoted by h. Conservation of 
energy implies 

(3.2) dU = 7ii deii + dh 

and the differential entropy is 

where T = T, + 13 is the temperature of the unit element and 8 the temperature 
increase. Combining (3.1) (3.2) and (3.3) we derive 

(3.4) 0% = Tii ClEij + 8 dS* 

The thermoelastic potential v is a function of the seven state variables cii and s 

(3.5) V = V(gii ) S) . 

Hence according to (3.4) the thermodynamic stress-strain relations are 

(3.6) 

av 
7ii = - ) ae,, 

/3=;. 

We may compare v with the classical Helmholtz free energy 

(3.7) A = u - (T, + 0)s = v - 19s 

more frequently used by other investigators. One advantage of the function v 
is the fact that it is positive definite while A is not. It also leads quite naturally 
to Lagrangian equations and variational principles as part of a broader treat- 
ment of irreversible thermodynamics. In addition it will be shown in the next 
section that a fundamental property is obtained for the total thermoelastic 
potential defined as 
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Considering aii to be of the first order, a first order solution is 

(2.15) Eij = eii . 

Substitution of this value into ekieki on the right side of equations (2.14) yields 
the second order approximation 

(2.16) ‘ii = eii + &j&i + +ekiwki + +WkiWki . 

This process may be continued, by substituting again the value (2.16) of E,~ 
into the term ekiEki of equations (2.14) and so on. Thus we may obtain eii to 
any order. 

The second order approximation (2.16) has been used extensively by the 
author in non-linear elasticity ([5], [S]) an in the mechanics of incremental d 
deformations [7]. In the vast majority of problems, expression (2.16) is quite 
satisfactory. It has the crucial advantage over the tensor (2.12) of the classical 
theory, that the spurious terms ekieki have been eliminated. By contrast, in 
expressions (2.16) the higher order terms are due only to the rotation, thus 
providing a clear distinction between the non-linear effects resulting from the 
geometry and those resulting from purely physical properties. 

The dynamical equilibrium equations are obviously, 

(2.17) 

where @QJ is the body force field per unit mass at the point ,$ = zi + ui 
and p is the mass per unit initial volume at the initial point xi . Introducing 
the values (2.10) of fii , equations (2.17) become 

(2.18) 
a 4 > Tlk 2 + PwXk + 4 = P $s, axi I, 

where aii are the nine partial derivatives (2.3). The equilibrium equations 
(2.18) are thus expressed by means of the stress components rii referred to 
locally rotated axes. The traction fi per unit initial area on a surface element 
whose outward unit normal is initially ni is given by 

(2.19) fi = fiini = rlk 2 n, . 
z1 

Equations (2.18) may also be derived from the following principle of virtual 
work 

where the integrals are extended to the domain Q and its boundary A in the 
space of initial coordinates xi . The variational principle (2.20) is the same as 
obtained earlier ([5], [6], [7]). It leads to the equilibrium equations in curvilinear 
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coordinates by substituting values of eij and oi.i for curvilinear coordinates 

(t71, [241). 

3. Thermoelastic potential. During the deformation and heating of the 
unit element, its internal energy increases by the amount u and its entropy 
by the amount s. In the initial state the medium is assumed stress-free and 
at a uniform temperature T, . The thermodynamic function 

(3.1) v = u - T,s 

was proposed by the author ([l], [2], [31, [41) in order to provide a general analysis 
of systems which are not at uniform temperature. In the present context in 
accordance with the previously introduced terminology [3] we shall refer to v 
as the specific thermoelastic potential per unit initial volume. The heat absorbed 
by the unit element in a reversible process is denoted by h. Conservation of 
energy implies 

(3.2) CZ’U = T<i deii + dh 

and the differential entropy is 

(3.3) 
ds,!!!! 

T' 

where T = T, + 13 is the temperature of the unit element and 0 the temperature 
increase. Combining (3.1) (3.2) and (3.3) we derive 

(3.4) dv = rii drii + 13 ds. 

The thermoelastic potential v is a function of the seven state variables eii and s 

(3.5) v = V(Q ) s) . 

Hence according to (3.4) the thermodynamic stress-strain relations are 

au 

(3.6) 
7ii = ae,, 9 

*=!?! 
as' 

We may compare v with the classical Helmholtz free energy 

(3.7) A = u - (T, + 19)s = v - ~9s 

more frequently used by other investigators. One advantage of the function v 
is the fact that it is positive definite while A is not. It also leads quite naturally 
to Lagrangian equations and variational principles as part of a broader treat- 
ment of irreversible thermodynamics. In addition it will be shown in the next 
section that a fundamental property is obtained for the total thermoelastic 
potential defined as 
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(3.8) V=/udO= U-T,S 
D 

with the integral over the domain Q before deformation. In expression (3.8), 
U and S are the total internal energy and total entropy of the elastic medium. 
They are expressed by 

(3.2) U = LudQ, S = LsdQ. 

We should note that while (3.8) is formally similar to a classical expression for 
a system at uniform temperature it is physically quite diierent since here the 
temperature varies from point to point. Equation (3.8) also exhibits the im- 
portant additive property of v in contrast to ,A. 

Linear thermodynamics. In the large majority of technological problems 
the elastic range is confined to strains rii which are only a fraction of a percent. 
We may also assume that the relative temperature increase 0/T, remains small. 
In such a case the stress-strain relations (3.6) may be linearized, which implies 
that v is a quadratic form in the seven variables e<j and s. In order to evaluate 
v, we note that the integration of (3.4). is independent of the path of integration. 
We first integrate it at constant temperature 6 = 0 by varying only Eij , then 
at constant deformation we increase the temperature to 0. By this process we 
obtain 

1 

B 
(3.10) V = 3Cijpv~i jErr + B ds. 

0 

The first group of terms, 

(3.11) V, = 3Cij~“Eije,. , 

represent the isothermal free energy at constant temperature where 

(3.12) ,;/, = cjjcv = Cij”fi = CM,” 

are the isothermal elastic coefficients. In equation (3.10) the value of s must 
be restricted to constant deformation. Because of linearization its value is 

where c is the specific heat per unit volume, for constant deformation. Again 
because of linearization c may be identified with its constant value for zero 
deformation. By substituting the value (3.13) of s into (3.10) we obtain ([3], [4]) 

Hence we verify that v is positive-definite with a zero minimum value in the 
initial state (Bij = 0 = 0). 
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In order to apply relations (3.6) we must express ZJ in terms of ‘if and s. 
This requires the knowledge of the following relation 

(3.15) T,s = yiieii + CO, 

where yii are six physical coefficients, with the dimensions of elastic moduli. 
The physical significance of relation (3.15) is quite evident since in the linearized 
theory 

(3.16) h = T,s 

represents the heat absorbed by the unit element. We solve (3.15) for 0 and 
substitute this value in expression (3.14) which becomes 

where 

(3.18) CiiPY = Ciipy + $ YiiYrv 
r 

are the adiabatic elastic moduli ([4], [7]). With the value (3.17) the thermo- 
dynamic stress-strain relations (3.6) are written 

1 
Tii = CijP*EpV - C Yiis7 

(3.19) 

e = -t yiicii + 5 a. 

Although these relations are linear in eii , they remain non-linear with respect 
to the geometry since eii are non-linear functions of aii . In addition the equi- 
librium equations (2.18) for 7ii are also non-linear with respect to the geometry. 

In the context of linearization the results derived in this section coincide 
with those obtained earlier ([3], [4]). 

4. Entropy production and dissipation function. The Lagrangian analysis 
of dissipative systems as formulated by the author ([l], [2], [3], [4], [S], [9]) 
involves the generalization of the concept of dissipation function as an invariant 
proportional to the rate of entropy production. Its importance is derived from 
a dual role. As a physical concept it leads immediately to general phenomeno- 
logical properties of dissipative systems. As a mathematical concept its invariance 
provides a powerful tool for the analytical formulation in arbitrary coordinate 
systems. 

The dissipation function in the present analyses involves the entropy produc- 
tion associated with heat conduction. In this context we shall follow a procedure 
similar but somewhat more general than in the earlier analysis ([4], [S], [9]). 
We consider the rate of heat flow in the elastic medium. Let h be the rate of 
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heat absorption in the unit element. The rate of heat flow outward through 
the face of the unit element originally normal to axis zi is denoted by fii . If 
there are no heat sources we may write the conservation relation 

(4.1) 
j&=_aEi-i 

aXi . 

The rate of entropy increase of the unit element is 

(4.2) 
h 1 a&. 

_$=____L. 
T T axi 

As shown by Meixner [23] this conservation condition may be written 

(4.3) 

The first term is interpreted as due to an entropy flow fii/T and the second 
term as representing an entropy production. 

We integrate equation (4.3) over the domain Q in the initial coordinates x1 . 
After integration by parts we obtain 

(4.4) 

where ni in the unit outward normal at the boundary A of 9, and 

(4.5) 5 = LB&J 

is the rate of change of the entropy S of the elastic medium. The surface integral 
may be interpreted as follows. We assume that the environment of the elastic 
body is constituted by a large number of thermal reservoirs which are in thermal 
contact with it. One of these reservoirs is a large isothermal container at the 
constant temperature T, . We shall call it the thermal well R, . The others 
are a collection of driving thermal reservoirs c R, at various temperatures T. 
We denote by H, the heat energy acquired by the thermal well and by H, 
the heat energy acquired by the particular thermal reservoir RT . We may 
write 

(4.6) 

As can be seen this represents the rate of change c 8, of the total entropy 
c S, of the reservoirs. With relation (4.6) equation (4.4) becomes 

(4.7) 

This is the rate of change of the total entropy S’ = S + c SE of the elastic 
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medium and its surrounding reservoirs. The rate of entropy production in this 
combined isolated system is 

(4.8) 

We have replaced dT/axi by aO/dxi since T = T, + 0. The integral (4.8) is 
applicable to an arbitrary domain. In particular we may apply it to a unit 
element surrounded by its own driving thermal reservoirs. Consider it to be 
in a state of frozen deformation with a uniform heat flow. The rate of entropy 
production of this element is 

(4.9) 
B. de 

s ‘I = __I_. 

T2 axi 

In the context of irreversible thermodynamics fii/T2 are the fluxes conjugate 
to the forces dO/dzi . According to Onsager’s principle ([lo], [ll], [12], [13]) 
we may write 

(4.10) - 8. = k.22 
E $1 axj ) 

where kii = kii is the thermal conductivity tensor. By inversion, equations 
(4.10) become 

(4.11) 
a0 

-dxi = XijBi ) 

where Xi+ = Xii . Hence the value (4.9) becomes 

(4.12) 

Since 8’ is always positive, expressions (4.12) are positive-definite quadratic 
forms. It follows that the total entropy production (4.8) 

is also positive definite. 
An important relation may be obtained which relates fi’ to the thermoelastic 

potential V. According to equations (4.6) and (4.7) we may write 

(4.14) 

On the other hand conservation of energy for the elastic medium is expressed by 

(4.15) !J + 0 = I@ - fi, - ZI;T, , 

where ‘J is the kinetic energy 



THERMOELASTICITY 319 

(4.16) s 
n pziitii da 

and I&’ the power input of the body forces and surface tractions 

(4.17) I$ = ~&& dQ + s, fizi, dA. 

In addition equation (3.8) may be written 

(4.18) v = C? - T,I% 

Elimination of 0 and fi between equations (4.14) (4.15) and (4.18) yields 

(4.19) - 

We define a dissipation function by 

With this value equation (4.19) becomes 

(4.21) 

The case where all thermal reservoirs are at the same temperature 0 = 0 
is of particular interest. If the elastic medium returns to the same initial state, 
the value of V and pi return to the same value. The total energy input of the 
body forces and surface traction obtained by the time integration of equation 
(4.21) is 

(4.22) W = 1’ I@ dt = 2 1’ D dt. 
0 0 

This is the energy dissipated. Again a time integration 

‘(4.23) w=H,+CH,. 

of equation (4.15) yields 

Hence the energy dissipated appears in the form of heat injected into the 
surrounding. 

Dissipation function for linear thermodynamics. For small deviations 
from equilibrium the temperature increases 0 are small and we may replace 
T by T, in expressions (4.20). They become 

(4.24) 

which coincides with previous results ([3], [4], [9]). If the heat transfer at the 
boundary of the elastic medium is represented by a local heat transfer coefficient 
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K we may write 

(4.25) tin = K(0 - 0,) , 

where Z?,, is the rate of heat flow outward per unit area, 6 = T - T, is the 
excess temperature of the surface A of the solid and 0, = T, - T, the excess 
temperature in the local thermal reservoir in the vicinity of the surface. In 
this case it was shown ([4], [8], [9]) that the dissipation function becomes 

(4.26) 

This includes the boundary dissipation which is represented by the second 
term. 

5. Variational principles and Lagrangian equations. The Lagrangian 
equations and its associated variational principles will be derived here in the 
context of linear thermodynamics and non linear geometry. Although the 
derivation hereafter is based on the field equations it should be pointed out 
that the Lagrangian equations may also be derived directly from Onsager’s 
principle as already shown previously in the context of the linear theory ([l], 

[21, [41). 
Consider the equilibrium equations (2.18) and the law of heat conduction 

(4.11). They are 

where aii is defined as 

(5.2) 
aui 

aii = azi’ 
This equation may be considered as a holonomic constraint implying continuity 
of the deformations. The strains cii are thermodynamic state variables which 
are function of aii , through expressions (2.16) and by the same token functions 
of ui through equation (5.2). Hence the strains ,cii are functions of the displace- 
ment field ui . 

The same considerations apply to the heat displacement jield Hi provided 
we limit ourselves to linear thermodynamics. The heat conservation equation 
(4.1) may be integrated with respect to the time t with zero initial conditions 

Although this constitutes a holonomic constraint, the heat h absorbed per 
unit initial volume is not a state variable. However it becomes one if the ap- 
proximate relation (3.16) 
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(5.3) 
h s=-- 

T, 

is valid, i.e., if we limit ourselves to small first order values for 0, h and s. Note 
that expression (5.4) for s may be used in the value (3.4) of v. However it is 
not valid in the value (3.1) of v because the latter requires a second order evalua- 
tion of s. Under these conditions the fields Ui and Hi may be considered as 
six unknowns governed by the six equations (5.1). 

Variational principles may then be derived as follows: We multiply the first 
three equations (5.1) by variations 6ui and the last three equations by &Hi/T,. 
Addition of the results and integration over the initial domain Q yield 

We integrate by parts the left side of this equation taking into account the 
continuity constraints (5.2) and (5.3). In addition account is taken of equations 
(3.4) which we may write 

(5.6) 6V = ~di 6eii + 0 6~ = ~gi 6Eii + $ She 
I 

By this procedure equation (5.5) yields the variational principle 

where V is the total thermoelastic potential (3.8) and fi is the boundary traction 
(2.19). 

This variational principle leads to Lagrangian equations if we express the 
fields ui and Hi by means of n generalized coordinates Qi , 

(5 3) 
Ui = Ui(ql j QZ 7 * * ’ Qn j $k f 0, 

Hi = Hi(ql 1 qz 9 * * * qn 7 ok j 0. 

The variations are 

(5.9) 

Also 
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(5.10) 

hence 

(5.11) 

In terms of the variations 6qi we obtain the following results. First we write 

(5.12) j /& 6Ui dil + 1 (fi 6~ - $n; 6H;) dA = Qi 6qi 
n A I 

with 

By a well known classical procedure we obtain 

(5.14) 

where 

(5.15) I.=& !z!_ __E_ * ( ) dt aqi aqi 

and 3 is the kinetic energy (4.16). Using relation (5.11) we derive 

(5.16) f j 
r n 

Xi,& sHi dS2 = f 1 X&, $ dD 6qi = $f 6q, , 
I 0 I I 

where D is the dissipation function (4.24). Finally we also have the relation 

(5.17) 

By substituting expressions (5.12), (5.14), (5.16) and (5.17) into the variational 
principle (5.7) and taking into account that 6qi are arbitrary variations we 
obtain 

(5.18) 

which are n Lagrangian equations for qi . They govern the combined non-linear 
mechanical and thermodynamic system in a unified way including the thermo- 
elastic dissipation. 

Generalized d’Alembert’s principle and its Hamiltonian form. If we put 

(5.19) X=2, 
1 
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the Lagrangian equations are obtained by writing that the variational equation 

(5.20) 6V = (-Ii - Xi + Q&i 

is verified for arbitrary variations. This may be considered as a generalization 
of d’Alemberts principle where a dissipative force -Xi must be added to the 
inertia force -Ii . As can be seen Xi plays the role of a generalized “disequi- 
librium force” as already pointed out earlier [2]. By integration of equation 
(5.20) with respect to time we obtain 

(5.21) 
s 

’ (6V + Ii 6qi + Xi 6q< - Q< Sqd) dt = 0 
0 

which is a Hamiltonian form of the variational principle. 

System with body force potential and surface heat transfer coefficient. We 
consider the case where there is a body force potential $(x~ + UJ such that 

(5.22) a.=. !%_ 
I -aui* 

In addition we may assume that the surface heat transfer obeys the local con- 
dition (4.25). The Lagrangian equations (5.18) retain the same form and are 
written 

(5.23) 

where D is given by (4.26) and includes the boundary dissipation, while $j is 
a total potential 

(5.24) $j= v+ s 
p$adO. 

n 

The value of Qj is also different and expressed by 

(5.25) dA , 

where 0, is the excess temperature in the adjacent environment. 

Completeness of generalized coordinates and f$nite element analysis. The 
description of a continuum by a finite number of generalized coordinates is 
of course not mathematically complete. However, as already pointed out [9], 
in physical systems it is possible to use the concept of resolution threshold. We 
may imagine that the system is composed of a large number of cells, each of 
which is described by a small number of generalized coordinates. In order for 
the description to be physic&y complete the cells need to be sufficiently small 
but not smaller than a resolution threshold beyond which the macroscopic 
laws involved in the formulation break down due to the atomistic structure 
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of matter. Hence in such a case the physical description with a large but finite 
number of generalized coordinates may be said to be complete. The Lagrangian 
equations therefore embody the total physical properties of the system in a 
general unified form. They also provide the foundation for a large number 
of methods which have become known as “finite element” methods. The system 
is divided into a certain number of cells each of which is described by a small 
number of generalized coordinates, in such a way that interconnections con- 
straints are satisfied. The Lagrangian equations for the total system of cells 
are then formulated with a limited number of unknowns. For the present case 
of thermoelasticity the results may be used to obtain a large variety of finite 
element methods in non-linear problems of thermal stress analysis. Finite 
element methods based on a Lagrangian approach were also briefly discussed 
earlier [9]. 

6. Non-linear thermoelasticity with initial stress. Consider now that in 
the initial state the solid is in equilibrium while already stressed at a uniform 
temperature T, . The initial stress field is denoted by 

(6.1) sij = xii . 

The initial state is one of thermodynamic equilibrium and we may expect 
that superimposed deformations obey the same thermodynamic principles 
as for the solid initially stress-free. The difference here is due to the fact that 
the initial equilibrium state may be unstable. 

The initial stress field satisfies the equilibrium conditions 

(6.2) 

and 

(6.3) fi = Siini 

is the corresponding boundary traction. Additional stresses and temperatures 
are superimposed associated with a displacement field ui and a heat displace- 
ment field Hi defined as previously. The strain eii = eii and the stress 

(6.4) ?-ii = tij + sij 

are referred, as above, to locally rotated axes. Therefore 

(6.5) tij = tji 

is the incremental stress per unit initial area, referred to the same rotated 
axes. It is evident that without deformation or heating a unit element undergoes 
only a rigid rotation and the stress relative to the rotated axes remains the 
same. Hence the incremental stress tii depends only on the strain eii and on 
the thermodynamic variable. 

A unit element as defined in Section 2 is now a unit cube initially with stresses 
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Sii acting on its faces. Under deformation and heating the internal energy 
and entropy of the element are increased by amounts u and s. The corresponding 
specific thermoelastic potential is 

(6.6) v = u - TVs. 

This time we have the property 

This may be written 

t.. =dv’ 
It deii ’ 

where 

(6.9) 2)’ = 2) - X..E.. 11 El * 

This quantity v’ plays the role of a local incremental thermoelastic potential 
of a unit element provided we consider the initial stress as part of the elastic 
system with its own local potential Si jei j . Using v’ we may analyze the thermo- 
dynamic stress strain relations as in the foregoing analysis of Section 3. We 
assume eii and s to be suitably small. In this case v’ is of the same form as 
(3.14), i.e., 

(6.10) 

2 

v’ = &’ + I Cc!_ 
2 T, ’ 

V, ’ = ~Cij’Yei& # 

The coefficients C<ipy are the isothermal incremental elastic coefficients with 
the same symmetry properties as (3.12). We shall assume material stability 
of the initially stressed unit element, hence v,’ and v, are positive definite. 
In terms of cij and s the incremental stress-strain relations are similar to (3.19), 
i.e., 

(6.11) 
tii = ~iip”~~” - ~YiiS, 

I9 = -t yijeii + 2 s ) 

where Cii”” are the adiabatic incremental coefficients. They are given in terms 
of the isothermal incremental coefficients by relations of the same form as 
(3.18), [7]. These coefficients refer to incremental stresses. They depend on the 
state of initial stress and are not the same as those of Section 3. 

Note that the initial stress Sii may not be the result of an initial elastic 
deformation. Only the incremental deformation are assumed to be elastic. 
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Also note that equations (6.11) are non-linear since eii are non-linear functions 
of aii . 

The equilibrium equations are obtained by substituting rii = tii + Sii in 
equations (5.1). In addition they may be put in incremental form by sub- 
tracting the equilibrium conditions (6.2) of the initial stress from the first 
three equations (5.1). The result is 

(6.12) -$ 
C 

ta % + Saaz 1 + PA% = P !$ , 
de -az, = Xii~i ) 

t I, *I 

where 

(6.13) 
l)ii = eii - eii = $(ekj’%i + ekiwki + @k@ki) ) 

ABi = (ai(xk + uk) - @(xk)* 

In deriving these equations use has been made of the identity Sii = Slk &l&/d&j . 
Equations (6.12) are six equations for the unknown fields ui and Hi . Note 
that the approximation (3.16) is also valid here. Corresponding variational 
principles may be derived as previously from equations (6.12). However they 
may be derived more directly as follows. 

The variational principle (5.7) is obviously valid, since it follows from equa- 
tions (5.1) in which 7i i = tii + Xii . On the other hand the initial stress field 
satisfies the variational principle 

(6.14) S, (Sii &ii + a< 6~i) da = S, Sijni 6ui dA. 

If we subtract this equation from the variational principle (5.7) we obtain 

where 

(6.16) 
‘0 = n (v’ + Siifii) d0, 

s 

fi’ = fi - Siini . 

The vector fi’ is the incremental boundary traction per unit initial area. 
Since the variational principle (6.15) is of the same form as (5.7) it leads to 

corresponding Lagrangian equations. Expressing ui and Hi by means of gen- 
eralized coordinates qi as in equations (5.8) we derive 

(6.17) 
d a3 
dt api I , , 

(-)-g+z+E=Qi. 
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In the most general case with a surface heat transfer coefficient as defined by 
relation (4.25) the dissipation function is given by expression (4.26) which 
includes the boundary dissipation. The generalized thermo-mechanical driving 
force is then given by 

where 0, is in the excess temperature in the local environment in the vicinity 
of the boundary. 

The Lagrangian equations (6.17) are now in incremental form. A fundamental 
difference with equations (5.18) is due to the fact that ‘u may not be positive- 
definite in the vicinity of initial equilibrium. This corresponds to instability 
of the initial state. 

Thermodynamics of incremental deformations. The initially stressed 
system is a system in thermodynamic equilibrium which is then deformed by 
additional stresses. This deformation shall include the effect of the non-linear 
geometry. Obviously from the thermodynamic viewpoint, the presence of 
initial stress does not introduce any essential difference. This can be seen 
in the variational principle (6.15) and in the Lagrangian equations (6.17) where 
the incremental tractions fd’ and body forces A& play the role of external 
forces applied t,o the system. The initial traction fi and body forces C% are 
considered as belonging to the stressed system initially in equilibrium. In 
addition the function V plays the role of a thermoelastic potential due to de- 
viations from the initial stressed state of equilibrium. That this is the case 
can be seen as follows. Using the value (6.13) of qii we write equation (6.9) 
in the form 

(6.19) 2)’ + Sijr]ij = V - Siieii . 

By introducing the value (6.6) of v and integrating over the volume we obtain 

(6.20) 

where 

‘u = U-T,S- 
s 

Siieig dQ , 
n 

(6.21) U = j)dD, S = lsd61. 

Integration by parts, taking into account the initial equilibrium conditions 
(6.2) and (6.3), yields 

(6.22) 1 Siieii da = S, cB~(xJu~ d0 + S, fiUi dA. 
n 

With this value equation (6.20) becomes 

(6.23) ‘u = U’ - T,X , 
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where 

(6.24) ~1 = u - S, (B~(x~)u; OTQ - S, fiui dA* 

This represents the total internal energy of the system including both the 
solid and the initially applied forces as part of the system. Hence from the 
thermodynamic viewpoint ‘u is the total thermoelastic potential for incremental 
deformations of this combined system. In particular we may apply equation 
(4.19) by writing 

(6.25) 

where yr? is now the power input of the incremental forces 

(6.26) 

while 5’ is the total entropy including the thermal environment. 

7. Thermodynamics of elastic instability. The foregoing analysis of in- 
cremental deformations starting from an initial state of stress provides the 
foundation for a general discussion of elastic instability. Equations (6.12) 
are essentially non-linear with respect to the geometry of the deformation. 
However, for our purpose, the first three equations (6.12) may be further 
linearized with respect to incremental strains and displacements by substituting 
the first order approximations 

(7.1) 

‘ii = e,, , 

AC& =$u+ 
f 

To the first order the equilibrium equations (6.12) then become 

(7.2) 

The stress-strain relations (6.11) are further linearized using the value (7.1) 
of eii , i.e., 

(7.3) 

We note that in equations (7.2) the influence of the initial stress is clearly 
brought out by the term Slk d~lk/daii which is due essentially to a non-linear 
property of the geometry. 
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Equations (7.2) developed by the author ([5], [6], [7]) have been extensively 
applied in the more general context of viscoelasticity [7]. For an elastic body 
the particular case of isothermal buckling (13 = 0) or adiabatic buckling (s = 0) 
were discussed [7]. The characteristic features introduced by heat conduction 
in stability problems were also derived on the basis of a mathematical analogy 
with problems of stability of a fluid-saturated porous solid ([14], [15]). It was 
pointed out that in addition to the limiting cases of isothermal and adiabatic 
buckling there is an intermediate mixed behavior represented by thermo- 
elastic creep. Further discussion of these features from a fundamental thermo- 
dynamic viewpoint is presented hereafter. 

We consider the initially stressed solid to be in thermodynamic equilibrium 
at a constant temperature T, . Let us investigate the stability of perturbations 
of this initial state on the basis of the linearized equations (7.2) and (7.3). 
For simplicity we shall assume that the body force is represented by a uniform 
gravity field; hence 

(7.4) A& = 0. 

We also assume that the boundary of the elastic body is either adiabatic or 
that it may have a local heat transfer coefficient K to an immediate environ 
maintained at the constant temperature T, (hence 0, = 0). Finally we assume 
that if the displacement at the boundary is not zero, then the incremental 
traction fi’ at that point remains zero. Under these assumptions the generalized 
force (6.18) in the corresponding Lagrangian equations vanishes 

(7.5) Q< = 0. 

In order to investigate the stability we represent the perturbations as linear 
functions of generalized coordinates as follows 

(7.6) 
?A; = U;& , 

Hi = Hiiqi , 

where uij and Hii are given functions of the coordinates 2; . With eii = eii 
we may write 

(7.7) 

where 

(7.3) 

1 CL+ 
2)’ = 21,’ + - - , 

2 T, 

II,’ = $CiiPveiierv . 

Hence “u is the quadratic form 

(7.9) ‘0 = +aiiqiqi . 
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The following quadratic forms are also derived from the values (4.16) and 
(4.26) : 

(7.10) 
D = +bi&ji , 

3 = &miiQiQi . 

With these values, taking into account equation 
(6.17) become 

(7.5), the Lagrangian equations 

(7.11) 
d aa aD au 
z G +z+G=O ( ) 

or 

(7.12) miiai + b,iQi + ~ijqi = 0. 

This is a set of linear homogeneous equations for the unknowns qi . 

Non-oscillatory character of unstable solutions. The characteristic solu- 
tions of the linear system (7.12) are of the type 

(7.13) qi = Ciep”. 

When ‘u is positive-definite these solutions are necessarily stable and the real 
part of p is negative representing damped oscillations. Unstable solutions 
are possible if ‘U may acquire negative values. The important property here 
is that unstable solutions arc non-oscillatory, corresponding to real positive 
values of p. This property is a consequence of a general theorem. derived in 
the author’s book, tihere it is discussed in a more general context and shown 
to apply to unstable thermodynamic systems in the vicinity of equilibrium [7]. 

Isothermal and adiabatic buckling. Thermoelastic creep. In order to clarify 
the nature of thermoelastic instability it is useful to assume that inertia forces 
are negligible. For example we may assume p = 0; hence 3; = 0. The effect of 
body forces also dissappears in this case and the equations become identical 
to those of an initially stressed porous solid containing a viscous fluid. In the 
context of this analogy the buckling of both the thermoelastic and the porous 
solid have been discussed previously ([14], [15]). There are two critical buckling 
loads. In the thermoelastic case the lower value corresponds to isothermal 
buckling. The rate of deformation in this case is sufficiently slow sd that tem- 
peratures remain approximately uniform throughout. Obviously this represents 
a creep buckbing of purely thermoelastic origin. On the other hand the upper 
critical load corresponds to ,purely adiabatic deformations where the rate of 
deformation is so large that no heat flow can occur in the solid. For a massless 
medium this adiabatic buckling corresponds to an instantaneous collapse. 
The same behavior occurs for a porous solid where the lower critical load leads 
to creep buckling with a slow diffusion of the fluid through the pores, while 
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for the higher critical load fast deformation does not allow any exchange of 
fluid between pores. 

A more explicit analytic analysis of these features is obtained as follows. 
As stated we put p = 0 for the purpose of discussion. We write V in the form 

(7.14) wr = n ($cii”“eiie,,, + Siirlij) dil, s 

We also separate the thermal and mechanical variables by writing (7.6) in 
the form 

(7.15) 
uk = Ukiqi ) 

Hk = Hk,qz , 

where i assumes values from 1 to v while 1 assumes values from v + 1 to n. 
Since r),. depends only on ui , it is a quadratic form in pi while ‘Oe is a quadratic 
form in pi and qz . The dissipation function D is a quadratic form in QI . We 
write the Lagrangian equations (7.12) for this case. After substituting an 
exponential solution of the type (7.13) the Lagrangian equations become 

(7.16) 

z+g=o, 
1 1 

T+pE=o, 

where 9 is the quadratic form obtained by substituting qz for al in the dis- 
sipation function D. The characteristic solutions for incipient instability are 
obtained for p = 0. In this case we add equations (7.16) after multiplying the 
first group by qi and the second by qL . This yields 

(7.17) w, + 21, = 0. 

For a physically stable material, CiTei ie,v is positive definite. Also ‘Us is positive 
definite. Hence equation (7.17) requires that Siir)ii be negative of sufficient 
magnitude. Hence, for increasing initial stress, equation (7.17) is first verified 
when 

(7.18) V, = ‘us = 0. 

This implies 8 = 0, i.e., isothermal deformations. Furthermore in this case 

(7.19) 

Hence the first of equations (7.16) becomes 
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Note that for 0 = 0, ‘0, represents the classical free energy at constant temperature 
T, for perturbations of the initially stressed system as is shown by expression 
(6.23). As a consequence of equation (7.20), incipient instability occurs for 
stationary values of this isothermal free energy ‘0, . According to (7.14) V, 
is expressed by means of the isothermal incremental coefficients Ciipy . 

The other extreme case is obtained by putting p = ~0 in equations (7.16). 
Since 9 is positive definite this requires qz = H, = h = 0. The buckling is then 
instantaneous and adiabatic. In this case we must substitute for 0 the value 
(7.3) with s = 0. We obtain 

(7.21) 

where eij~” are the adiabatic incremental coefficients. From (7.16) we derive 

(7.22) 

which are the equations for adiabatic buckling. 
For intermediate values of the initial stress between isothermal and adiabatic 

buckling the value of p is finite corresponding to creep instability. 
In the foregoing discussion we have assumed p = 0. Actually of course this 

is not the case and for large values of p inertia enters into play. However, we 
may conclude that for critical loads between isothermal and adiabatic values, 
the instability is dominated by thermal diffusion, and will be in the nature of 
a creep buckling. Beyond the adiabatic value the phenomenon is dominated 
by inertia, and will be in the nature of a dynamic buckling, with a correction 
due to thermal diffusion. 

Thermoelastic buckling as a particular case of unstable thermodynamic 
equilibrium. Elastic instability may be related directly to the properties of 
entropy, The general theory of instability of a thermodynamic system in the 
vicinity of an equilibrium state was developed by the author [7] mainly in the 
context of elasticity and viscoelasticity. The properties are represented by the 
thermodynamic function ‘u. Instability occurs when the latter is not positive 
definite. The relation of ‘u to entropy was already derived in some earlier work 
([l], [2], [4]). The result is fundamentally the same as in equation (6.25). In 
the present discussion we have assumed that there are no incremental applied 
forces and that the kinetic energy is negligible (j; = $? = 0). In addition the 
excess temperature 0, of the environment is also assumed to vanish. In equation 
(6.25) 0 may be replaced by 0,) hence we may put f3 = 0. Under these conditions 
equation (6.25) may be written 

(7.23) -W = T,X’. 
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Hence --‘u is proportional to the total entropy of the isolated system composed 
of the solid and its isothermal environment. If ‘u = 0 is not a minimum at 
equilibrium, and may become negative for small perturbations, we have shown 
that the system is unstable. According to (7.23) negative values of ‘u correspond 
to an increase in total entropy 6”. Thus we have a typical case of thermodynamic 
instability since according to the statistical probability concept of entropy 

’ it will tend to increase spontaneously. 

Appendix-Alternative Cartesian representations of finite deformations. The 
Cartesian definition of finite strain is by no means restricted to the transforma- 
tion (2.5) as already pointed out [7, (page 483)]. For example we may first 
apply a transformation 

(A-1) t;i = (&i + Gi’)% , 

where Eii’ # eii’, which is then followed by a solid rotation. The non-symmetric 
tensor cij’ is just as adequate to describe the deformation, provided the nine 
components bii’ are constrained to satisfy three relations so that they contain 
only six degrees of freedom. These six degrees of freedom must of course be 
such that they still represent the most general deformation. In the particular 
case of the transformation (2.5) these three relations are 

(A-2) Eii I = Qi’ . 

However, we may just as well choose the relations to be 

(A-3) 831 
t- 

- 832' = ezl - ‘-0 . 

The six remaining components B 11’ , caa’ , e33’ , e13’ , ez3’ , e12’ may then be con- 
sidered as a measure of the strain. These values represent the deformation of 
a cube of unit size originally oriented along the axes, such that the edge along 
the x1 axis remains on this axes, while the face in the z1x2 plane remains in this 
plane. After performing a solid rotation we obtain the transformation (2.1). 
The condition that the two transformations (2.1) and (A.l) represent the 
same deformation is expressed by a condition similar to equation (2.12) which 
in this case becomes 

(A.4) Eii’ + Eii’ = Uij + ai< + C&&j - Eki’eki’ . 

These six equations determine the six components Eij’ . A first approximation is 

Cl1 ’ = all , 6x2 I- (A.5) - az2 , k’ = a33 , 

El2 ' = aI2 + azr , 63 ' = al3 + a31 , E23l = az3 + a32 . 

Substitution of these values into ekifeki’ on the right side of equations (3.48) 
yields the second approximation. Continuation of this process yields eii’ to ’ 
any order. 

The great advantage of this procedure is the possibility of choosing material 
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directions of reference for the deformation which are most suitable to describe 
the physical properties. For example if the material is transverse isotropic 
about the x3 axis it is convenient to choose 

(A.6) e12’ = %l’ , Egl’ = E32’ = 0. 

Again in this case during the deformation the face in the xlxz plane remains 
in this plane. The six independent components of eii’ are again determined by 
the six equations (A.4). Their evaluation up to any order is obtained by the 
same process of successive approximations. 

The virtual work for a virtual deformation 8~~~‘ is 

(A.7) 8W = 7ii’&ii’ . 

This defines the six corresponding stress components rii’ . As in the case of 
equation (2.9) we derive 

(A.81 

The nine components fii thus obtained in terms of rii‘ satisfy the three con- 
ditions of equilibrium of moments. 

For convenience we may introduce the following symmetric notation. For 
example in case (A.3) we write 

Cl = h’, El2 = e21 = &l,‘, 711 = 711’) 712 = 721 = 7,2’, 

(A.9 ~22 = ~22’, 623 = E32 = %23’, 722 = 722’1 723 = 732 = 723’) 

63 = 633’) E3l = El3 = $613’) 733 = 733’, 731 = 712 = 713!. 

and in case (A.6) we write the same values for eii and rii except for e12 and r12 
which are defined as 

(A.10) 712 = 721 = 3(712’ + 721’)) El2 = E21 = 612’ = E2l’ . 

It should be understood that this is purely conventional and that the symmetric 
notation of 7ii and eii does not imply that they are symmetric tensors. With 
this notation, equations (2.10) and (2.19) for fii and fi remain formally the 
same and the foregoing analysis of thermoelasticit’y remains the same. 
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