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Exact Simplified Non-Linear Stress 
and Fracture Analysis around 
Cavities in Rock 
M. A. BIOT* 

A non-linear analysisforfinite strain and stress has been developed and applied 
to symmetrical deformations around cylindrical and spherical cavities in rock. 
The material non-linearity which is involved may result porn either elastic or 
plastic properties. A drastic analytical simplification reduces the problem to 
the solution of a,first order differential equation. Fracture is analyzed. 

1. INTRODUCTION 

The mechanical properties of rock materials are in 
general strongly non-linear. Because of mathematical 
difficulties, such properties are usually not taken into 
account in stress analysis. However, as shown in this 
paper there are special cases for which such an analysis 
can be made extremely simple using elementary methods 
while retaining at the same time complete mathematical 
rigor. These two cases are those of axial and spherical 
symmetry of the field. Thus a realistic analysis becomes 
feasible of rock fracture around a cylindrical or spherical 
cavity due to injection of fluid under pressure in the 
cavity. 

The key to the procedure as shown in section 2 in the 
context of axial symmetry is provided by deriving a first 
order ordinary differential equation for the two stress 
components considering one of them as a function of the 
other. The integrals of this equation constitute a one 
parameter family of curves relating the two stresses. On 
such a stress diagram it is also possible to represent quite 
simply the failure condition of the material as a single 
curve relating the two stresses at failure. Thus the stress 
analysis not only takes into account the actual non-linear 
properties but it leads at the same time to an analysis of 
failure. 

This has been applied in section 3 to the problem of 
crack initiation due to fluid pressure in a cylindrical 
cavity in rock material. Two types of non-linear proper- 
ties arc considered. In one ca\;c the material remains 
nearly elastic with non linearity due to closing of the 
pores. In the other plastic behavior predominates. 

The case of a spherical cavity is treated in section 4 
by an entirely similar method. Except for a change of 
slope of the plots, results are completely analogous to 
those obtained for a cylindrical cavity. 

The analysis does not take into account fluid penetra- 
tion into the porous rock. This implies a sealed cavity 
wall or a fluid of very high viscosity. 

Application of the method is not restricted to rock 
material and is quite general. In particular it provides 
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also a simple and rigorous approach to the non-linear 
stress analysis of thick cylindrical or spherical containers 
of structural material. 

Experimental and theoretical studies on stresses and 
fractures around cavities have been treated in a different 
way by a number of authors. Le Tirant and Baron [l] 
investigated the fracture of cylindrical cavities in the 
context of the linear theory. In soil mechanics a non- 
linear treatment of cylindrical and spherical cavities was 
provided by Vesic [2]. The present treatment shows that 
a very simple analytical procedure is available which can 
be readily interpreted graphically. In the discussion use 
has been made of the results of Brace [3] and Brady [4] 
regarding the fundamental non-linear behavior of rocks. 

2. NON-LINEAR STRESS FIELD 
WITH AXIAL SYMMETRY 

We shall consider a continuous medium undergoing a 
deformation with axial symmetry around a z axis. A state 
of plane strain is assumed which is the same in all planes 
normal to the z axis. During deformation a material 
point initially at a radial distance r from the axis is 
displaced along the same radial direction by an amount 
U, function of r only. At the displaced point the jinite 
strain is represented by the principal components e1 in 
the radial direction and the principal component E? in 
the circumferential direction. Their values are 

dU 

E’ = -dr 

u 
(2.1) 

E2 E.z -1 
r 

Note that the sign is chosen so that positive values 
represent compressive strains. 

The corresponding principal stresses are denoted by 
zl and z2 respectively in the radial and circumferential 
direction. They are defined as the normal forces acting 
at the displaced point per unit initial area of the 
medium. The sign of the stress is chosen positive for a 
compression. The equilibrium condition for this stress 
field is readily obtained from the principle of virtual 
work. Consider the virtual work of the stress field 
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in a circular slab of unit thickness along the axis. This Introduction of the values (2.6) of e, and e2 as functions 
virtual work must vanish. Hence of z, and r2 yields 

271 (T,&, + r&,)rdr = 0 r (2.2) 
J 

dz, km _=-- 
dz, [(E, - EJ/(T, - T~)I + aez/aT, (2J1) 

with 
The right side is a function of r , and r2. 

Hence relation (2.11) is a first order differential equa- 
tion for r, as a function of the independent variable z2. 

(2.3) The general solution of the differential equation is written 

72 = ‘&I, C) (2.12) 
The integration is performed along any range of r and 
within this range the virtual displacement is arbitrary. 

which represents a one parameter family of curves with 

After integration by parts, condition (2.2) yields the parameter C as a constant of integration. 
There remains to determine the stress field as a func- 

d;; ; Tl-Tz_() 
tion of the coordinate Y. Consider for example, a thick 

r (2.4) hollow cylinder, with a stress T, = P,, acting at the 
internal boundary r = a and a stress z, = P,, at the 

Note that this equilibrium equation is completely general external boundary r = b. We substitute the value (2.12) 

and is valid for arbitrary large strains. of r2 into the equilibrium equation (2.4). This yields 

A compatibility relation for the finite strains E, and E? 
relations (2.1). We 

dr, dr 

Ic/(z,, C) - r, = r 
(2.13) is derived by eliminating U between 

obtain 
and by simple quadrature 

(2.5) 

The physical properties of the material are represented f 

T, 

I’, $(r ,,Z’- r, 
= log: (2.14) 

a 

by the stress-strain relations which are written 

El = E,(T,, 72) 

62 = +,, 72) 

The constant of integration C is determined by the 
following boundary condition at r = b 

(2.6) 

s 

Pb dT, 
,‘” $(z,,C) - z, = logi 

(2.15) 

They correspond to finite deformations either elastic or 
plastic. The only assumption we shall introduce here is 

When the value of C is known the stress field is 

the property of isotropy in the plane of deformation. This 
expressed as a function of r by equations (2.12) and (2.14). 

is expressed quite simply by the condition that E? is 
This of course assumes that P,, and P,, are known at 

obtained from E, by interchanging the variables z , and 
the boundaries. Actually P, and P,, are stresses per unit 

r2. Hence 
initial areas while usually what is given are hydrostatic 
fluid pressures pI, and p,, per unit deformed areas. The 

ez(r,, 72) = e,(rz, r,) (2.7) 
two sets of stresses are related by the equations 

Note that if the medium is elastic the functions E, and 
E. must also satisfy the additional relation 

P,,/P‘, = 1 + E2 CPU 2 wu, C)l 

Ph/Ph = 1 + l 2 CL @(P/P, C)l 
(2.16) 

86, 
aT2 

This is a consequence of 
material the expression 

de2 =- W-9 where $ is the general integral (2.12). These equations 

dr, may be solved for P, and P,, which are then expressed as 

the fact that for an elastic P,, = PU(C, P,) 

p/J = P,(C, P3 
(2.17) 

T,ijE, + rr?& - &TIE, + rIeZ) = -E,&, -E&~ (2.9) 

is an exact differential. 
In the present analysis the additional assumption (2.8) 

is not required, and the results are applicable to isotropic 
materials with either elastic or plastic properties. 

A drastic simplification in the analysis is obtained by 
eliminating r between equations (2.4) and (2.5). This leads 
to the relation 

(2.10) 

Substitution of these values into the boundary condition 
(2.15) provides an equation for the unknown C. 

In practice however, when E, does not exceed a few 
per cent, this additional complication may be avoided 
by using the approximation 

P,, = Pu 

ph = Ph 
(2.18) 

Thus the mathematical derivation of the stress field 
for a large class of non-linear and plastic materials with 
finite strain has been reduced to the integration of an 
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ordinary first order differential equation and a quad- the cavity. The strain is assumed not to exceed a few 
rature. per cent so that p may be identified approximately with 

As an illustration let us examine the case of linear a stress per unit initial area. At large distance the stress 
stress-strain relations. With coefficients c( and fl relations is assumed to be a uniform hydrostatic pressure 0. The 
(2.6) become effect of the rock porosity is neglected. This is justified 

El = az, + pz2 
if the fluid viscosity is sufficiently high or if the surface 

E2 =c(z1+#8z, 
(2.19) of the cavity is sealed. 

Let us first analyze the case of a material governed 

They satisfy condition (2.7) for isotropy. The differential 
by the linear stress-strain relation (2.19) and such that 

equation (2.11) reduces to 
a crack occurs as the stress reaches the tensile value 

&_ 
T2 = - R (3.1) 

dT_, - -’ 
(2.20) The analysis is conveniently represented in a z, z2 

Its general solution is 
diagram (Fig. 1). The integral of equation (2.11) in this 
case is a particular case of relation (2.21) namely 

T, +TL = c (2.21) 7, + z2 = 20 (3.2) 
with an arbitrary constant C. *I 

Note that the existence of a solution of the type (2.21) 
does not require the stress-strain relations to be linear. 
Consider for example the stress-strain relations 

\F 

E, = ClTl + pT1 + f(T, + 22) 

E7 = c(zz + pz, + f(Z, + ZJ 
(2.22) 

wheref(z I + z2) denotes an arbitrary function of z I + z2. 
9 

In this case we derive the same differential equation (2.20) 
and relation (2.21) is again valid. 

It is also of interest to point out a general and A-R 
-- - 

Q 
important consequence of the assumption of isotropy 

r2 

which concerns the slope dz,/dz? of the integral curves 
Fig. 1. Diagram t, tt for linear material. 

for points situated on the line z, = z2. The property 
of isotropy requires that in the vicinity of the line 

It is represented by the line BF in Fig. 1. It crosses the 

z, = z2 the differentials of stresses and strains be related 
failure line AF at a point F whose ordinate z, = p/ 

by the following relations 
corresponds to incipient cracking. The failure pressure 
pr is obtained by substituting z, = pr and z2 = -R 

de, = adz, + Pdzz in equation (3.2). Hence 

de? = adz1 + pdz, 
(2.23) 

pf = R + 2a (3.3) 

Hence In a p,. vs. o diagram this is represented by a straight 
line of slope two. (Fig. 2). 

(2.24) 

Under the same conditions we may also write 

Substitution of these values into equation (2.1 I) shows 

R 

&_ 
dzz - -’ 

(2.26) I 
0 u 

for z, = z2. Hence for isotropic materials with arbitrary 
Fig. 2. Failure pressure pI vs. hydrostatic stress CJ for linear material. 

stress-strain relations the integral curves in the z, z2 
plane are orthogonal to the line T, = TV. 

Actually rock materials exhibit strongly non-linear 
properties. A typical stress-strain law for plane strain 

3. APPLICATION TO A CYLINDRICAL 
under a single stress z ,, with z2 = 0 is illustrated in 

CAVITY 
Fig. 3 where 

The rock material is of infinite extent with an infinitely 
long cylindrical cavity. A fluid pressure p is applied inside -M,) = E,(T,, 0) 

(3.4) 

p f 
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Fig. 3. Stress-strain functions corresponding to one type of 
non-linearity. 

The shape of these functions is suggested by the experi- 
mental work of Brace [2]. 

Let us estimate typical solutions of the differential 
equation (2.11) in the z , z2 plane. We have already shown 
that for any isotropic material the slope dz ,/dT2 is minus 
one on the line z, = z2. In order to bring out the general 
behavior of the integral curves it is sufficient to evaluate 
the slopes on the line z2 = 0. On this line the slope 
(2. I 1) is written 

dT, m2MaT2)l (T I2 0) ---~ 
dz, (llr,)C.f,(r,) + .fh,)l - WW~,) (3’5) 

If we examine the physical significance of the terms on 
the right side we see that we may write approx. 

fi dfi -=- 
71 dT, 

(3.6) 

at least for values of r, which are not too high. On the 
other hand the quantity d~~(z,, O)/&, represents a com- 
pliance for the transversal strain l 2 and for small values 
of r2. Due to isotropy, this compliance, in the vicinity 
ofz, = 0, is 

$(O’ 0) = ;+(o, 0) = $0) = f;(o) (3.7) 
7 I I 

For values of r , which are not too large this compliance 
should decrease only slightly so that we may write 
approx. 

(3.8) 

Hence with reasonable accuracy the slope (2.11) on the 
line r, = 0 becomes 

dz, f ITO) -=- 
dT2 (llT,)f,(T,) 

(3.9) 

As can be seen this is given by the ratio of two slopes 
on the curve f,(z ,), the slope at the origin, and the slope 
of the chord from the origin to the point of ordinate z , . 
For the curve f,(z ,) shown in Fig. 3 the absolute value of 
this ratio is larger than unity, hence 

(3.10) 

A CT =2 

Fig. 4. Diagram T, 7z for non-linearity illustrated in Fig. 3. 

As a consequence the integral curves in the z, r7 plane 
are concave upward as illustrated in Fig. 4. Crack forma- 
tion will generally be represented by a failure line of the 
type AFC. The point F at which the integral BF crosses 
the failure line yields the cavity pressure pr for incipient 
cracking. The plot of p, vs. 0 derived from Fig. 4 is 
shown in Fig. 5. 

p f 

Fig. 5. Failure pressure p,. vs. hydrostatic stress CT for non-linearity 
illustrated in Fig. 3. 

The slope dpJdo will be about two or may be larger 
than two for G small and decrease for larger values of 0. 
This result is a consequence of the type of non-linearity 
represented in Fig. 3. It is to be expected for materials 
where elastic non-linearity predominates. In general this 
will be the case when the non-linearity is due to closing 
of the pores. 

. Depending on the shape of the failure line AFC and of 
the stress-strain functions ,f,(r !) and ,f2(rz) the plots of 
pf vs. 0 will exhibit a variety of characteristics. For 
example consider the material with the type of stress- 
strain functions shown in Fig. 6 and the type of failure 
line shown in Fig. 7. This type of behavior will generally 
be associated with materials for which plastic properties 
predominate. The integral curves in the plane z, ~~ are 
illustrated in Fig. 7. They will be convex upward. The 
resulting plot of failure pressure pf vs. the hydrostatic 
pressure CJ is illustrated in Fig. 8. The slope is closer to 
unity and the curve may have an inflexion point. 
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Fig. 6. Stress-strain functions corresponding to another type of 
non-linearity. 

Fig. 7. Diagram 7, r2 for non-linearity illustrated in Fig. 6. 

u 

Fig. 8. Failure pressure pr vs. hydrostatic stress u for non-linearity 
iilustrated in Fig. 6. 

4. STRESS AROUND A SPHERICAL 
CAVITY 

Spherical symmetry of the stress and displacement 
fields is assumed. A material point initially at a distance 
Y from the center is displaced radially by an amount U 
function of Y only. The radial stress at the displaced 
point is denoted by r,. The circumferential stress r2 at 
this point is the same in all directions normal to the 
radius r. As before these principal stresses represent 
forces per unit initial area. The corresponding principal 
strain components are formally the same as expressions 
(2.1). The radial component E, and the circumferential 

component E? are respectively 

dU 
. E’ = -dr 

u 
El = -- 

r 

(4.1) 

The principal of virtual work in this case is written 

rc 
J 

‘(r,&, + 2r2&&’ dr = 0 (4.2) 

Substitution ofexpression (4.1) for the strain and integra- 
tion by parts yield the equilibrium condition for the stress 
field 

$+p- 
2(r, - 72) _ o 

(4.3) r 

The compatibility condition for the strain is the same as 

(2.5) 

de2 E, -E? -= 
dr (4.4) 

I 

Elimination of r between equations (4.3) and (4.4) leads 
to the relation 

2r, - =z dr, 
de2 - - ~ El -E2 

(4.5) 

We now examine the stress-strain relations. For an 
isotropic material the three principal stress r , z2 z3 and 
the corresponding finite strain components E, E? l s are 
related by the equations 

El = cp(r,, r2, r.3) 

E2 = d72,73,7,) (4.6) 

l 3 = (P(r3,r,,r2) 

The property of isotropy also requires that the function 
cp satisfies the identity 

cp(r,, r1, r3) = cp(r,, 73, T2) (4.7) 

In the present case, with spherical symmetry z2 = rj, 
E2 = E3, and the stress-strain relations become 

6, = e,(r,, z2) = cpb,, z2,72) 

E2 = E&I, rz) = cpb2,72,7,) 

(4.8) 

Note that for an elastic material the expression 

r,&, + 2r,&, - ij(Z,E, + 27262) 

= --E,&, - 2E2fr2 (4.9) 

is an exact differential. Hence in this case the function 
(4.8) must also satisfy the condition 

&(r,, r.?) = 2&r,. 27) (4.10) 
z 

However this condition is not required for the validity 
of the present analysis. 
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From the stress-strain relations (4.8) we derive 

& 
2 

= ‘?d7 + ‘Ad7 
a7, ’ az2 2 

d4.11) 

Substitution in equation (4.5) yields 

d7, X@.?Y(~~z)l _=- 
dS2 C(E, - G)/(T, - ~)i + 2ww(ad (4.12) 

In the plane T ,, z2 this is a first order differential equa- 
tion for z, as a function of t2. 

Let us examine the case of linear stress-strain relations. 
The function cp is linear 

cp(~,,~z,~,) = ET, + B(zz + z.?) (4.13) 

hence 

E,(Z,,ZJ = LX, + 2pz, 

E,(T,, z2) = Pz, + (a + B)72 

(4.14) 

With the values (4.14) the differential equation (4.12) 
becomes 

d7, -= 
d7z 

-2 (4.15) 

The integral solution which goes through the point 
z, =z2 =ois 

z, + 222 = 30 (4.16) 

This leads to a diagram similar to Fig. 1 except that the 
slope of the line BF is now minus two. For a medium 
with hydrostatic stress 0 at large distance from the cavity, 
crack initiation occurs for a cavity pressure p( given by 

ps = 2R + 30 (4.17) 

where z2 = -R is the biaxial tensile fracture stress 
assumed independent of 7,. The plot of pf vs. 0 is 
analogous to that shown in Fig. 2 except that the slope 
of the line is now three instead of two. 

For a non-linear material we proceed as previously 
for the cylindrical case. Consider the slope dz ,/dz, on the 
line z, = z?. In the vicinity of the points T, = 27 and 
E! = E? we replace the variable by their differentials. For 

these variables the material is isotropic. Hence the rela- 
tions between the differentials must be of the same form 
as (4.14) namely, 

de, = xdz, + 2/3dzz 

de2 = fidz, + (E + P)dzz 
(4.18) 

where CI and p are functions of z I = 7z. We also write 

El - l 2 =de, -de2 

71 -7? =dz, -dzz 
(4.19) 

Substitution of these values into equation (4.12) yields 

d7, -= 
dz, 

-2 (4.20) 

on the line 7, = z2. Note that this is a consequence 
only of the property of isotropy. Hence in the plane 
7,, z2 the integrals of equation (4.12) initiated from the 
line 7, = t2 always start with a slope minus two and 
are concave upward or downward depending on the 
stress-strain relations. They will be similar to the curves 
in Figs. 4 and 7 for the cylindrical cavity. 

For the plot of the failure pressure pr vs. the hydro- 
static stress r~ results similar to those of Figs. 5 and 8 
are obtained, except that the slopes will tend to be higher 
in the ratio of about three to two. 
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