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Abstract. - The instability of thermodynamic equilibrium of a system 
in a state of minimum entropy is analyzed by treating the particular example 
of thermoelastic buckling of a thin elastic plate in an initial state of compres- 
sion in its own plane. There are two critical buckling loads, one for slow 
isothermal deformation, the other for fast adiabatic deformation. For an 
intermediate load the buckling occurs at a finite rate controlled by the 
thermal conductivity of the elastic material. Thus a purely thermoelastic 
creep buckling is obtained. The general analysis is based on Lagrangian 
thermodynamics in the vicinity of an equilibrium state with initial stress. 
The general theory is compared with the solution derived from classical 
differential equations of thermoelasticity. The instability is non-oscillatory 
in accordance with a general theorem. Due to the phenomenological nature 
of the general theory, results are applicable to porous solids or materials 
which exhibit mechanical relaxation associated with internal diffusion, 
phase change, and mass transport. 

1. INTRODUCTION 

The phenomenon of elastic instability of a thin elastic rod is well 
known in the classical htterature of the theory of Elasticity. Euler’s 
famous formula provides the critical value of the compression beyond 
which the elastic rod becomes unstable and exhibits a spontaneous 
sudden lateral deflection known as buckling. However there is a fun- 
damental point which has been overlooked in the classical treatment. 
Euler’s formula is expressed in term’s of Young’s modulus which 
measures the elastic rigidity of the material but does not take into 
account the fact that this elastic modulus exhibits two different values. 
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One value which we call the isothermal modulus measures the rigidity 
for very slow elastic deformations where the temperature remains 
constant so that the elastic medium remains all the time in thermal 
equilibrium with the surroundings. The other value is the adiabatic 
modulus where the elastic deformation is very fast so that no heat 
is exchanged with the surroundings. For most materials an adiabatic 
extension is associated with a cooling and an adiabatic compression 
with a heating. Such materials are obviously more rigid for adiabatic 
deformations than for isothermal ones, hence the adiabatic modulus 
is larger than the isothermal modulus. Thus Euler’s formula yields 
two values, an isothermal buckling load corresponding to the iso- 
thermal modulus and an adiabatic buckling load which is larger and 
corresponds to the adiabatic modulus. The question therefore arises 
which modulus to use in Euler’s formula for the critical buckling 
load and what is the actual physical behavior of the system. 

It should be immediately evident that the elastic rod will tend to 
buckle as soon as the isothermal critical load is reached. However 
for this value the buckling must be very slow to allow temperatures to 
remain constant throughout. If this were not the case the deformation 
would tend to become adiabatic with a corresponding rise of the critical 
load. 

The buckling being a bending deformation the temperature is 
increased on the compressed side and decreased on the tension side. 
The buckling will continue only of these temperares are allowed to 
become equalized by thermal conduction in the material. 

On the other hand if we apply the adiabatic critical load and neglect 
the inertia due to the mass of the material, the buckling is an instan- 
taneous collapse. 

Obviously for a compressive load, between the isothermal and the 
adiabatic, the buckling is a gradual purely thermoelastic creep buckZing 
where the deflection rate is controlled by the thermal conductivity 
of the material. The problem was analyzed some time ago [l-2] by 
using the analogy between thermoelasticity and the theory of porous 
solids containing a viscous fluid. The pressure in the pores and the 
rate of flow of the fluid between the pores correspond to the temperature 
and heat flow of the thermoelastic material. The thermoelastic problem 
however is a particular case of the general irreversible thermodyna- 
mics of initially stressed continua, discussed extensively in a book [3]. 
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The theory is based on the author’s Lagrangian thermodynamics of 
linear irreversible processes [4-61 applied to a system in the vicinity 
of an instable equilibrium. Althought it is implicit in the earlier theory, 
a recent general analysis of non-linear thermoelasticity [7] points out 
more explicitly that the unstable equilibrium corresponds to a state 
of minimum entropy. Hence the instability fits into a model based on 
probabilistic concepts of entropy and statistical mechanics. The 
subject of non-linear thermoelasticity from an entirely different and 
classical viewpoint has been treated by a number of authors [8-lo]. 

Our purpose here is to illustrate the fundamental physics involved 
by analyzing a simple problem represented by the buckling of a 
thin rectangular plate compressed in a direction parallel to its short 
edge. It is contained in a rigid thermally insulated box, large enough 
so that a fluid inside the box may be treated as a isothermal bath. 

In section 2 it is shown that when the plate is maintained in its 
flat position of unstable equilibrium the whole isolated system is 
in a state of minimum entropy. The gradual buckling for a compressive 
load between the isothermal and adiabatic value is analyzed in section 
3 on the basis of the author’s Lagrangian thermodynamics. In section 
4 it is shown that the result may also be derived on the basis of the 
classical differential field equation of thermoelasticity. The effect 
of inertia forces is introduced in section 5. A fundamental property 
of the type of unstable thermodynamic equilibrium considered here 
is the non-oscillatory nature of the instability. In other words the 
perturbation amplitudes are proportional to a real increasing expo- 
nential exp (pt) where p is real and positive. The proof which was esta- 
blished earlier [3, page 4421 is briefly outlined in section 6. 

In section 7 attention is called to the generality of the present 
treatment. While it is restricted to the context of thermal diffusion 
it is applicable in its general form to problems including molecular 
diffusion. 

2. THERMOELASTIC POTENTIAL AND MINIMUM ENTROPY 

We consider a thin rectangular plate with edges parallel to the 
coordinate axes. The y axis is oriented across the thickness a and 
the planes y = +a/2 are the faces. The origin of x is taken at the 
center so that x = &Z/2 represents the top and bottom edges, hence 
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1 is the length along x between edges The width oriented along the 
third direction is arbitrary but large, and the deformation is assumed 
two-dimensional and represented by plane strain in the X, y plane. 
The plate is initially loaded by a uniform compressive stress P direct- 
ed along x. The deformation considered is a bending of the plate 
due to buckling. The plate is assumed to be confined in a large ther- 
mally insulated rigid box, with the rigid walls producing an initial 
compressive stress P if the plate is maintained in its flat equilibrium 
position. The plate may rotate freely at its edges x = &Z/2 through 
which the walls of the box exert the compressive stress P. We consider 
the thin plate theory of bending to be valid with the Kirchhoff- 
Bemouilli assumption that the plane initially normal to x remains 
normal to the line initially along X, i.e. to the neutral axis. The deflection 
of this line is denoted by 

w = w(x) (2.1) 

The strain component along x is 

where 

(2.2) 

d2w 
e xx = -Y&3 (2.3) 

The term e,, is due to the bending curvature while q,.. is due to 
the lengthening of the plate when it deflects between the fixed points 
x = 2112. 

The plate is surrounded by an isothermal bath at the temperature 
T, which is also inside the rigid box and its volume is assumed to be 
large enough so that T, remains constant. 

Since the deformation is two-dimensional in the x . y plane we 
may consider a volume of the plate and of the corresponding iso- 
thermal bath of unit dimension in the direction normal to the x . y. 

plane. We shall refer to this volume as the plate and the isothermal 
bath, respectively. 
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We consider now the following non-classical thermodynamic 
potential 

V = udA = (u -T,s)dA 
s s 

(2.4) 

A A 

where u and s are the local internal energy and entropy per unit volume 
of the plate and A is the rectangular area of boundaries x = *l/2, 
y = *a/2. The definition includes the case of non uniform temper- 
ature of the system. The total internal energy 
plate, are 

hence also 

U=JadA S=JsdA 

A A 

V = U - T,S 

and entropy of the 

(2.5) 

(2.6) 

The potential (2.4) for systems at non uniform temperature was 
introduced by the author in 1954 [4], It was applied extensively [3,5-61 
and referred to as the thermoelastic potential [6-7, 11-12 page 1661 in 
the particular case of thermoelasticity. These quantities are defined 
in such a way that u = s = 0 for the system in initial equilibrium at 
uniform temperature T, and zero deformation w = 0. 

An important property of the potential V is derived by applying 
the first principle, of energy conservation in the form 

U+H,=O (2.7) 

where H, is the heat energy acquired by the isothermal bath. Hence 

s+ _y 
r r 

(2.8) 

where S, is the increase of entropy of the isothermal bath. It is assum- 
ed here that the kinetic energy is negligible either because the mass 
density of the plate is very small or because the motion is slow enough. 
The influence of the inertia force will be considered in section 5. 
Combining relations (2.6) and (2.8) we derive [4-61, 

V = -S’T, (2.9) 
where 

S’ = s + s, 
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is the entropy of the total isolated system composed of the plate and 
isothermal bath. If 

v>o (2.10) 

S’ is negative which cannot happen according to the second principle, 
hence the system is stable. However if 

v<o (2.11) 

the entropy S’ may increase, and the equilibrium is unstable due to 
the fact that it represents a state of minimum entropy. 

Consider now the value of v for an element of unit volume. We 
may write 

dv = du - T,ds (2.12) 

according to the first principle. 

du = (-P + tIl)deI1 + dh (2.13) 

where dh is the heat absorbed by the element and tll is the incre- 
mental tensile stress added to the initial compression P. Also 

(T, + 0)ds = dh (2.14) 

where 6 is the increase in temperature above T,. 
With the values (2.13) and (2.14) of du and dh expression (2.12) 

becomes. 

dv = (-P + tIl)deI1 + 8ds (2.15) 

With the value (2.2) of sll and neglecting third order terms we obtain 

dv = -PdrXX -t- tlIde,, + 8ds (2.16) 

Finally we put 

dv’ = tI,dex, + 8ds (2.17) 

Hence 

dv = -Pdq,.. + dv’ (2.18) 

The quantity dv’ is an exact differential since dv is exact, and 

P&xx = d(P?xx) (2.19) 

The value of v’ may be obtained by integrating first along an iso- 
thermal path 8 = 0 along which tII = Ce,,, then along a constant 

- 121 - 



M. A. Biot 

deformation path de,, = 0 by increasing the temperature to 8. This 

yields 

r’=!2Ce&+ lce2 
2 T, 

(2.20) 

This is obtained by putting 

ds =F 
r 

(2.21) 

along the path de,, = 0, hence c is the specific heat per unit volume 

under the condition of plane strain with e,, = 0 while tzz = 0, i.e. 
for zero stress in the y direction. The latter condition complies with 
the Kirkhoff-Bernouilli assumption for thin plate bending. 

The value of o becomes 

or 

2)= -Pq,+u’ (2.22) 

(2.23) 

Note that C is the isothermal elastic modulus for the deformation 
with plane strain and tzz = 0. In classical Elasticity its value is 

C5L. 
1 - v2 

where E is Young’s modulus, and Y is Poisson’s ratio. 
We still need another physical relation which we write 

T,s = ye,, + c0 (2.24) 

where y is an experimental physical constant. 
The value of 0 obtained from (2.24) is substituted in (2.20). Hence 

From the value (2.17) of du’ we derive 

(2.25) 

e ad T =-= -leXX + --‘s 
as c c 

(2.26) 
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Hence C + yZ/T,c is the adiabatic elastic modulus, (for s = 0). 
Elimination of s between equations (2.26) also yields 

t,, =Ce,,-+I (2.27) 
r 

which gives another physical interpretation of the constant y in terms 
of thermal expansion. 

Let us examine two extreme cases, one of isothermal deformation 
(0 = 0) the other of adiabatic deformation (S = 0). We shall evaluate 
the value of V for each case. 

For 8 = 0 the value of V, from, (2.4) and (2.23), is 

v= - PqXX + i CezX 
> 

dA 

A 

Assuming a sinusoidal deflection 

(2.28) 

(2.29) 

we derive, from (2.23) 

v = $&P, - P) (2.30) 

where 

(2.31) 

This is the classical value of the Euler 
isothermal deformations. 

critical buckling load for 

For s = 0 i.e. for adiabatic deformation, from (2.4), (2.22) and 

(2.23), 

V=J[-Pqx.+i(C+$)e&]dA (2.32) 

A 

we derive 

V = g a&P. - P) (2.33) 
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where 

(2.34) 

is the Euler critical buckling load using the adiabatic elastic modulus 

c + g. 
I 

As soon as P > P, hence if P is only slightly larger that the iso- 
thermal critical load the value of V is a maximum for q0 = 0. Hence 
in this case according to (2.9) the entropy S’ is a minimum in the 
equilibrium state q. = 0. 

Since we have assumed zero mass hence zero kinetic energy, the 
buckling should be infinitely fast at P = P,. 

For P > P, i.e. for loads superior to the adiabatic buckling load 
the conservation of energy constraint cannot be verified unless we 
take into account the kinetic energy of if we add a damping device 
which damps out the lateral deflection of the plate. In the latter case 
the energy absorbed by the damper is transformed into heat which 
is added to the thermal bath thus increasing its entropy. 

3. APPLICATION OF ONSAGER'S PRINCIPLE 
TO THERMOELASTIC BUCKLING 

We shall consider the rate of entropy production in the total system 
composed of the plate and thermal bath. Following a procedure 
introduced many times previously [6-7,l I-131 we write the entropy 
production rate 

s 112 

s *I = ’ !!?fidA+2 
-T;ZaJP 2 s ek,dx 

A -l/2 

(3.1) 

where H, is the heat displacement across the plate thickness, hence 
in the y direction, and $I, is its time derivative. Since we are dealing 
with a thin plate, the heat flow in other directions may be neglected. 
In the second integral 8 and I& represent the temperature increase 
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and heat flow at the face y = a/2. The second integral is multiplied 
by two since there are two faces. Heat conduction is expressed by 

I$,,= -k$ k,=KfJ 

where k is the thermal conductivity of the plate and K the boundary heat 
transfer coefficient. With those relations we write (3.1) as, [6-7,11-12] 

(3.3) 

A -l/2 

We have used here the entropy displacement defined as 

(3.4) 

This concept was introduced earlier [II]. Actually it is more con- 
venient to work with a dissipation function 

D = ;T,s’ = (3.5) 

A -l/2 

At this point we must note an important holonomic conservation 
equation. We write 

h 
dH z-2 
ay 

(3.6) 

Dividing by T, it becomes 

as 
SC -2 

BY 
(3.7) 

It should be pointed out that this relation holds for linear perturbations. 
The thermodynamic state of the system has been defined by writing 
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where i = 1,2,. . . etc. and cpi are suitably chosen functions of y while 
q0 and qr represent a large number of generalized coordinates, theore- 
tically infinite in number. The use of the cos (XX/Z) factor for the 
deflection shape is not an approximation since it is easily verified that 
it is the correct value. Actually it amounts to choosing the first term 
of a Fourier series whose terms are uncoupled because of orthogo- 
nality. With the value s given by (3.7) and (3.8) and the value eXX 
given by (2.3) and (3.8) expression (2.4) becomes 

(3.9) 

where 

rc4a3 
‘O” =24 13 

-- c+gc -pa 
( > 

r 

42 
lyrc2 

aoi = Xl s 
ycp:dy (3.10) 

-a/2 

a/2 

a _%l . . - 

” 2c s 
cpl@y 

-a/2 

The prime denotes the derivative of CQ~ with respect to y. Similarly 
the dissipation function (3.5) is expressed as the positive definite 
quadratic form 

. . 

D = $bijdiij (i,j = 1,2,... etc) (3.11) 

As already shown repeatedly [4-61 Onsager’s principle [14-171 
may be expressed as 

(2 = 0,1,2,... etc) (3.12) 

This assumes that we neglect inertia effects, otherwise as indicated 
below a kinetic energy term must be added. 

Equations (3.12) are the Lagrangian equations of linear thermody- 
namics [4-61 in the absence of driving forces and mass. 
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The next step is to introduce normal coordinates 5, such that 

(3.13) 

Note that these quadratic forms are both positive-definite. This is 
evident for the second. For the first this can be seen since for q. = 0 
we obtain 

s . 
V =z s’ds =i$aijqiqj > 0 

A 

(3.14) 

Hence r, > 0. The transformation to normal coordinates is expressed 

by 

4i = i 4% (3.15) 

In terms of the coordinates q. and t, the value of V and D become 

The Lagrangian equations (3.12) are now 

av2 o -= 
ah 

(3.16) 

or 

av+aD=o 
x, z 

(3.17) 

r,5, + t, = -t aoi*fClo 

General solutions are obtained by considering values q. and C, 
proportional to an exponential time factor exp(pt). 
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Omitting this factor equations (3.17) become 

(3.18) 

We solve the second set of equations for g, and substitute in the 
first. After cancelling the factor q. we derive 

a00 _pLO 
P + rs 

(3.19) 

where 

Putting 

p, = & UOi@)2 > 0 (3.20) 

/3, = $$ B, (3.21) 

and introducing the value (3.10) of uoo, equation (3.19) yields 

(3.22) 

For p = 0 this must yield the isothermal buckling load. (2.31) 
hence 

(3.23) 

With this value of y2/cT, equation (3.22) is written 

(3.24) 

This equation provides the value of p which varies from zero to 
infinity when P varies between the isothermal buckling load P, and 
the adiabatic buckling load P,. 

The physical significance of expression (3.24) is brought to light 
by putting q. = 0 in the last of equations (3.17). They become 

rS5, + 4, = 0 (3.25) 
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and govern the thermoelastic relaxation modes of the plate. These 
modes are 

e, = ASe-rSf 

They show how an initial temperature disturbance 0 decays to 
zero. The parameters r, are the relaxation constants of these modes. 
They represent internal coordinates of the system discussed in earlier 
work [4]. The quantity 

may be considered as an operator where p represents symbolically 
a time derivative p = dldt. 

In this case the meaning of the operator p/(p f rs) is 

(3.27) 

For the case of harmonic time dependence, p = io where o is the 
circular frequency. The operator B is of the general form derived 
earlier for linear thermodynamic systems with internal coordinates [4-61. 
The external coordinate in the present case is the observed deflection. 
When the observed coordinates are mechanical we have used the 
appellation viscoelastic operator to refer to an expression such as 
(3.26) even if the internal coordinates extend beyond mechanical 
phenomena and include not only thermoelastic effects, but chemical 
reactions, phase changes, mass transport, electrical effects etc. Equa- 
tion (3.24) also confirms the rule by which equations for viscoleastic 
and relaxation phenomena are obtained from the purely elastic rela- 
tions by replacing the elastic coefficients by their corresponding 
operators. This was established in 1954-55 in all its generality and 
referred to as the “ viscoelastic correspondance principle “. [4,1g]. 
It was applied to the analysis of folding instability of a viscoelastic 
layer in compression embedded in a viscoelastic medium [19]. 

It was shown that the thermodynamic restrictions have an important 
bearing on the physical behavior. 

A final remark is in order concerning the physical significance of 
the buckling model for loads larger than the value for adiabatic 
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buckling. In the abscence of kinetic energy internal energy conser- 
vation constraints cannot be verified. However the physical reality 
of the model may be restored by attaching a viscous damping device 
which damps out the lateral deflection of the plate. This amounts to 
introducing an additional term in the dissipation formation. We write 

(3.27) 

The coefficient b0 measures the viscous damping of the lateral 
restraint. Proceeding as above equation (3.24) is replaced by 

C+B’p+iPB, 
P + rs 

(3.28) 

where 

B’=$$b. (3.29) 

It is verified that the operator in the bracket has the same form (5.20) 
as below, which is obtained from the general Lagrangian thermo- 
dynamics. In this, case due to presence of the term B’p representative 
of the damping device, the rate of buckling measured by p remains 
finite at the adiabatic critical load. The energy is dissipated into heat 
by the damper in the thermal bath thus increasing the total entropy 
of the isolated system. 

Equation (3.28) is of the same type in the case of viscoelastic 
buckling [19] as to be expected since both cases belong to the same 
phenomenological Lagrangian theory. 

4. SOLUTION DERIVED FROM CLASSICAL FIELD EQUATIONS 

The foregoing analysis is based on Lagrangian thermodynamic 
concepts in the framework of Onsager’s principle. It is of interest to 
compare this general analysis with the results obtained by solving 
directly the differential equations for the elastic deformation and the 
temperature field. This was already accomplished previously by using 
the analogy between thermoelasticity and the theory of porous solids 
saturated by a viscous fluid [2]. We will show that the same results 
are obtained from the differential equations of thermoelasticity, howe- 
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ver using an entirely different method of solution. For simplicity we 
shall restrict the analysis to the case where the faces of the plate are 
thermally insulated. 

We consider a cross section of the plate at any abscissa X. From 
equation (2.24) we derive 

Equations (3.4), (3.7) yield 

as azS,= y I air -=- 
at stay Tr ay 

(4.2) 

and from (3.2) we obtain 

as k a*e -=-- 
at Tray* (4.3) 

Also from (2.3) we may write 

a3w ae,, _ _ 
at ’ ata 

Hence the differential equation (4.1) becomes 

ka*e -+2! a% 
ay2 = -” ata at (4.5) 

We assume an exponential time dependence where the variable 
w and 8 are proportional to exp (pt). Omitting the time factor, equa- 
tion (4.5) is written 

k a*8 d*w 
ay2 = -PYYz + pee (4.6) 

This equation governs the distribution of 0 along y hence across 
the thickness at my given abscissa assuming the curvature dwz/dx2 
to be a known function of location. 

Since we assume the faces to be thermally insulated the boundary 
conditions are 

z=O at y=+a 
aY 

- 
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The solution of the differential equation (4.6) satisfying these 
boundary conditions is 

sinh ay 

acosh b?f.! 
0 2 

with 

The bending moment at the absicssa x is 

From (2.27), (2.3) we obtain 

d2w tll&x,-~e=-Cy--~~ 
T, dx2 T, 

(4.8) 

(4.9) 

(4.10) 

Substitution of tll into the integral (4.9) with the value (4.8) for 
8 yields the bending moment in the form 

a3 d2w 
&,.#y = ---fi-.-- 

12 dx2 

with 

,=c+J&-;(1-t?$?)] 

(4.11) 

(4.12) 

z=(ya=f4 PC 
2 J- 2 -z 

For comparison with previous results we expand the bracket in 
partial fractions. We use a classical expansion of the meromorphic 
function 

(4.13) 
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We first note 

l=]imtanh=f 
z-0 z 0 

: 2 

( > s+- R2 
2 

(4.14) 

Hence we obtain 

1 -F=2Sjo 2 z2 1 2 

( > 

(4.15) 

z + s+- ?r2 
2 

Furthermore 

(4.16) 

Also 

(4.17) 

Hence 

This expansion is now substituted in the value (4.12) of g using 
expression (4.12) for z. We obtain 

where 

B,=9& ’ 
cT,(2s + 1)4rr4 

r, = (2s + l)V-$ 

(4.19) 

(4.20) 

This result coincides with the one derived previously by an entirely 
different method [2]. However we must take care of the following 
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remark. In the present analysis c represents the specific heat for plane 
strain and zero stress tz2 = 0 in they direction. However in reference [2] 
we have used c to represent the heat capacity at constant volume. The 
two results check if we take this difference into account. 

Note that the form of the operator (4.19) for % is the same as in 
the general case (3.26). 

We may now go back to the buckling problem using the classical 
relation between bending moment and deflection 

.A = Paw (4.21) 

Hence with the value (4.11) of JI’ 

$I$+Paw=O 

A solution w = q,, cos m/l yields 

(4.22) 

(4.23) 

which coincides with the value (3.24) for the more general case. 

5. DYNAMIC BUCKLING 

In the foregoing analysis we have neglected the inertia force. A 
general Lagrangian thermodynamics taking inertia forces into account 
was developed in [3,6,18]. 

The Lagrangian equations for the generalized coordinates q1 are 

where 

is the kinetic energy, 

j: 
J-j = ;f bij&jj 

(5.1) 

(5.2) 

(5.3) 
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is the general dissipation function derived from the rate of entropy 
production and 

(5.4) 

is a mixed non-classical mechanical and thermodynamic potential. 
It is expressed as 

P=U-T,S+r$ (5.5) 

where C$ represents the mechanical force potential. 

The generalized forces Q1 are driving forces applied to the system 

and defined in such a way that d Q$q, is their virtual work. They 
also include purely thermodynamic thermal forces due to driving 
temperatures and defined in a similar way [6,1 l-121. 

Instability without driving forces is governed by the equations 

_+D+%() day 
dt ag, a4 aqr 

(5.6) 

Instability can only occur if B may become negative as in the present 
example of plate buckling. Inertia forces are taken into account by 
adding the kinetic energy of the plate. 

Assuming a sinusoidal deflection, the value of m is 

m =ipal (5.8) 

where p is the plate mass density. 

With the value (5.7) of the kinetic energy and putting 4 = 0 for 
the force potential we solve the dynamic stability equation for the 
plate following the same procedure as before. Equation (3.19) becomes 

a,, -i* + mp’ = 0 
s 
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and equation (3.24) for the compressive load P is replaced by 

P= s c+i 
( 

LB,+$Z) 
P + rS 

(5.10) 

In this case the rate of deflection measured by p remains finite 
as the compressive load P increases. It should be noted that this 
requires a more detailed analysis since modes of buckling 

w = q()cosn~x 
1 

representing several half waves may have a higher value of the rate 
p for a given load P (see [3] page 335). 

It is interesting to note that the problem of thermoelastic buckling 
treated in the foregoing analysis is a particular case of a much more 
general treatment of unstable thermodynamic systems. By distinguish- 
ing between two sets of coordinates one called external the other 
called internal [3-4,6]. We shall write the mixed potential B pas a sum 
of two terms 

where 

9 = 8,~ + Bin (5.11) 

(5.12) 

is a function of external coordinates ql only and is not positive definite. 
The other term 

Bin = B(qbqJ (5.13) 

is a function of both external coordinates q1 and internal coordinates 
q,, and is positive definite. The dissipation function 

D = I%4,) (5.14) 

is a function of both external and internal coordinates, and the kinetic 
energy 

(5.15) 

is a function of the external coordinates qi only. 
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The Lagrangian equations are 

dar+ae, I a%, [ s, -- - 
dt aq, a4, aql ah 

Q, 

(5.16) 

By definition the internal coordinates are not subject to driving 
forces hence Q, = 0. 

Let us put 

Hence equations (5.16) become 

(5.17) 

(5.18) 

In 1954 [4] and subsequent work [12] we derived a general impe- 
dance expression for the response of the thermodynamic system 
represented by equations (5.18). This expression is 

with 

Q; =i%rqr (5.19) 

(5.20) 

where Zlk, Z;, and Z# are all non negative and r, > 0. The para- 
meters r, are relaxation constants of the internal coordinate system. 
The quantity p is either a differential operator p = d/dt or represents 
the coefficient in an exponential time dependence proportional to 
exp (pt) where p is either real, complex, or equal top = iw for harmonic 
driving forces. Using the operational notation equations (5.19) may 
be written 

(5.21) 
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This relates the response of the system to external driving forces 
Qt. If we put QI = 0 equations (5.21) become homogeneous 

f(%, f alk + p2%,)qk = o (5.22) 

Cancelling the determinant provides the damped oscillations of 
the system or the exponential unstable modes. As will be shown below 
the latter are always non-oscillatory corresponding to values of p 
w’hich are real and positive. 

6. THEOREM ON THE NON-OSCILLATORY CHARACTER OF INTABILITY 

In the foregoing analysis we have assumed that exp (pt) is a real 
increasing exponential i.e. that the instability is non-oscillatory. This 
assumption is justified by a general theorem concerning the general 
dynamic instability equations (5.6). The theorem was derived in the 
author’s book ([3] page 442) which states that the unstable solutions 
of those equation are proportional to a real exponential function. 
For the convenience of the reader this proof will be briefly summarized. 

With ql proportional to exp(pt) equations (5.6) are written 

P2 i mlkqk + Pi bkqk f f alkqk = 0 

For any solution p, qk which is not real there is a conjugate one 
pz, qz such that 

Equations (6.1) are multiplied by qz and summed, similarly equa- 
tions (6.2) are multiplied by q1 and summed. The two results are 
subtracted from each other. Taking into account the symmetry 
properties mlk = mkl, bIk = bk,, alk = akl we obtain 

(P - P*)[(P + P*)mlk%d + hkWIk*l = 0 (6.3) 

The kinetic energy and dissipation function are positive definite 
hence 

lk 

c %k%d ’ o 
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Moreover instability requires 

p+p*>o (6.5) 

As a consequence equation (6.3) implies 

P =p* (6.6) 

Hence p is real and the instability is non oscillatory. 
Note that this theorem is very general and applies to all linear 

unstable thermodynamic systems governed by Onsager’s principle 
with a potential 8. 

7. VALIDITY EXTENDED TO INSTABILITY WITH MOLECULAR DIFFUSION 

The analysis of thermodynamic instability which is presented here 
in the context of thermal diffusion remains valid for the much more 
general case of unstable systems coupled with molecular diffusion 
of chemical species since they are governed by the same phenomeno- 
logical Lagrangian equations of irreversible processes. For instance 
in the case of buckling, the bending deformation induces differences 
in chemical potentials of the molecular constituents between the 
regions in tension and compression, thus generating a diffusion and 
a creep buckling, governed by the general equation (5.6). This is 
also implicit in the physical meaning of viscoelasticity considered in 
the thermodynamic theory of initially stressed solids [3]. Similarly 
as shown earlier [l-2,1 l] the theory of thermoelasticity is in complete 
analogy with the theory porous solids, where a viscous fluid is allowed 
to diffuse through the pores. In this case the fluid pressure is the 
analogue of the temperature and the fluid flow corresponds to heat 
flow. 
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