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Abstract-The continuum mechanics of multilayered plates under initial stress is developed 
to include the case where some or all of the layers are constituted by thinly laminated materials 
with couple stresses. It is applicable to problems of buckling, dynamics and vibrations. This 
includes the evolution of viscoelastic creep buckling and vibration absorption. Results are 
obtained in two forms. One is derived from a rigorous analysis using the general theory of 
incremental deformations, the other provides drastic simplifications while retaining essential 
physical features which are consequences of the continuum behavior. Use of a particular defi- 
nition of incremental stress is emphasized which is of special advantage in the type of problems 
under consideration. Corresponding variational principles are also formulated. Exact and 
approximate theories are compared both analytically and numerically. Excellent agreement is 
obtained. 

1. INTRODUCTION 

Based on the general theory of incremental deformations an exact solution was developed 
for multilayered structures under initial stress[l, 81. The particular case of buckling for 
incompressible materials was discussed separately[3]. The layers were assumed orthotropic, 

elastic, or viscoelastic. The case of individual layers constituted by laminated composites 
was included using the elastic coefficients of the equivalent continuum. Extension of the 
theory taking into account couple stresses in laminated materials was developed in the con- 
text of static buckling and incompressible materials[4]. This extension also includes an 
added refinement referred to as “interstitial flow “. The foregoing exact treatment is 
applicable to complex multilayered structures which may be embedded in an infinite con- 
tinuum or may be free on one or both sides. In the latter case we are dealing with a multi- 
layered plate. In this case it was shown[7,9] that for a large variety of technological problems 
drastic simplifications may be introduced, in the analysis, without sacrificing essential 

physical features such as the skin effect or details of stress distribution required in the 
correct evaluation of damping, and of local damage due to stress concentrations. The 
purpose of the present analysis is two-fold. First to extend the exact dynamical theory under 
initial stress for compressible materials[l, 81, to include laminated layers with couple- 
stresses. Second to extend the approximate theory of multilayered plates[7,9] with laminated 
layers and couple stresses to include a state of initial stress. 

The fundamentals are presented in the context of plane strain deformation in a plane 
normal to the faces, since such solutions are immediately applicable to a large variety of 

t This research has been sponsored by the A.F. Office of Scientific Research (N.A.M.), 1400 Wilson 
Boulevard, Arlington, Virginia 22209, through the European Office of Aerospace Research AFSC. United 
States Air Force, under contract F 44620-71-C-0092. 
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three-dimensional problems. The analysis is carried out using a definition of incremental 
stresses particularly suitable for the type of problem considered here. It was already used 
earlier occasionally[l, 41 and discussed more systematically in recent work[5]. This choice 
is a consequence of the fact that incremental stresses may be defined in various ways depend- 
ing on the reference area before or after deformation and on the choice of the rotation of the 
local reference axes. The stress-strain relations and equilibrium equations as well as various 
definitions of incremental stresses are discussed in Sections 2 and 3, and in Appendix 1. 
The equilibrium equations are also derived by a suitably developed variational principle. 
Section 4 introduces couple-stresses in the formulation for the case of laminated layers, and 
a related variational principle. Section 5 shows the equations to be applicable to triaxial 
initial stresses. By using a couple-stress analogy derived earlier[4] the available exact solu- 
tions for homogeneous layers are immediately extended to include laminated materials 
with couple-stresses following the procedure outlined in Section 6 and Appendix 2. In 
Sections 7 and 8 drastic simplifications are obtained by extending to the case of initial stresses 
the approximate methods developed recently[7, 91. It is shown how to formulate in simple 
form the characteristic equations for buckling and free oscillations. Resonance damping 
under initial stress is also evaluated. An important feature of these results is the practical 
validity of the expressions already derived earlier for resonance damping in the absence of 
initial stress. For transverse isotropic symmetry of the initial stresses and elastic properties 
the plane strain solutions are immediately applicable to the three-dimensional problems, for 
rectangular, triangular and circular plates. The procedure is briefly outlined in Section 9 
following ideas developed earlier[9] in a more restricted context. 

Exact elasticity solutions are compared with approximate results for the limiting case of 
large wavelengths in Section 10. For this case the exact solution becomes identical to the 
result obtained from the classical Euler-theory for the buckling of thin plates. A numerical 
comparison of the exact elasticity theory and the approximate analysis of Sections 7 and 8 
is provided in Section 11. Excellent agreement is obtained. A comparison is also made with 
results derived from a “ Timoshenko beam ” approach. 

All the results derived herein are applicable to both elastic and viscoelastic materials. 
Creep buckling analysis is readily obtained by methods discussed in detail earlier[l] for the 
case of viscoelasticity. 

Approximate treatments of the mechanics of simple- and multilayered plates with initial 
stress have also been the object of attention by other investigators. Referring to the more 
recent contributions, the following may be cited. Srinivas and Kao[l l] used approximate 
equations by adding membrane stresses to the classical theory of elasticity of an initially 
stress-free material. Viscous buckling of plates under various conditions was derived by 
De Leeuw[l2, 131 and Mase[l2]. Elastic buckling of anisotropic composite plates was 
studied by Chamis[l4], Ashton[lS] and Kicher and Mandel[l6]. A survey of earlier studies 
of buckling of sandwich structures is given by Plantema[l7]. 

2. BASIC EQUATIONS FOR INCREMENTAL DEFORMATIONS 

We consider an orthotropic elastic plate whose faces are parallel to the x, z axes, with 
directions of elastic symmetry along X, y, z. The plate may be inhomogeneous, with or 
without discontinuities across the thickness, hence the elastic properties may be functions 
of y. For the sake of simplicity and intuitive clarity we start with the case of a biaxial initial 
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stress represented by two principal components oriented along x and z. These components 
are 

S,, = -P(Y) S,, = S,,(Y). (2.1) 

They are functions of Y. The component (SZZ = 0) normal to the faces is zero. The quantity 
P(y) represents a compressive stress parallel to the faces and variable across the thickness. 
We shall see below that the analysis is easily extended to the case of triaxial initial stress 
where SZZ is not zero. 

It is important to note that the plate is assumed to be flat while already stressed initially. 
Deformations and stresses are considered as incremental quantities[l]. For incremental 
plane strain with displacements U, v in the x, Y, plane, the first order strain components are 

au au 1 au au 
e ZS- 

XX ax eyy = 6 exy = 7j z + ay . ( 1 (2.2) 

They generate incremental stresses 

4, = Cllexx + %e,, 
t 22 = G2exx + Cz2eyy 

t;2 = 2Le,, . 

(2.3) 

These stress-strain relations introduce four incremental elastic coefficients C,, C,, C,, 
and L which may be functions of y. 

The incremental stress components t 11 t 22 ti2 were already defined and used earlier[l-4]. 
It is important however to recall their significance. This may be done in the following way. 
Consider a cube of material of unit size with edges oriented along X, Y, z (Fig. la). We shall 
call it the unit element. This element is initially stressed by a compression P = -S,, parallel 
to the x axis. There is also a principal initial stress S,, on the face normal to the z axes, but 
for plane strain in the x, Y plane it does not appear explicitly in the formulation. Note that 
the four elastic coefficients in the stress-strain relations (2.3) will generally depend not only 
on the physical nature of the material but also on the state of initial stress hence on the two 

I, ,/I,, 
/ 

I 
:s,, s,+t,, _ 
I 

, 
I 

C 

- x 

I+exx -I x 

(b) 

Fig. 1. Definition of incremental stresses. 
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stress components, S,,(y) and S,,(y). We now apply stress increments to the unit element. 
Consider first a plane strain deformation without shear (eXY = 0). This requires the applica- 
tion of principal stresses S,, + t,, in the x direction and tzz in the y direction (Fig. lb). 
These stresses are actually forces applied to the unit element so that t,, and t,, define 
incremental stresses per unit initial area. The incremental stresses are assumed to be small 
of the first order so that t,, may be referred indifferently to initial or final area. The principal 
strains eXX and eyY generated by the stress increments are also small, and they are related 
linearly to the stress-components t,, and t 22 by the first two of equations (2.3). Next we 
apply a tangential stress tiz in the x direction on the face normal to they axis, in such a way 
that this face does not rotate but slides with respect to the other parallel face which remains 
along the x axis. (Fig. lb.) The deformation is represented by a shear strain 2e,,, related 
to tiz by the last of equations (2.3) with the elastic coefficient I_.. This coefficient L was 
called the slide moduZus[l-4] to distinguish it from the classical shear modulus. 

Obviously after these incremental deformations of the unit element have occurred we 
may rotate it rigidly through a small angle 

(2.4) 

about an axis normal to the x, y plane. Since there are no additional deformations occurring 
during this rotation the whole stress system including both initial and incremental stresses 
rotate with it. Hence S,,, t,,, tzz , tiz are now referred to axes x’y’ obtained by rotating 
the original axes x, y through an angle 8 (Fig. lc). An important property enters into play 
here regarding strain components. Since they are assumed small as well as the rotation their 
value referred to the rotated axes are the same as those given by equations (2.2) where U, 
and u are the projections of the displacements on the fixed initial axes. Hence the deformed 
and rotated unit element as described above may be considered to belong to a continuous 
deformation field where exX ervexy and t,, t,, ti2 are the local strains and incremental stresses 
referred to axes rotated locally through an angle 8 = &/ax. 

The equilibrium equations for the stress-field are written 

at,, at;, a224 
z+ay=pat 

(2.5) 

where p(y) is the specific mass which may be a function of y. These equilibrium equations 
with the addition of inertia terms are the same as obtained in earlier work[l-4]. They have 
the advantage of an obvious intuitive interpretation. Several alternate derivations of these 
equations are also given in Appendix 1, including the more general case with four com- 
ponents S,, S22 S,, S33 for the initial stresses. 

3. ON VARIOUS REPRESENTATIONS OF THE INCREMENTAL 
STRESS 

Before proceeding any further it is useful to point out that incremental stresses may be 
defined in a variety of ways. The choice is usually a matter of convenience in the particular 
problem considered. First there is the matter of reference area for the stresses. They may be 
referenced to initial areas before deformation. Second the choice of the local rotation for 
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the axes x’, y’ to which local stresses and strains are referreh is not unique. This was already 
pointed out earlier[l] and discussed in more detail in a recent paper[5]. Let us discuss these 
various representations in the present, more restricted plane strain context, where the initial 
stress is restricted to the two principal stresses S,, = -P and S,, while Szz = 0. Consider 
again the local rotation to be defined by (2.4), i.e. 8 = &/ax. The stress components in the 
locally rotated axes x’v’ may be referred to areas after deformation. We shall denote these 
components by s;, & &. Obviously since we are dealing with first order quantities we 
may write 

t,, = s;i + S,,e, = s;r - Pe,, 

t22 = s;2 

t;2 =s;,. 

(3.1) 

On the other hand a different angle of local rotation may be used and defined as 

I au a24 
o 7 ax ay ( 1 ---. (3.2) 

The stresses referred to final areas and to locally rotated axes through the angle o have 
been denoted by srl s22 s 12 [1, 61. The relation between the stresses sij and Sij is to the first 
order 

$11 = 41 

s22 = 42 (3.3) 

au 
S,,=S;,-P ---CO =s;,-Pe,,. ( 1 ax 

The local rotation w and the incremental stresses sij have been used extensively in the 
general theory of incremental deformation[l, 61. They are also discussed in Appendix 1. 
They provide mathematical symmetry in the general equations. They are also more con- 
venient to describe the physical properties of isotropic materials. However for the present 
case of orthotropic symmetry the stress system t,, t,, ti2 provides a simpler physical 
description and analysis as well as a convenient intuitive interpretation. 

From equations (3.3) we may derive the values of sil si2 si2 and substitute these values 
in equations (3.1). We obtain 

t11 = Sll -Pe,, 

t 22 =x22 

ti2 = s12 + Pe,,. 

(3.4) 

In earlier work[l, 61 we have also introduced stress-strain relations in terms of the stresses Sij. 
They are 

sll = Bllexx + 42 eyv 

s22 = B21exx + B22 eyy (3.5) 

s12 = 2Qe,,. 

It was shown that the existence of an elastic potential implies the relation 

B,z = B,, + P. (3.6) 
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Hence in general Biz # Bzl. By substituting these values (3.5) in equations (3.4) we 
obtain 

tll = Bllexx + (Bi, - P)e,, 

t 22 = B21exx + 42 e,, 

ti2 = (2Q + P)e,, . 

(3.7) 

Comparison with the stress-strain relations (2.3) yields the following relations between the 
two types of elastic coefficients 

C,, = B,, C22 =B22 

C,2=B2,=B,2-P 

L = Q + +P. 

(3.8) 

4. LAMINATED MEDIA, WITH INITIAL STRESS AND 
COUPLE STRESSES 

Consider a laminated plate constituted by an alternation of thin hard and soft layers. 
The hard layer has a thickness hi and the soft layer a thickness hi. The fractions of the 
total thickness occupied by each type of layer are 

4 
al =h; 

4 
a2=h;+ (4.1) 

Under certain limitations already discussed earlier [l, 3, 4, 71, such a laminated medium 
may be replaced by a continuum with certain average elastic coefficients. In addition we 
must also introduce couple-stresses. 

As in the foregoing analysis we assume that the initial stress on planes normal to the y 
axis is zero (SzZ = 0). The x components of the initial stress in the hard and soft layer are 
denoted respectively by SC,\) = -PI and S12> = - P2 . 

The stress-strain relations of the equivalent continuum retain the same form as in (2.3) 
where the strain components and incremental stresses are averaged values. The correspond- 
ing elastic coefficients for the equivalent continuum for a compressible medium were 
evaluated earlier[l]. The following results were obtained. First we express the incremental 
stress-strain relations for the hard layer. They are of the form 

rll = dleXX + are,, 

t 22 = %exx + Q,, 

ti2 = 2Llexy 

(4.2) 

where d, a1 Vi L1 are the four elastic coefficients for the hard layer with the same 
meaning as in equations (2.3). For the soft layer we write similarly 

rll = d2exx + W2eyy 

f 22 = a2exx + q2eyy 

ti2 = 2L2 eXY 

(4.3) 
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with the four incremental coefficients dz Bz SS’~ L, corresponding to that layer. The 
four average coefficients of the equivalent continuum as derived in [l] are 

(4.4) 

These are the coefficients to be substituted in the stress-strain relations (2.3), in order to 
express the average properties of the equivalent continuum. 

Note that in the equilibrium equations (2.5) u and u are also average displacements and 

P=%Pl +a2p2 (4.5) 
is the average specific mass, with pl, p2 representing the specific mass of each layer. Further- 
more we must replace P by 

P=a,P, +"zP, (4.6) 

in terms of the initial stress P, and P, in each layer. 
If the hard layer is sufficiently stiff a couple-stress of moment .&? per unit area is 

produced in the plane normal to the x axis. As indicated earlier[4, 71 the stress ti2 in the 
second equilibrium equation (2.5) must then be replaced by thl # ti2. Hence equations 
(2.5) become 

at,, at;, a% 
z+F=Pz 

at;, at,, 2 2 

ax+-=P$+P$ 
ay 

(4.7) 

Equilibrium of moments for an element of material requires the condition 

ti2 - t;1 = adif -. 
ax (4.8) 

The value of til derived from this condition is then substituted in (4.7) thus yielding equilib- 
rium equations in the form 

at;, atz2 a20 2 a2A (4.9) 

ax+-=P ay 
s+P$+-. ax2 

The value of the moment Jz? in terms of the deformation was obtained earlier[4, 71. It was 
found that 

where the couple stress coefficient is? 

t Note the misprint in [4]. 

(4.10) 
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with 

h’ = h; + h; 

(4.11) 

Ml = -$ (dl%zl - 33:) 
1 

M, = 

If one layer is much more rigid that the other the couple stress coefficient has 
value 

b = +h12M 

where M =M,cQ (see [4]). 
Substituting the value (4.10) for 4 the equilibrium equations (4.9) become 

the simple 

(4.12) 

(4.13) 

(4.14) 

Variational principle 

Equations (4.13) are obviously equivalent to the variational principle (for arbitrary 
variations 6~ and 6v), 

8j-AVdxdy+ j-p(ii&+B6v)dxdy=O 

with ii = a2u/at2, i; = a2v/at2 and 

(4.15) 

AT/ = !dllexx + 3tz2eyy + G2 exy - +P@’ + $b($)2. 

Substituting the values (2.3) for the stress we obtain 

AV = +C,,e& + +C,,ei,, + C12eXXeyY 

(4.16) 

(4.17) 

The variational principle (4.16) is a generalization of the principle derived earlier[4] for the 
incompressible material. It also constitutes a particular case of the general variational 
principle of earlier theories[l, 61 and further discussed in the Appendix 1, to which we then 
add the couple-stress term. Note that by introducing the kinetic energy the variational 
principle (4.15) may be written 

F 

6 j-df j-[p(u’ +b2) - AV] dx dy = 0 (4.18) 

which is of Hamiltonian form.. 
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Laminated plates with non-homogeneous average properties 

It should be pointed out that the foregoing results are applicable to plates, with different 
types of laminations across the thickness. In this case the average moduli (4.4) and the 
couple-stress coefficient of equation (4.11) as well as P will be functions of y. In particular 
the plate may be composed of various homogeneous layers, while other layers are con- 
stituted by laminated materials each with its own average moduli and couple-stress coefficient. 

5. EXTENSION TO TRIAXIAL INITIAL STRESS 

Until now we have assumed that the initial stress is represented by the two principal 
components (2.1) while the component normal to the plate is zero (S,, = 0). However the 
solutions for this case are completely general and may be extended immediately without 
further calculation to the case of triaxial initial stress provided the variables are suitably 
interpreted physically[l]. Consider initial stresses represented by the three principal com- 
ponents 

S11 = L(Y) Sz2 = const. S,, = S,,(Y). (5.1) 

The component S,, normal to the plate is assumed constant. 
This state of triaxial stress may be generated by starting from the biaxial state of com- 

ponents (2.1) and immersing the whole system in a uniform hydrostatic field of constant 
pressure ps. In this case the initial stresses become 

s,, = -P -pf 

S22 = -Ps (5.2) 

S,, = S;, -Pfe 

The stress-strain relations (2.3) retain the same form. The incremental elastic coefficients 

may now depend on all three components S, 1, S,,, and S,, of the initial stress. The equilib- 

rium equations (2.5) are also unaffected by superposing a hydrostatic stress field. The value 

of P in these equations is now 

P = sz2 - s,, (5.3) 

which represents an effective compression. However we must be careful to interpret the 
stresses t,, and tzz correctly. They do not represent the actual stress increment per unit 
initial area, but only that portion of the stress increment which is not due to the hydrostatic 
stress. For example the actual stress increments along x and y are respectively 

th = 41 -Pfe,, = 4, + sz2eyy 
$2 = t22 -pf exx = tz2 + Sz2ex,. 

(5.4) 

The components t,, t,, are the more significant ones physically since they represent the 

applied forces when the material is tested inside a chamber containing a fluid at the 
pressure ps. 

That the equilibrium equations (2.5) remain the same for triaxial initial stress was shown 
earlier[l]. It may also be verified by substituting the values (5.4) for til and tiz into the 
equilibrium equations (1.24) derived rigorously in Appendix 1 for initial stresses of a more 
general type. Putting S,, = 0 we obtain the equilibrium equations (2.5) with P = S,, - S,,. 

Under the same conditions the equilibrium equations (4.14) for a material with couple 
stresses are also valid for the case of triaxial initial stress. 
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6. EXACT SOLUTIONS FOR MULTILAYERS. COUPLE-STRESS 
ANALOGY 

We first consider a single homogeneous plate of thickness h along y, subject to a uniform 
initial compressive stress, P = -S,, along the x direction. The normal initial stress is 
assumed to be zero (SZ2 = 0). However this assumption is not restrictive since we have seen 
in the preceding section how the results are readily applicable to the more general case of 
triaxial initial stress. Complete solutions for this case were derived[l, S] for harmonic 
oscillations and a sinusoidal deformation along x. In this case the displacement field and the 
incremental stresses are of the form? 

u = U(Zy)sin lx v = V(ly)cos Ix 

t;z = z(ly)sin Ix t,, = q’(ly)cos Ix. 
(6.1) 

For harmonic oscillations these quantities should be multiplied by a time factor exp(icrt) 
which is omitted here. The circular frequency is denoted by a. If y = h/2 and y = -h/2 

represent respectively the top and bottom faces we put 

U 1 = U(lh/2) VI = V(Ih/2) Uz = U( - lh/2) V, = V( - lh/2) 

z1 = r(Zh/2) q; = q’(lh/2) z2 = T(--Zh/2) q; = q’(-lh/2). 
(6.2) 

The four variables r1 q; z2 q; represent the stresses applied to the faces of the plate. They 
are linear functions of the displacements U, VI U2 V, of these faces. This relationship 
was derived earlier[l, 81 in the following form 

21 = IL; az 
72 = 

1 -EL= 2 

q; =lL-$ q; = 
1 

-IL&- 
2 

(6.3) 

where 

Z=$A(Uf+U;)-D&U, 

+ &C( vf + vf> + FV, v, 

+ B(U,I/, - u, V,) + E(U,Vz - u, V,). (6.4) 

These equations contain six basic coefficients A B C D E F which constitute the elements of 
a four by four matrix. These coefficients are functions of the four elastic moduli of the plate, 
C,, C,, C,, L, of the plate thickness h, the wave number 1, the frequency CI, the density 
p, and the initial stress P. 

Couple-stress analogy 

This result may be immediately extended, to a laminated plate with couple-stresses. First 
the elastic coefficients are put equal to expressions (4.4) which are those of the equivalent 
continuum. The density is also replaced by the average value (4.5). In addition the effect of 
couple-stresses may be introduced by the following very simple procedure. We note that for 

t In references [l, 81 the notation q is used instead of q’. 
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a sinusoidal and harmonic field of the form (6.1) the equilibrium equations (4.14) may be 
written 

at;, - + pa% = 0 
ay 

at;, at;, 
z + ay + pa2v =‘(P - b12) 2. 

(6.5) 

Hence the effect of couple-stresses represented by the coefficient b amounts to a replacement 
of P by P - b12 in all solutions for which b = 0. This property referred to as the couple-stress 
analogy was derived earlier[4] for the particular case of static deformations and incompres- 
sible materials. It is hereby extended to the dynamics of compressible materials. Values of 
the coefficients A B C D E Fusing the couple-stress analogy are derived in Appendix 2, for 
a plate with couple stresses using the expressions obtained earlier[l, 81 without couple 
stresses. 

Equations for multilayers 

We consider a plate constituted by an arbitrary number of layers some of which or all 
may be laminated hence producing couple-stresses. Each layer is assumed homogeneous with 
respect, to its average properties, i.e. within this layer, the average elastic coefficients of the 
equivalent continuum, the stress-couple coefficient b as well as the average density p and the 
initial stress P are all constant. We number these layers from 1 to n and consider the ith 
layer. The six matrix elements for these layers are denoted by Ai Bi Ci Di Ei Fi. Complete 
interfacial adherence is assumed. We denote by Ui Vi the displacement at the interface 
between layer i and i - 1 and define Zi as 

Zi = tAi(U? + Vi: 1) - Di Ui Ui+l 

+ +Ci( V,Z + Vf+ 1) + Fi Vi Vi + 1 

+ Bi(Ui Vi - Ui+,Vi+,) + Ei(Uivi+l - Ui+,VJ. (6.6) 

It was shown[l, 81 that the condition of continuity of the stresses z q’ at theinterface between 
layers i and i + 1 is 

& (Lizi + Li+lzi+l) = O 
t+1 

& (Lizi + Li+lZi+,)= 0. 
t+1 

(6.7) 

On the other hand the stresses 21 q; at the top surface and z,,+~, qi+ 1 at the bottom surface 
of the multilayer are 

0 -IL al, a4 
t- 1 au, 4;=&~ 

z n+1= -1L~ 4:+1 
II+1 

= -1Lgk 
n-k1 

68) 

For given applied stresses at top and bottom of the multilayered plate equations (6.7) and 
(6.8) constitute a system of 2n + 2 equations for the 2n + 2 displacements U, Vi. Equations 
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(6.7) are two recurrence equations between six displacements at three consecutive interfaces. 
When the multilayer is free at the top and bottom we put r1 = q; = T”+~ = qL+ I = 0, and 
the system is homogeneous. The characteristic determinant provides the natural frequency 
c1 of oscillation under initial stress. The condition CL = 0 yields the initial stress P of buckling 
instability. For larger values of P the exponential coefficient p = icr becomes real and 
dynamic buckling appears. Note the variational principle implicit in equations (6.7) and 
(6.8). 

7. SIMPLIFIED APPROXIMATE THEORY 

A simplified approximate theory of multilayered plates was developed earlier[7, 91 and 
may be readily extended to plates under initial stresses. The procedure remains essentially 
the same. The purpose of this approximate theory is to provide a treatment which is drasti- 
cally simpler than the exact elasticity theory outlined in the preceding section, while at the 
same time retaining essential physical features such as the skin effect[7] or certain details 
of internal stress distribution required for a realistic predictions in design problems. The 
accuracy of this approximate analysis for buckling problems is evaluated numerically in 
Section 11 below. 

A basic simplifying assumption is 

t - 0. 22 - (7.1) 

The stress-strain relations (2.3) become 

where 

t, 1 = 4Me,, 

ti2 = 2Le,, 
(7.2) 

M= g- (GlC22 - c:z>. (7.3) 
22 

The coefficients M, L may be functions of the coordinate y across the thickness. The displace- 
ment field and shear stresses are put equal to 

24 = U(y)sin lx 

U = I/ cos Ix 

ti2 = +)sin lx. 

For harmonic oscillations of circular frequency u the 

(7.4) 

time factor exp(icd) has been omitted. 
The second simplifying assumption is introduced in these expressions by treating Vas a 

constant equal to the average value along y. 
For a laminated plate constituted by an alternation of hard and soft thin layers the two 

elastic coefficients of these layers are denoted respectively by Ml L, and M2 L2. The coeffi- 
cients for the average equivalent continuum are 

M = M,M, + M, ct2 

L=l/f$+z) 
(7.5) 

where CQ and a2 are the fractions of total thickness occupied by each layer. 
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In terms of the coefficients zJ1 SY, %I and ~2, W, %Zsz for each lamination the values of Ml 
and M, are expressed by equations (4.12). It may be verified that by substituting the values 
(4.4) of %‘11 gz2 %Z12 into expression (7.3) for M the result is identical to that obtained from 
equation (7.5). 

A couple-stress coefficient b given by equation (4.11) is also introduced. The average initial 
stress P and density p of the laminated medium are expressed by (4.5) and (4.6). Note that 
average parameters ML b P and p may be function of y. From equations (7.2) and (7.4) 
we derive 

(7.6) 

Combining equations (7.2) (7.4) (7.6) and the first of the equilibrium equations (2.5) we 
derive 

where 

We also derive 

w=M(l-$). 

1 dz 
U= 

z@dy 

M dz 
t --- 
l1 -f13212dy 

cos Ix. 

(7.7) 

(7.8) 

(7.9) 

These equations are identical to those obtained for the approximate theory of the plate 
without initial stress[9]. The problem is reduced to solving the Sturm-Liouville equation 
(7.7). The solution is determined by the boundary conditions for T and the top and bottom 
of the plate, and contains an unknown deflection V. The latter is obtained from the second 
equilibrium equation (2.5). By integrating this equation with respect to y we obtain 

4 = - yh;; z(y) dy - (cr2p, + P, 1’ - b, 14)V. 

In this expression y = *h/2 represent the top and bottom of the plate, while 

[f221y=h,2 - [f&-h,2 = q cos Ix 

is the total normal load on the plate. Other quantities are 

pt = syh;; P(Y) dy 

P, = J;:;;P(Y) dy 

b, = j-T*;; b(y) dy. 

(7.11) 

(7.12) 
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Basic analogy 

We express the value (7.10) of q by separating it into two parts 

q=Y-WV (7.13) 

where 

9 = - I;;,: T(Y) du 

W=a=p,+P,l=-bJ4. 

We note that for c1= P, = b, = 0, 

(7.14) 

q=Y (7.15) 

represents the load for the static solution in the absence of initial stress and couple-stress. 
Hence in order to obtain the dynamic solution with initial and couple stresses all we need 
to do is to replace M by !IJI in the static solution (7.15) and replace q by q + c%V. In the 
context of the approximate theory this property constitutes a basic analogy by which static 
solutions may be immediately extended to the more general case without further calculations. 
The couple stress analogy of section 6 is a particular case of this more general property of 
the simplified theory. In many cases a further simplification is obtained simply by putting 

Y.R=M 

thus maintaining the static solution (7.15) without replacing M by 9JL 

(7.16) 

8. METHODS OF SIMPLIFIED ANALYSIS OF BUCKLING 
VIBRATIONS AND VISCOELASTIC DAMPING 

As shown in the preceding section the approximate simplified analysis is readily applied 
to plates with initial stress by using the results obtained earlier for plates initially stress free. 

Consider a multilayered plate constituted by n layers numbered from 1 to n. Each layer 
may be either homogeneous or composite with thin laminations, however in the latter case 
the average equivalent continuum of the particular layer considered is homogeneous. 
Consider the ith layer. The elastic coefficients Mi and Li of this layer are constants as well 
as its couple-stress coefficient bi. The average density pi and the average initial stress Pi 
for this layer are also constant. Assuming perfect adherence we denote by Zi and Zi+l the 
shear stresses at the top and bottom of the ith layer. We recall that these stresses are assumed 
to be sinusoidally distributed in accordance with equations (7.4). It was shown[7, 91 that 
these stresses at three successive interfaces satisfy the following recurrence equations 

Bi pi + (Ai + Ai+l)Ti+l + Bi+lZi+Z = -(Ci + ci+l)lV. (8.0) 

Using the approximation (7.16), i.e. ‘D = M the coefficients are defined as follows 

Ai = ai 

4JMiLi 
B,= ai. 

4JMiLi 
(8.1) 



Buckling and dynamics of multilayered and laminated plates under initial stress 433 

Furthermore 

ai = tanh piyi + 
1 

tanh pi yi 

U: = tanh Biyi - 
1 

tanh Bi yi 

Ci = ’ tanh Di yi 
Bi 

where 

Gi 
pi=2 L Ji yi = 31hi 

(8.2) 

(8.3) 

hi = thickness of ith layer. 

We shall consider the case where the shear stresses ri and z,+~ at the top and bottom faces 
of the plate are zero. The n - 1 equations.(8.0) determine the II - 1 remaining stresses as 
linear functions of V. The static solution obtained earlier[7] is 

q=Y=HV (8.4) 
where 

H= -&+ riiI);+~hiLilz l-2 . 
( 1 Yr 

(8.5) 

Applying the basic analogy (7.13) the solution for the dynamic case with initial and couple 
stresses is 

where 
q=(H-c?p,--P,12$b,14)V (8.6) 

P,=CPihi (8.7) 

(a) Free oscillations and buckling 
b, =C bihi. 

For q = 0 the plate is free of stresses at both faces, and (8.6) becomes the characteristic 
equation 

H - a2p, - P,S + lt14 = 0. (8.8) 

This equation yields the natural oscillation frequency tl as a function of the initial stress 
P, and the wave number 1. Ifp = ia is real the deflection is proportional to the real expo- 
nential exp(pt) corresponding to dynamic buckling. For c1 = 0 (8.8) yields the buckling load 
P, as a function of the wavelength. Note that for a plate of finite span, which is simply 
supported at both ends, the span is equal to or a multiple of the half wavelength cor- 
responding to either the fundamental mode or a higher harmonic. 

Two- and three-layered plates. Equation (8.8) is immediately applicable to plates com- 
posed of two or three layers where one or more layers are constituted by a laminated 
composite. All that is needed is to substitute the value of H derived earlier[7] for the purely 
static problem without couple stresses. 
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Built-in end conditions. The foregoing solution assumes a sinusoidal solution along X. 
However in practice, a state of initial stress usually implies built-in end conditions. It was 
shown earlier that solutions satisfying such end conditions may be obtained readily using 
the foregoing results, This is accomplished by adding solutions which are exponential 
along the span. For example consider a sinusoidal solution of deflection 

v = v cos lx. (8.9) 

An exponential solution is obtained by replacing I by ik. We write 

v = Vi cos ikx = VI cash kx. (8.10) 

Consider now the characteristic equation (8.8). We write it 

H(l)-a’~,-P,12+b,14=0 (8.11) 

where H(1) denotes a function of I corresponding to the static sinusoidal solution. To the 
exponential solution corresponds a characteristic equation 

H(ik) - cl’p, + P, k2 + b, k4 = 0. (8.12) 

Elimination of CL between equations (8.11) and (8.12) yields 

H(1) - P, 1’ + b, l4 = H(ik) + P, k2 + b, k4. (8.13) 

This determines k as a function of 1. There are multiple branch solutions. Consider the 
branch of lowest value of k. An expression may then be written for v which is the sum of a 
sinusoidal and exponential solution 

u(x) = V cos Ix -t- VI cash kx. (8.14) 

Corresponding values of u, are also obtained with arbitrat’y coefficients V and VI. To end 
conditions may then be satisfied corresponding for example to v = u = 0 at both ends of 
the span. This yields a characteristic equation which provides the values of I, hence also of c( 
by equation (8.11). The details of the procedure are the same as for the initially stress-free 
case[9] which was illustrated on examples. As already pointed out solutions of equation 
(8.13) for k may have an arbitrary number of branches, yielding a family of exponential 
solutions by which refined end conditions may be satisfied across the thickness of the plate. 

In the case of static buckling CI = 0 the procedure is simplified. We eliminate P, between 
equations (8.11) and (8.12) and obtain 

f H(ik) + $ H(1) + b,(k2 + 1’) = 0. (8.15) 

This determines k as a function of 1. Again using a solution of the type (8.14) and introducing 
the built-in end conditions provides a characteristic equation for 1. Equation (8.11) with 
d = 0 then yields the buckling load P, . Additional branch solutions of equation (8.15) for k 
provides ways of satisfying more refined end conditions across the thickness. 

(b) Forced oscillations 

The dynamic response for a loading of arbitrary distribution along the span and a plate 
simply supported at both ends is readily obtained by expanding the load in a Fourier series 
and applying equation (8.6) for each wavelength component. 
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However it may also be obtained by a more general method which is applicable to the 
case of a plate with built-in ends. Consider for example a fundamental mode of vibration 
for which 1 and k have been evaluated. The deflection of this mode is 

u(x) = qf(x) (8.16) 

wheref(x) is a normalized shape of the type (8.14) and q is an unknown amplitude. The 
mode shapef(x) may be written 

f(x) = cos Ix + R cash kx (8.17) 

where R is a fixed normalizing coefficient. The load required to maintain a static deflection 
f(x) is derived from equation (7.13). It is written 

94(x) = (% cos lx + RZI cash kx)q (8.18) 

where 

%?P = H(Z) - P,12 + b,14 

SI = H(ik) + P, k2 + b, k4. 
(8.19) 

Note that equation (8.13) implies Y? = P1. Obviously the elastic potential energy stored in 
the deformation is 

V- = 3922 

s 

s/2 
z= f(xM(x) ds 

(8.20) 

-s/z 

where the integral is evaluated over the span s. The kinetic energy is 

r = +Tq2 

where 

I 

s/z 
T= ~tf ‘(x) dx. _s,2 

(8.21) 

(8.22) 

The Lagrangian equation for the normal mode considered is 

Tq + Zq = Q 

where Q is the generalized force defined by the virtual work 

(8.23) 

Hence 

QSq = Jsi2 q(x, t)f(x)Sq dx. 
-s/z 

(8.24) 

4(x, Mx) dx (8.25) 

where q(x, t) represents the distributed applied load as a function of time. Since the normal 
modes are uncoupled, the amplitudes of each modearedeterminedseparately by this process. 

(c) Damping of viscoelastic plates 

In design analysis an important problem is the determination of the effect of viscoelastic 
layers on the vibration absorption at resonance. We assume the applied forces to be pro- 
portional to the harmonic timefactor exp(icrt). In the case of the initially stress free plate a 
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very simple procedure was developed[9] which may be readily carried over to the present 
case. When viscoelasticity is present the elastic coefficient M and L of each lamination are 
replaced by operators 

~Q=MM+AM 

L=L+AL. 
(8.26) 

For harmonic oscillations they are separated into Gal parts M, L and imaginary parts AM 
AL. In the analysis advantage is taken of the fact that the real parts M and L vary only slowly 
with frequency and in a given range behave as constant elastic coefficients, while AM and 
AL are small. Each layer may be a composite made up of laminations, characterized by the 
operators 

A,=M,+AM, iilt,=~,+A~~ 

at, =L1 +AL1 &=Lz+ALz 
(8.27) 

where the imaginary parts are AM, AM2, AL,, AL,. Applying equations (7.5) we find for 
the composite layer the following imaginary parts 

AM = CQAM, + a2 AM, 

AL= 
(8.28) 

The quantities AL, AL, are assumed to be small. In this way the ith composite laminated 
layer is characterized by the operators 

J&=M,+AM~ 

Ei = Li + ALi 
(8.29) 

where AMi and ALi are expressed by equations (8.28). Similarly a couple-stress operator 
hi for the ith laminated composite layer may be separated into real and imaginary parts 

6i = bi + Abi. (8.30) 

Consider first the case of a simply supported plate. By Fourier expansion the applied load 
may be considered as the superposition of sinusoidal distributions each associated with a 
certain value of 1. For example for the fundamental mode this value corresponds to a wave- 
length equal to twice the span. The load q cos bx required to maintain a deflection Vcos Ix 
is given by equation (8.6) i.e. 

q = (A - a2pt - P,12 + 6,P)V. (8.31) 

At resonance we have the condition 

H - a’p, -P,12+bt14=0. 

Hence q reduces to the purely imaginary quantity 

Aq = (AH + Ab, r4) V 

where AH and Ab, are the imaginary parts of fi and 6,. Note the value 

(8.32) 

(8.33) 

Ab,= ~ hi Abi. (8.34) 
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The force Aq is in phase with the velocity, and produces an amplitude V at resonance. It 
obviously constitutes a measure of the resonance damping. 

It is of interest to point out that the damping as expressed by equation (8.33) is the same 
as for the plate without initial stress. Hence the results obtained previously[7, 91 for the par- 
ticular cases of the two- and three-layered plates are immediately applicable to the plate 
with initial stress. In addition the term AH in equation (8.33) is readily derived from the 
purely static solution (8.4) without couple stresses. 

For the plate with built-in end conditions a possible procedure is to use the normal modes 
as generalized coordinates and evaluate the damping of each mode separately. The method 
uses Lagrangian equations in operational form. It was applied to plates without initial 
stress[9]. In the present case we may proceed as follows. Replacing the elastic coefficients by 
complex quantities in expressions (8.18) the load distribution required to maintain the given 
modal amplitude (8.16) is 

where 
q&x) = (2 cos Ix + Rc& cash kx)q 

$=&‘+A2 

$I = .X1 + As1. 

(8.35) 

(8.36) 

The Lagrangian equation is then written 

2q - a2Tq = Q 

where 

(8.37) 

and 

2 = Z + AZ = Jy;, &x)f(x) dx 

Q = /;;2dW(X) dx 

(8.38) 

(8.39) 

is the corresponding generalized force. In this expression q(x) represents the applied harmonic 
load along the span without the time factor exp(iclt). At resonance 

Z-ci’T=O. (8.40) 

Hence 
AZq = Q. (8.41) 

This equation yields the amplitude q at resonance under the applied generalized force Q. 
Using (8.35) and (8.38) we note that we may write 

AZ = s”’ [AX cos Ix + RAX1 cash kx]f(x) dx. (8.42) 
-s/2 

This expression shows that q2 AZ is the integrated product of the displacement qf(x) by 
the force required to maintain harmonic oscillations at resonance, hence it represents the 
power dissipated. Since Qq represents the power input, equation (8.41) may also be consid- 
ered as expressing conservation of energy. It is of interest to write out the values of A.@ 
and AXi. From (8.19) we derive 

As = AH(l) + Ab,14 

AXi = AH(ik) + Ab, k4. 
(8.43) 
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We note that expressions AH(Z), AH(&) are the same as those derived from the purely 
static solution without couple stresses. In this case we can see that the damping is affected 
only in a secondary way by the initial stress, namely through relation (8.13) between I and k. 

9. THREE-DIMENSIONAL ANALYSIS 

It was shown[9] how two-dimensional solutions provide readily corresponding solutions 
for three-dimensional problems for plates with transverse isotropic symmetry. The pro- 
cedure may be extended to the present case provided the state of initial stress is also trans- 
verse isotropic. This implies 

S,, = S,, (9.1) 

i.e. an isotropic initial stress in the xz plane. This stress may vary arbitrarily across the 
thickness. A constant initial stress component Sz2 may also be present normal to the plate. 

For example the following trigonometric identity 

v = +V[cos(~X + lz) + cos({x - [z)] = Vcos tx cos [z (9.2) 

shows that a simply supported plate of rectangular shape in the xz plane behaves as the 
superposition of two plane strain solutions of wave number I given by 

I2 = t2 + 52. (9.3) 

Solutions for plates of triangular plan forms are also derived by the same procedurep]. 
Similarly a circular plate is analyzed by integrating plane strain solutions with equal 

weight for all directions around the y axis. We obtain for the deflection 

s 

2n 

v=v cos[lr cos 01 d0 = 27~ VJ,,(Zr) 
0 

(9.4) 

where r is the radial coordinate and Jo is Bessel’s function. Another solution is obtained 
by changing I to ik, 

v = 2nVIZo (kr) (9.5) 

where IO is the modified Bessel’s function. By superposition, a more general form is 

u = 27c[ VJ,(Zr) + VIZo(kr)]. (9.6) 

For natural oscillations k is a function of I, by equation (8.13). For buckling problems 
(a = 0) this relation is replaced by equation (8.15). Boundary conditions provide a character- 
istic equation which determines 1. This provides what we called an intrinsic wavelength[9]. 
The three-dimensional problem is then a superposition of plane strain solutions with this 
intrinsic wavelength. Evaluation of distribution of stress and displacement across the thick- 
ness for plane strain may be carried over readily to the three-dimensional case. The damping 
at resonance for the plane strain solution is the same as in the three-dimensionalproblem of 
same intrinsic wavelength. In this connection it is interesting to note the property derived 
in the foregoing approximate analysis that the damping is not affected significantly by the 
state of initial stress. 

Attention is also called to the general nature of solutions of the type (9.6) which may 
contain more than one term of the type Z,(kr) each with a different value of k as a branch 
function of 1191. This provides the possibility of satisfying refined boundary conditions across 
the plate thickness. 
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Modes with non-circular symmetry may also be obtained by introducing weighting factors, 
functions of 8 in the integral (9.4) or by taking successive partial derivatives a/ax or a/ay 
of the solution (9.6). 

Problem of forced oscillations for three-dimensional problems with or without damping 
may be handled by using the normal modes as generalized coordinates as outlined in the 
preceding section and in earlier work[9]. 

10. EXACT ANALYSIS AND THE LIMITING CASE OF LARGE 
WAVELENGTH 

We shall consider the case of a thinly laminated plate, such that the equivalent continuous 
material is homogeneous. The laminations are composed of alternating rigid and soft 
layers where average elastic coefficients are expressed by equations (4.4) while the couple 
stress coefficient b is given by equation (4.11). The plate is under an initial stress P = -S,,. 

We shall consider a bending deformation under a normal loading q; cos lx at the top face 
and q; cos Ix = -q; cos Ix at the bottom face. We assume that tangential stresses vanish at 
both faces, hence z1 = r2 = 0. The normal displacements are equal at both faces, hence 

V = V, = V, (10.1) 

while the tangential displacement is 

u = u, = - u, . (10.2) 

This is a special case of the general problem discussed in Section 6 and Appendix 2. Because 
of the couple-stress analogy the solution is formally identical to those obtained earlier[l][8] 
without couple stresses. The load is related to the displacements by the relations 

O=allU+a,2V 

c=a U+a V IL 12 22 

(10.3) 

where 

q’zq; = -q;. (10.4) 

Note that the load is applied antisymmetrically on top and bottom, so that the total load 
applied to the plate is 

q = 2q’. (10.5) 

This total load is of course distributed sinusoidally along x. By eliminations of Uin equations 
(10.3) we obtain 

4 
2 

alla22 - a12 

iii= 
V 

a11 
(10.6) 

which relates directly the load to the deflection. The values of aij are given in Appendix 2. 
AS already shown[8] (see also[l], p. 326) substitution of the values of ai, leads to the result 

a11a22 - a?2 = Rlzl - &z2 
all we - a3 

(10.7) 
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where 

R 

1 
= (Q - Cl2 PY 

n-L/?: 
(10.8) 

R 

2 
= (Q + c12mz 

R - Lp; . 

This result is obtained after cancellation of the common factor (given by equation (2.8) of 
Appendix 2) in the numerator and denominator of expression (10.7). This result is valid 
for the dynamic case where the load q is multiplied by an harmonic function of time 
exp(icct). It also includes the presence of couple stresses. 

It is of interest to examine the static case, without couple stresses, obtained by putting 
CI = b = 0 in equations (2.1) and (2.2) of Appendix 2. In particular we shall derive the limiting 
value of expression (10.7) in this case, for large wavelengths, i.e. for small values of 1. 
This is obtained by expanding expression (10.7) in powers of 1. For our purpose the expansion 
may be limited to the first two terms. This amounts to replacing z1 and z2 in expression (10.7) 
by the first two terms of their power expansion, i.e. 

z1 = P1 tad P1 Y = P1(P1 Y - 3P:r3) 
~2 = PZ tanh P2 Y = MP2 Y - 3Piy3> 

where y = +lh and h is the total plate thickness. We derive 

(10.9) 

alla22 - af2 
= -$ +*y3 

CllC22 - (Cl2 + fY2 

all LC22 * 

With this result the normal load q of equation (10.6) becomes 

q = 21V -Py + +y3 
[ 

GlC22 - (Cl2 + PI2 

C 22 I* 
Buckling instability is obtained by putting q = 0. This yields 

P = +y2 
[ 

CllC22 - (Cl2 + a’ 

C 22 I. 

(10.10) 

(10.11) 

(10.12) 

Since P is of the order y2 we may write the limiting value for y small as 

P = $y” 
CllC22 - cf2 

. c (10.13) 
22 

With the definition (7.3) of M this becomes 

p = 4+ y2, (10.14) 

This coincides with the critical buckling load derived from the Euler theory for a thin plate 
under a compressive stress P, of span equal to half the wavelength and simply supported at 
both ends (see[l] p. 231). 

Note that the foregoing results are applicable for a material with couple-stresses, since 
the couple-stress analogy remains valid for the limiting case. Hence for this case all we need 

to do is to replace P by 

p - b12 = p - ; y2 (10.15) 
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in equations (10.1 l)-(10.14). For example (10.14) becomes 

P=4 fM+$ y2 
( 1 

(10.16) 

of course in practice, the term b/h2 constitutes only a small correction, as is to be expected 
for large wavelengths. 

11. NUMERICAL COMPARISON OF EXACT AND APPROXIMATE 
BUCKLING ANALYSIS 

As in the preceding section we shall consider the case of a thinly laminated plate, such 
that the equivalent continuous material is homogeneous. We shall evaluate the statical 
buckling load P (hence putting CI = 0), as a function of the wavelength. In order to simplify 
the presentation we first assume the couple stress to be negligible (b = 0). 

According to the approximate analysis of Section 8 we apply equation (8.8) putting 
CI = b, = 0. This yields 

P,12 = Phi’ = H (11.1) 

where P = P,/h is the compressive load per unit area. Since we are dealing with a single 
homogeneous layer of thickness h with free faces (pi = z2 = 0), the value of (8.5) of H 

becomes 

where /? = 2JM/L, y = +lh. With this value equation (11.1) yields 

P 
-+y 
L 

(11.2) 

(11.3) 

where P is the critical buckling load. The buckling wavelength is 9 = nh/y. Note that 

(11.4) 

If 

we write approximately 

tanh fly = Py - +p3y3 (11.5) 

and equation (11.3) becomes 

P=+My’. (11.6) 

This coincides with the value (10.14) derived from the Euler theory for thin plates. 
Note that the approximate value of the buckling load given by (11.3) is valid for either 

compressible or incompressible materials. In order to evaluate the accuracy of this approxi- 
mate value (11.3) we shall compare it with exact results for the case of an incompressible 
material. The reason for this choice is that the numeral evaluation of the exact value is much 
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simpler for this case. Furthermore if the accuracy is valid for the incompressible case it should 
be also valid for the more general compressible case. 

The exact theory for the incompressible case has been developed and discussed extensively 
by the author[l, 3, 81. For plane strain the two-dimensional stress-strain relation of an 
incompressible material are written[l, 3, 81 

Sll - s = 2Ne,, 

s 22 - s = 2Ne,,, 

s12 = XL, 

(11.7) 

where s = +(sll + s,,), while sij are the incremental stresses referred to final areas after 
deformation. In terms of the stresses t 11 tz2 ti2 using relations (3.4) we derive 

hl - t22 = 4Mexx 

ti2 = 2Le,, 
(11.8) 

with the condition 

exx + eyv = 0 (11.9) 

and putting 

M=N+aP L = Q + 3P. (11.10) 

The value of (u11a22 - ~;~)/a,~ for the incompressible case as derived in previous 
work[l, 3,8] is 

alla22 - 42 = <Pf + Q2z2 - (P: + 02z1 

Pf - P: 
(11.11) 

41 

with 

b:=m+Jm2-k2 

,!lf=m-Jm2-k2 
(11.12) 

2M 
m=--1 

L 
k2 = 1 -;. 

The values of zl and z2 are expressed by (2.4) of Appendix 2. In earlier work[l, 81 we have 
also shown how these results may be derived by a limiting process starting from the more 
general elastic coefficients (3.8) for a compressible material. It is readily verified that the 
coefficient M in (11.8) is the limiting value of (7.3) for the case of incompressibility. 

The exact characteristic equation for buckling is obtained by substituting the value (11.11) 
in equation (10.6) and putting q = 0. We obtain 

(a,: + 1)2z2 - <a; + 1)2zl = 0. (11.13) 

The unknown in this equation is P/L which must be determined in terms of the two 
parameters 

, 

(11.14) 
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The first may be considered as a measure of the anisotropy, while the second may be written 

Yz!$ (11.15) 

where .9 is the buckling wavelength. For example y = 1, when B = ?rh, hence for a wave- 
length about three times the plate thickness. Numerical values are shown in Table I. 

Table 1 

w PIL PIL 
(b) p = 2 (c) p = 4 (d) p = 6 

1 0.2384 0.2425 0.2395 0.2385 
4 0.7501 0.7755 0.7575 0.7535 

10 0.9000 0.9055 0.9044 0.9015 

Column (a), Approximate values by equation (11.3); 
Column (b), Exact values by equation (11.13) for 
j3 = 2; Column (c), Exact values for /3 = 4; Column 
(d), Exact values for /3 = 6. 

As predicted by the approximate theory (11.3) it is verified that P/L depends mainly on the 
product j3y. Comparison of the approximate values of column (a) with exact values of 
columns (b-d) for fi = 2, 4, 6 shows excellent agreement. We remember that the approxi- 
mate value (11.3) is valid for compressible materials, for which the exact evaluation leads to 
very tedious numerical work. The very simple approximate theory provides therefore an 
enormous simplification especially when applied to physically more sophisticated cases of 
multilayered plates with different types of homogeneous or laminated layers and compli- 
cated boundary conditions. 

It is interesting to introduce at this point another related approximation. We may write 
the approximation 

1 _ tanh BY P’Y’ -= 
Pr 3 + Kp2y2 

where K is almost constant. It varies slowly as function of /?y according to Table 2. 

Table 2 

j3y I 2 4 10 30 cc 

K 1.18 1.18 1.14 1.08 1.03 1.00 

(11.16) 

The approximation (11.16) was proposed earlier[7] using a constant value K = 1.18 in which 
case it remains valid for practical purpose in the range By < 5. 

With the approximation (11.16) relation (11.3) may be written 

PI2 + 3K z h214 = @fh214. (11.17) 
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For a deflection u proportional to cos lx this equation is equivalent to the differential 
equation 

(11.18) 

This is the same as obtained from the “Timoshenko beam” theory where the term contain- 

ing K is due to the transversal shearing deformation. In the Timoshenko theory the value of 
K is treated as a constant to be determined from elasticity theory. Its correct value given by 
Table 2 shows that it is almost constant of value between 1.18 and 1.00 while in the range 
& < 5 it may be ‘put equal to the constant value 1.18. 

The case where couple-stresses become significant is readily obtained by using the couple 
stress analogy introduced earlier[4] and discussed in more detail in Section 6. According to 
this analogy we simply replace P by P - b12 where b is the couple-stress coefficient. 
Equation (11.3) for the critical buckling load becomes 

(11.19) 

The significant features of this result were already discussed qualitatively earlier[4]. With 
the approximation (11.16) the buckling load (11.19) becomes 

p=l M12h2 
3 1 + $c(A4/L)12h2 

+ bl’. (11.20) 

With K = 1 this is essentially the same result as obtained in an earlier discussion of a folding 
problem of multilayers in geology[lO]. The transition from bending buckling to shear buck- 
ling appears in the transition wuuelengrh range [l, 7, lo] determined approximately by 
the equation 

(11.21) 

For wavelengths larger than the value thus determined, the buckling involves mainly a 
bending mechanism. 

It should be noted that the range of applicability of the approximate theory of Sections 7 
and 8 extends considerably beyond the “Timoshenko beam” type of approximation since 
the latter overlooks the “ skin effect “[7] which plays an important role at interfaces of 
multilayered plates and may have a considerable influence on the damping for viscoelastic 
materials. 

The present relatively simple problem provides a good illustration of the “basic analogy” 
discussed in Section 7 as a direct consequence of equation (7.13). Under a load q the static 
solution (8.4) is 

q=Y=HV. (11.22) 

With the value (11.2) this becomes 

q=Lhl”(l -F)V (11.23) 



Buckling and dynamics of multilayered and laminated plates under initial stress 445 

a result already derived earlier[7]. According to the basic analogy we replace q by q + 92V, 
where 6Z is expressed by (7.14). Hence (11.23) becomes 

$=L12(, -ty) -Pl’--a2p+b14. (11.24) 

This expresses the normal load on the plate with couple-stresses, initial stress P and forced 
oscillations proportional to the harmonic factor exp(icct). The characteristic equation for 
dynamic buckling is obtained by putting q = 0 and icx = p real and positive. The same 
procedure applies to viscoelastic creep buckling where M and L are functions of p instead 
of icx. 
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APPENDIX 1 

Various alternate derivations of the equilibrium equations 

There are several procedures which may be used to derive the basic equilibrium equations 
of the incremental stress field. 

1. Locally rotated axes. One procedure is to refer the stresses to locally rotated axes. 
As already pointed out[l, 51 the rotation is not determined uniquely and a certain amount 
of arbitrariness is left in defining this rotation in the manner most suitable to the physics of 
the problem as will be illustrated below. Consider a state of initial stress S,,(Y)S~~ and S,, . 
For the sake of completeness we assume here the presence of an initial shear stress Sr2. 
Both Sz2 and S,, are constant while S,, depends on y. In the deformation the initial co- 
ordinates x, y become 5 = x + U, q = y + v. Hence plane strain is assumed. A fourth 
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component S,, of initial stress normal to the plane of deformation may of course be 
present but does not appear explicitly in the formulation. We denote by CrrC iT,,,C,, the 
stress components per unit final area at the point C, r] and referred to fixed axes x, Y. The 
equilibrium equations of this field are 

as,, aa,, , a% 
-+T=P-$ at 

(1.1) 

where p’ is the mass per unit volume after deformation. If p denotes the mass per unit 
initial volume we may write 

where J is the Jacobian 

(1.2) 

(1.3) 

We may also express the derivatives 8/a& a/av in terms of the derivatives d/ax, a/ay with 
respect to the original coordinates. The transformation equations are 

a I aqa all a ----- 
aC;=7 ayax ( axay ) 
a i 

( 
_~~+Z~ 

(1.4) 

ay1=7 ayax 1 axay * 

We now refer the stress to locally rotated axes. At each displaced point we rotate the reference 
axes of the stress through a small angle 8. The angle f3 is chosen in such a way that in the 
absence of local deformation of the material the stress components referred to the rotated 
axes remain constant and equal to the initial stress. If a deformation is present the stress 
components referred to the rotated axes become 

011 = &l + A%1 

022 = S22 + A022 (1.5) 

o12 =S,,+Ao,,. 

The incremental stresses Aa,, da,, Ao,, are due only to the strain. We shall assume 
that they are small of the first order. In that case neglecting higher order quantities we may 
write 

where 

Zrs = Sil + AQ - 2S12 8 

%V = S2z + ho,, + 2S12 0 

Zr,, = Si2 + AC,, -PO 

p = s22 - S,,(Y). 

(1.6) 

(1.7) 
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We now substitute the values (1.6) and the differential operators (1.4) into equations (1.1) 
neglecting higher order terms. This yields 

(1.8) 

As already stated the choice of the rotation 8 is not unique. One possible choice is to define 

e as 

t)Z$. (1.9) 

This angle represents the material rotation of a linear element originally coincident with the 
x direction. If the material is laminated along this direction 0 represents the local rotation 
of the thin layers. We denote by sil = AC,, si2 = AC,, and siz = Aor the incremental 
stresses for this particular choice of rotation. The equilibrium equations (1.8) become 

asi asi 
x + __ - 2&S,, $ - P 

ay 
gycpg 

asi asi a% 
z + - + 2s,, - 

ay ax ay 
-P$$. 

Consider the particular case S12 = 0. We put (see equation 3.1) 

t,, = sil - Pe,, 

t 22 = 42 

t;2 = s;2. 

Equations (1.10) are now written 

2 

!$l+f!i+!!$ 

ay 

ati, atz2 
2 

dx+-‘pg+P$. 
ay 

(1.10) 

(1.11) 

(1.12) 

They coincide with equations (2.5) of Section 2 and the variables have the same physical 
significance. 

As shown in previous work[l, 21 the value 

(1.13) 

constitutes another possible choice for the local rotation. The incremental stresses in this 
case were denoted by Aox = s, 1, Aa,, = sz2, Aa,, = s12 . For the particular case S, 2 = 0 
the equilibrium equations (1.8) become 

(1.14) 
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Proceeding as before[l, 41 (see equation 3.4) we substitute the values 

Sll = 41 + Pe,, 

s21 = t22 

s12 = ti2 - Pe,,. 

(1.15) 

With these values we derive again equations (2.5) of Section 2 with the same physical inter- 
pretation of the stresses. 

2. Method of virtual work. In the context of the method of virtual work the definition of 
Cartesian strain relative to rotated axes may be chosen in various ways. This was pointed out 
in the authors book[l] and further developed in greater detail in a recent paper[5]. For 
example in the present case the strain components are defined relative to axes, which are 
rotated through the angle 0 = au/ax which coincides with the angle of rotation of the lamin- 
ations. In this formulation we first apply the local differential transformation 

dC=(l +&11)dx+2e,2dy 

dy = (1 + a& dy. 
(1.16) 

Hence the deformation is such that the material points on the x axis remain on this axis. 
We then rotate the material without additional deformation through the angle 8 = &/ax. 
After this rotation the transformation becomes the actual differential local transformation 
of the material, i.e. 

d5 = (1 + all) dx + a,, dy 

dq = a,, dx + (1 + az2) dy 
(1.17) 

where 

a24 au 
41 =a~ al2 =a~ 

(1.18) 
av a0 

a21 =a~ az2=sm 

We then evaluate 
ds2 = d[’ + dq2 (1.19) 

first by substituting the values (1.16) and then the values (1.17). Since they both represent 
the same deformation the coefficients of dx2, dx dy and dy2 must be the same for the two 
results. This yields the three equations 

cl1 + 3~:~ = all + $(a:, + a,“,) 

cl2 + ~~2 El1 = *(al2 + k> + 3(ajla12 + a22a21) (1.20) 

s22 + *.sq2 + 2sf2 = az2 + +(a:, + af2). 

If aij is of the first order, a first order solution is &ll = a,, e22 = az2 e12 = +(a12 + azl). 
A second order solution is obtained by substituting the first order values in the quadratic 
terms on the left side of (1.20). We derive 

El1 =a,, +!A 

cl2 = *(al2 + azl) + 3a2l(a22 - allI 

&22 = a22 - -ta21(2a~2 + a2A. 

(1.21) 
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We denote by 

z;, = s,, + t;1 t;2 = s22 + t;z z;2 = s,, + t;2 I (1.22) 

the stresses, i.e. the forces per unit initial area along directions parallel to the rotated axes. 
The terms til tiz and tiz are the incremental stresses, while ziz is the force acting on a 
face initially parallel to the x direction. The principal of virtual work is written[l] 

s (z;r 8ell + & C& + 22;, 6sr2 - pii 6u - pi; 6v) dx dy = 0. (1.23) 

This being valid for arbitrary variations 6~ 6v yields the following differential equations 

at;, at;, 
Z+ ay 

s a20 a20 -- __ 
l2 ax2 s 22 Gay = PG 

(1.24) 

It is easily shown that these equations are equivalent to the previously derived results. The 
following relations between the stresses are derived either analytically or by physical 
reasoning 

Cl = & + Srle,, - 2si2 eXY 

Gz = sL2 + S22 eXX 

ti2 = si2 + S12 eXX. 

(1.25) 

If we substitute these values into equations (1.24) we obtain the previous equations (1.10). 
Note that the physical significance of the equilibrium equations (1.24) are brought out by 
putting 

t;1 = t’l2 - 2S22 exy + &2@,, - exx). (1.26) 

This quantity is the incremental stress acting on the face initially normal to x, and in a 
direction normal to x. Equation (1.26) expresses the condition of equilibrium of moments 
on a unit element. 

With these variables equations (1.24) become 

at;, at;, a2v a2u . . 
ax + - - s,2 - - s,, - = 

ay ax2 axay p” 

at;, ata 
ax+-+&2 

a20 

ay 
-+sl,$=pi;. 
axay 

The terms in these equations yield an obvious physical interpretation. 

APPENDIX 2 

(1.27) 

Evaluation of the six matrix elements for a plate with couple stresses 

The six coefficients A B C D E F were evaluated earlier[l, 81, in the absence of couple 
stresses (b = 0) and in terms of the elastic coefficients B,, B,, B,,. These values are im- 
mediately extended to the present case. According to equations (3.8) we replace Bll B,, 
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and B,, by C,, C,, and C,,. Furthermore as a consequence of the couple-stress analogy 
we replace P by P - bZ2. The following results are obtained. We put 

2m=& [i2C22-L(2C,n+P-b12+F) -cf2] 

k2 = ?_ 
LC22 

L-P+b12-$ 

with 

(2.1) 

(2.2) 

Next we put 

(2.3) 

choosing values of PI and p2 such that the real part is nonnegative. Also we write 

z1 = I% tanh Prr z2 = PZ tanh BZ Y 

z; = _f_ tanh Pry 
Bl 

z; =Itanhb2r 
P2 

(2.4) 

where 

y = JJh (h = plate thickness) 

is a non-dimensional wave-number. 
With these definitions we introduce the following six dimensionless elements 

(2.5) 

b22 = C22<P: -P:,+ 
s 

42 = [W+ C,2@; -(Q + Cd:)~;l; 
s 

where 

AII = (0 - L/?3z, - (!2 - Lpq)z, 

A, = (Q - Lpf)z; - ($2 - Lp;)z;, 

(2.6) 

(2.7) 

(2.8) 
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Finally we obtain the six matrix elements of the plate as 

Pe3rohie - Pa3paGaTbmaeTca MexamiKa cnnomHbIx cpen MHorocnoPHbIx ~UCTOB non Hamnb- 

HbIM HaIIpKXXHEiCM Ii BKJIIOSaCTCII CJIy’iai, r!@ HCKOTOpbIe WEi BCe CJIOH COCTOIIT 113 OYeHb 

TOHKO paCCJIOeHHbIX MaTepHaJIOB, HaXOAI~HXCR EOA BJIHIIHlieM FapbI Ae+OpMEipyIOWEiX CHJI. 

3TO IIpUMeHHMO K BOIIpOCaM Kopo6nemiq auHaMaKIi Si Brr6pat@, W BKIWJWCT 3BOI?K1L[HIO 

yIIpyrOBK3KOti nOJI3y’iecTH, IlpOnOnbHbIi ~3m6 Ii a6cop6umo sIi6pauufi. n0~1yrmi ABa BUAa 

pe3yJIbTaTOB. Onus pe3yJIbTaT IIOJIyWJILi 6naroAapR CTpOrOMy aHaJIH3y Ii o6ueei TeOpHU 

pa3HOCTHOZi .I&OpMa~Hia, a ApJTOti - BBe@HUeM paAHKENbHbIX YIIpOUeHHi, HO B TO )Ke 

BpeMSI, COXpaHeHHeM CyILJeCTBeHHbIX I#IU~WECKHX CBOikTB, SIBJIKKNIJEEMFiCSl IIOBeACHHeM 

CIIJIOIIIHbIX CpCA. nOA%pKHBaeTCSl FIpHMCHCHHe OIIpeAe,IeHHOrO &@epCHUWIbHO~O 

HaIIp5DKKeHEiH, ST0 llpH 06CyXQaeMOM BOllpOCe IlBJIReTCII 3HaYHTenbHbIM IIpeUMj’WeCTBOM. 

(DOpMYJIHpYlOTCII TSIKXC COOTBeTCTByIOIIJHe BapHaIJHOHHbIe IIpHHIJHIIbI EI CpaBH&iBaloTCR KaK 

aHaJIHTIFieCKU, TaK U YElCJIeliHO TOYHbIe H np~6JIH3HTe~bHbIe TeOpHki. CpaBHeHHK )‘CIIeIIIHO 

COBllaIIU. 
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