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Abstract. - A principle of virtual dissipation is derived which genera- 
lizes d’Alembert’s principle to non-linear irreversible thermodynamics, 
leading to a corresponding Hamiltonian form and Lagrangian equations. 
It constitutes the fundamental mathematical tool for the analysis of general 
non-linear dissipative physical systems by methods similar to those of 
classical mechanics. The principle provides a derivation of the differential 
field equations or the Lagrangian equations which govern any particular 
dissipative thermodynamic system and is not based on a priori knowledge 
of the field equations. Results are essentially an ultimate development of 
the author’s earlier work originated in 1954 which was presented in a 
more restricted context. 

1. INTRODUCTION 

A general thermodynamics of irreversible processes based on 

Lagrangian concepts and equations with generalized coordinates was 

initiated around 1954 [l-3], and developed mainly in the context of 

viscoelasticity and linear processes. That the essential concepts and 

procedures are applicable to a wider range of phenomena including 

non-linearity has been shown by the treatment of special cases, such 

as non-linear heat transfer [5] non-linear thermoelasticity [4] non- 

linear porous solids [8-g] and non-linear viscoelasticity [lo]. Current 

litterature on the subject seems to reflect a lack of awareness of the 

extensive generality and potentiality of the aforementioned material 
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which represents a distinct school of thought in the field of nonequi- 
librium thermodynamics. 

Our purpose is to derive what is referred to here as a principle of 
virtual dissipation which constitutes a generalized form of d'dlembert ‘s 

principle applicable to non-linear irreversible thermodynamics. This 
provides a unified treatment of a vast category of non-linear dissi- 
pative systems, leading, as in classical mechanics, to Lagrangian type 
equations. Fundamentally the generalization to thermodynamics is 
obtained by adding reversed dissipative forces to the reversed inertia 
forces of the classical d’tllembert’s principle. A distinctive feature of 
this variational principle is due to the fact that its formulation does 
not require any knowledge of the differential field equations. On the 
contrary the differential equations or the Lagrangian equations of 
the system may be derived directly from the principle itself. 

The formulation uses a thermostatic expression referred to here as 
a “ collective potential “. Its use as a new thermodynamic potential 
was already introduced in much earlier work of 1954 [l-2]. Systems 
which are holonomic or approximately holonomic from the thermo- 
dynamic viewpoint as well as quasi-reversible obey Lagrangian equa- 
tions with a dissipation function. The latter embodies non-linearity 
in the sense that the corresponding Onsager coefficients depend in the 
instantaneous values of the state variables. A corollary is a theorem 
of instantaneous minimum entropy production already enounced 
earlier in a more restricted context (1955) [2]. 

Instability of thermodynamic equilibrium in a state of minimum 
entropy as well as the non-oscillatory character of this instability was 
also discussed earlier [6-7, 41. It is briefly recalled here. The analysis 
brings out, an important distinction between the concepts of entropy 
production and energy dissipation. The latter has meaning only if the 
entropy production is associated with a thermal reservoir at a given 
temperature. As a consequence two types of dissipations are brought 
out and referred to as relative and intrinsic dissipation. 

As an illustration, two applications are derived to non-linear thermo- 
elasticity and to non-linear heat conduction. In the latter case it leads 
to the basic variational principle for heat conduction used extensi- 
vely in the author’s book [5]. The application to thermoelasticity also 
illustrates the distinction between the concept of local and collective 
dissipation associated with the same entropy production. 
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2. COLLECTIVE POTENTIAL 

It was shown originally in 1954 [l] and in some subsequent work 
[2-31 that a general Lagrangian thermodynamics applicable to a 
large category of irreversible processes can be developed by intro- 
ducing a fundamental thermodynamic potential different from the 
classical ones, written as 

V = U - T,S (2.1) 

where U and S are the internal energy and entropy of the system and 
T, is the temperature of a large isothermal reservoir which may exchange 
thermal energy with the system. We shall refer to V as the collective 
potential and the isothermal reservoir as the thermal well. The col- 
lective potential was used to describe a system which is not in thermo- 
dynamic equilibrium. In particular the temperatures may vary from 
point to point. While this concept was used mainly in the context of 
linear thermodynamics its applicability is much more general. 

An important property of the collective potential is its additive 
character. If the system is composed of a large number of interacting 
cells, we define a cell potential as 

Yk = %!!k - T,Ypk (2.2) 

where ak and Sp, are the internal energy and entropy of the k” cell. 
The collective potential is then 

with 

the total internal energy and entropy of the system. 
For continuous systems the cells may be infinitesimal and the sum- 

mations are replaced by volume integrals. 
If the cell is sufficiently small to be considered at uniform temperature 

T, and completely described by its entropy Ypk and any number of 
independant state variables qf. We may write 

dY,=ia$dq:-ta7 aqk dYk - T,dY, 
I k 

(2.5) 

-8- 
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Using the classical relation 

we derive 

dYk = i ‘3 dq: + d,dYk 
1 

where 

Ok = T, - T, = ‘2 
k 

(2.6) 

(2.7) 

(2.8) 

is the excess temperature of the cell above the thermal well temperature. 
Relation (2.7) expressing that the right side is an exact differential 
plays an important role in applications. 

Finally the most significant property of the collective potential is 
obtained by applying the principle of conservation of energy. We 
write 

dU = dW, - dH,. (2.9) 

The heat energy extracted from the system and absorbed by the 
thermal well is denoted by H, while dW, is the work of the external 
forces applied to the system. Note that by d’Alembert’s principle 
this includes the work of the reversed inertia forces considered as 
external body forces acting on the system. The entropy of the total 
combined system including the thermal well is 

(2.10) 

Elimination of H, and U between equations (2.1) (2.9) and (2.10) 
yields. 

dV - dW, = -T,dS’. (2.11) 

This relation is valid at any particular instant, for arbitrary d@ren- 
tials of the variables defining the system, and for arbitrary transfor- 
mations whether reversible or irreversible. The rate of entropy produc- 
tion in the total system is S’ = dS’/dt. We shall call ST, the power 
dissipated. It constitutes a measure of the irreversibility. 

-9- 
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3. VIRTUAL DISSIPATION PRINCIPLE 

A GENERALIZATION OF D'ALEMBERT'S PRINCIPLE TO DISSIPATIVE SYSTEMS 

A unified principle analogous to d’Alembert’s principle may be 
derived for combined mechanical and thermodynamic systems. This 
was already shown in the particular case of thermoelasticity [4]. 
Actually the procedure illustrated in that particular case is quite 
general. 

The total system is described by generalized coordinates qi whose 
nature may be mechanical, thermodynamic, electrical, chemical or 
of any other type. Instantaneous transformations are described by 
generalized velocities gi. 

We define generalized dissipative forces Xi by writing, 

T,dS’ = i X;dqi (3.1) 

With this definition relation (2.11) becomes 

dV-dWz+iXidqi=O (3.2) 

This relation is valid for arbitrary differentials hence also for arbitrary 
virtual variations 6qi. 

(3.3) 

The term 6W, may be split into two groups 

6W, = -i IiSqi + i Q$qi (3.4) 

where -Ii are the reversed inertia forces and Qi the external forces. 
Relation (3.3) becomes: 

6V + ~Ii6qi - ~ Qi6qi + ~X16qi = 0 (3.5) 

It constitutes the announced principle of virtual dissipation and gene- 
ralizes d’Alembert’s principle. The term 

(3.6) 

represents the virtual dissipation. 

-IO- 



A virtual dissipation principle and Lagrangian equations 

A Hamiltonian form of this variational principle is of course 
obtainable by integrating equation (3.7) with respect to time t, 

s [6V + ~ Ii6q, - ~ Qi6qi + ~ XtGqi]dt = 0 (3.7) 

However nothing essentially new is added by doing this, except for 
the fact that it provides a direct variational procedure for the evalua- 
tion of the inertia term Ii by means of the kinetic energy according 
to equation (8.3) below. 

In addition to the mechanical constraints the variation 6qi are 
assumed to obey conservation constraints for energy, mass, electrical 
charges. As can be seen the reversed dissipative forces -X’ play 
the same role as the reversed inertia forces -Ii Note that both are 
frozen instantaneous values which remain fixed, while variations are 
applied. 

Virtual thermodynamic equilibrium. The general principle (3.5) may 
be considered as expressing that the system is in “ virtual ” thermo- 
dynamic equilibrium if we apply reversed dissipative forces -Xi. 
To show this we write equation (3.5) in the form 

6~ + ~ Ii6qi - ~ QlSqi = -T,6S’ (3.8) 

putting at the same time 

Q; = Qi - Xf 6s’ = 0 (3.9) 

This amounts to the statement that by applying reversed dissipative 
forces -Xi the virtual change of entropy 6s’ of the total system vanishes. 

Disequilibrium forces. In systems for which Xi = 0 no entropy is 
produced. Such a system may be considered in thermodynamic equi- 
librium in the sense that virtual changes of entropy vanish. Hence the 
dissipative forces Xl constitute a measure of the departure from equili- 
brium. 

They may be referred to as disequilibrium forces a term already 
introduced earlier [2-31. Hence some of the instantaneous velocities 
di of the system are due essentially to the disequilibrium forces Xi, 
A complete physical description of the irreversible process requires 
the knowledge of the functional relations between di and Xi. 

X: = R:(q&) (3.10) 

-ll- 
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These rate equations may be obtained from experimental data or 
statistical theories. For example they may correspond to viscous 
forces, reaction or diffusion rates etc. Since R’ represents the actual 
value of Xi in the physical process, it obeys the fundamental property 

iR;&>O (3.11) 

expressing that the dissipated power is positive definite. It is assumed 
of course that in the inequality (3.1) Rf is not a frozen value but 
depends on 4i. 

Restoring forces. The variation 6V is obtained by applying varia- 
tions 69, of the state variables in the vicinity of a given configuration 
qi. We may write 

6V = ~ F1’6qi (3.12) 

The coefficients Ff of this variational differential form depend on the 
instantaneous configuration qi 

F; = F;(q,) (3.13) 

The virtual dissipation principle (3.5) becomes 

i(Ff + Ii - Qi + Xi)hqi = 0 (3.14) 

Hence with Xi = RI we derive 

Ff + Ii - Qi + Rf = 0 (3.15) 

These differential equations govern the evolution of the system. We 
shall refer to Fi as the restoring forces. This is justified by the fact 
that in the absence of kinetic energy and externally applied forces 
(dW, = 0) equation (2.11) becomes 

(3.16) 

Since S; > 0 the value of V decreases with time and for a stable 
system F; is similar to an elastic restoring force. For an unstable 
system they will be negative. 

- 12 - 
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4. DISTINCTION BETWEEN RELATIVE AND INTRINSIC DISSIPATION 

The dissipation rate T,‘s expressed by equation (3.1) may be called 
“ relative dissipation” because it is associated with a thermal well 
temperature T, which may be chosen arbitrarily. The relative character 
of the dissipation thus defined is easily understood by considering 
for example the heat produced by friction. The energy is not entirely 
lost if the heat is produced at a temperature T which is higher than 
the temperature T, of the thermal well. Part of the heat may still be 
converted into useful work by a Carnot cycle between temperatures 
T and T,. 

In general consider a system made up of cells at different tempera- 
tures. Consider the kfh cell at the temperature T,. The rate of entropy 
production S: in the cell is associated with two types of dissipation. 
One type is defined as T,S: associated with the temperature T, of 
the cell. We shall call it the intrinsic dissipation because it represents 
the energy which is totally lost and cannot be recuperated into useful 
work unless there is available a thermal well at a temperature T, < Tk. On 
the other hand T,S: is the relative dissipation. It is smaller than 
T,S: since part of the heat may still be transformed into useful work 
in the presence of the thermal well. The difference between the two 
dissipation rates is 

(4.1) 

If h, represents the rate of energy transformed into heat, fI&k/Tk is 
the amount available for useful work and dk/Tk is the Carnot cycle 
efficiency. 

We may also define an intrinsic dissipation rate for the collective 
system as 

and a corresponding virtual intrinsic dissipation 

(4.2) 

(4.3) 

In these expression Xi are the intrinsic dissipative forces. 

- 13 - 
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5. VIRTUAL INTRINSIC DISSIPATION PRINCIPLE 

The variational principle (3.5) may be formulated in terms of 
intrinsic dissipation. This form is particularly suitable when the 
system is constituted by a collection of cells each at its own temperature 
T,. The collective potential is 

(5.1) 

where Yk is determined by a number of local cell variables including 
its entropy 9,. This entropy is the sum of two terms 

9, = Sk + Sk* (5.2) 

where sk is the entropy supplied to the cell and sz is the entropy pro- 
duced in the cell. 

The variation 6V may be written in the form (applying 2.8) 

(5.3) 

where 6, is a restricted variation obtained by excluding variations 
due to 6s: and t& = T, - T, is the excess temperature of a cell above 
that of the thermal well. 

We note that for a system of cells the relative virtual dissipation 
(3.6) is 

i X&j, = TJS’ = T, i 6s; (5.4) 

Substitution of the values (5.3) and (5.4) for 6V and i XfGq, in the 
variational principle (3.5) yields 

S,V + ~ Ii6qi - ~ Qisqi + ~T,6S:= 0 (5.5) 

This provides an alternative form of the variational principle (3.5) 

in terms of the intrinsic dissipation i T,&:, using a restricted form 
of the variation SaV which excludes 6s:. Thus (5.5) represents a 
principle of virtual intrinsic dissipation. Using expression (4.3) it may 
be written 

6,V + ~ Ii6qi - ~ Qi6qi + t: XiSqi = 0 

- 14 - 
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where Xi are intrinsic dissipative forces. Integration of the varia- 
tional equation (5.6) with respect to time yields a Hamiltonian form 
analogous to (3.7). 

We may of course write rate equations similar to (3.10) such as 

Xi = Ri(qk,qk) with i Rigi > 0 (5.7) 

Also we may define restricted restoring forces Fi analogous to Ff 
by the relation 

6,V = ~ Fi6qi (5.8) 

They are also functions of the instantaneous configuration, hence 

Fi = Fi(qJ (5.9) 

The variational principle (5.6) leads to differential equations of evo- 
lution of the system in the form 

Fi + Ii - Qi + Ri = 0 (5.10) 

They are analogous to (3.16). 

6. ISOTHERMAL AND QUASI-ISOTHERMAL SYSTEMS 

In many cases it is possible to assume as a valid approximation 
completely isothermal transformations. In this case the temperature 
remains constant and uniform throughout, and equal to the tempe- 
rature T, of the thermal well. 

Formulation of the virtual dissipation principle in this case is 
considerably simplified. First we should point out that for such iso- 
thermal systems the collective potential (2.1) coincides with the Helm- 
holtz free energy. 

All cells remaining at constant temperature we put T, = T,. 
Hence the virtual dissipation is 

(6.1) 

In this case there is no distinction between relative and intrinsic dissi- 
pation. Moreover applying equation (2.7) the variation of the collective 
potential may be written 
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where 6, is the variation obtained without varying the cell entropy 
Y, as an independent variable. However since Tk = T, is given, .49, 
still varies as a function of other variables. Since 0, = 0 we write 

(6.3) 

Another case leading to important simplifications is obtained for 
quasi-isothermal systems. In this case it is assumed that the excess 
temperature ok of the cells is small compared to the thermal well 
temperature T,. 

Consider again the relative virtual dissipation 

(6.4) 

In first approximation we may neglect 8,. Hence as in equation (6.1) 
we may write 

iT& = T,S’ (6.5) 

Again the relative and intrinsic dissipations are the same. Hence the 
variational principle (5.6) with intrinsic dissipation becomes 

6,V + f: IiSqi - f: Qi6qi + T,6S’ (6.6) 

where 6,V is the restricted variation which excludes 6s: while 

T,6S’ = i XfGq, 

is the same virtual relative dissipation as in equation (3.6). 
This result is essentially equivalent to that obtained in 1954-55 by 

the author [l-2] in the more restricted linear context. 

7. QUASI-REVERSIBLE SYSTEMS 

MINIMUM ENTROPY PRODUCTION AND MINIMUM DISSIPATION 

Consider the case where the evolution of a system is “ almost 
reversible “. As we have seen any instantaneous configuration may be 
considered as a virtual equilibrium state under reversed dissipative 
forces -Xi and the reversed inertia forces -Ii. If we now apply the 
forces Xi, the equilibrium is disturbed and associated velocities di 

- 16 - 
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are produced. For an almost reversible systems, the departure from 
virtual equilibrium will be small, and Onsager’s principle will generally 
be applicable. As already shown [l-3] this may be expressed in the form 

X’ = R! = ‘D’ 
i I 

a4i 

where 

D’ = .‘,g bij(qk)diQj 

(7.1) 

(7.2) 

is a dissipation function with coefficients bij depending on the instan- 
taneous state qk. By definition a system for which this property is 
valid will be called quasi-reversible. 

Minimum entropy production. By equation (7.1) and application of 
Euler’s theorem on quadratic forms we obtain 

S’T, = ix;& = i!-$ = 2D’ 

I 

(7.3) 

Hence 2D’ represents what we have called the relative dissipation 
with reference to a thermal well at the temperature T,. It is propor- 
tional to the total rate of entropy production S’. 

According to basic evolutive equations (3.15) the dissipative forces 
Xi are equal to 

Xi= -F;-Ii+Qi (7.4) 

They are thus expressed in terms of the frozen instantaneous state 
including inertia forces. 

Using the fixed frozen values (7.4) of Xi equations (7.1) lead to the 
minimum condition 

D’ = minimum (7.5) 

where only the velocities are varied while satisfying the constraint 

~X;qi = Const (7.5) 

Since according to (7.3) D’ is proportional to S’ we conclude that at 
every instant the velocity direction is determined by a condition of 
minimum rate of entropy production provided the velocities satisfy the 
constraint (7.5). 

- 17 - 
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This theorem was already derived earlier (1955) in the context of 
linear thermodynamics [2]. As can be seen from the foregoing consi- 
derations its validity for quasi-reversible non-linear systems is imme- 
diate as already pointed out for non-linear heat conduction [5]. 

Minimum dissipation. The foregoing minimum principle is expressed 
in terms of entropy production. A similar theorem may be expressed 
in terms of intrinsic dissipation. We write the collective virtual intrinsic 
dissipation (4.3) as 

(7.6) 

where qf are the state variables of kth cell. On the other hand the 
variation 6q: are linear functions of the independent variations 6qi 
of the generalized coordinates 

this implies 

Hence 

6q: = ~ cC:iSqi (7.7) 

4; = i &ji (7.8) 

k a(i; 
% = aq, (7.9) 

In a quasi-reversible system we apply Onsager’s principle by writing 
the dissipative forces in each cell as 

(7.10) 

where gk is a quadratic form in the variables 4: with coefficients 
depending on qt Substituting the values (7.7) (7.9) and (7.10) into. 
expression (7.6) we obtain 

(7.11) 

where the intrinsic dissipative force is 

x -aD i - aqi 
(7.12) 

- 18- 
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and D is an intrinsic dissipation function given by 

(7.13) 

It should be noted that (7.6) along with (7.12) and application of 
Euler’s theorem leads to 

2D = iTk$ (7.14) 

We now go back to equations (5.10) of the system. The frozen values 
of Xi may be expressed as 

I& = Xi = -Fi - Ii f Qi (7.15) 

A consequence of equation (7.12) is the minimum property 

D = minimum (7.16) 

where only the velocities Qi are varied while satisfying the constraint 

i Xi& = Const. (7.17) 

Hence for a given instantaneous configuration the velocity direction is 
determined by a condition of minimum intrinsic dissipation provided 
the velocities satisfy the constraint (7.17). 

For an isothermal or quasi-isothermal system, relative and intrinsic 
dissipations coincide, and minimum intrinsic dissipation implies 
minimum rate of entropy production. 

8. LAGRANGIAN EQUATIONS 

As in classical mechanics the variational principles lead to Lagran- 
gian equations with generalized coordinates. This has been developed 
and applied extensively in earlier work mainly in the linear context 
[l-3, 63 and in some special cases of non-linearity [5-61. As in mechanics 
we may distinguish between holonomic and non-holonomic systems. 

Holonomic systems. We shall call a system thermodynamically holo- 
nomic if the system may be defined by independent state variables qi 
in such a way that all mechanical as well as mass energy and other 
conservation constraints are obeyed. In practice there are numerous 
cases where this is applicable either exactly or as a first approximation. 

- 19- 
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For instance this will generally be the case for isothermal and quasi- 
isothermal systems. Also it will be approximately valid for weakly 
irreversible systems where the produced entropy adds only a small 
contribution to the state variables. 

We shall apply the principle of virtual intrinsic dissipation (5.6). 
The restricted variations of the collective potential is 

If the body forces are derived from a potential G we may replace Qi6qi 

Also by a well known classical procedure we obtain using mass 
displacements (Y = kinetic energy) 

(8.3) 

Introducing these results in the variational principle (5.6) the evolutive 
equations are written in the form 

(8.4) 

where 
B=V+G (8.5) 

is a mixed collective potential. If the system is quasi-reversible with an 
intrinsic dissipation function D given by (7.13) we put 

Ri=E 
adi 

(8.6) 

Equations (8.4) are the Lagrangian equations for the generalized coor- 
dinates qi. The importance of these equations is due to the fact that 
a large variety of thermodynamic systems obey such equations either 
rigorously or approximately. 

Non-holonomic systems. For systems which are not holonomic 
Lagrangian equations of a special type may be derived by using 
Lagrangian multipliers as in classical mechanics. Consider the case 

- 20 - 
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when the entropy produced in the cells sf is not negligible and must 
be considered as additional state variables required for the description 
of the system. 

The distribution of S: among the cells constitutes a scalar field 
which is related to qi and 4i by equations of the type 

(8.7) 

These relations between st and qi are not holonomic i.e. they are 
essentially a differential relation which must be added to the Lagrangian 
equations (8.4). 

Linear thermodynamics. Over the last twenty years, the Lagrangian 
equations for this case have been developed and applied extensively 
with particular reference to viscoelasticity [l-3, 61. The initial equi- 
librium state is represented by qi = B = F = D = Qi = 0. The 
generalized coordinates qi represent “ small ” deviations from equi- 
librium. The system is holonomic since s* is of second order and the 
Lagrangian equations become 

where . * 
9 = .!$ mij4gjj 

D = $fbij&jj (8.9) 

B = 52 aijq,qj 

with constant coefficients mijbija,. The quadratic forms F and D 
are positive definite. The same equations are applicabIe to thermo- 
elasticity and heat conduction as developed earlier [3, 51. 

Internal coordinates. In many cases the n coordinates qi may be 
grouped in two categories. In one group the coordinates qi(i = 1,2,...k) 
are external or observed, in the other (i = k + l...n), constituting 
what we have called internal coordinates, [l] they are not directly obser- 
ved. The internal coordinates are those for which .F = 0 and QI = 0. 

- 21 - 
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Hence they obey the equations 

aD+M 
- = 0 (i = k + l,...n) 

Qi Qi 

(8.10) 

It was shown [l-3, 51 that in this case the driving forces corresponding 
to the external coordinates q, are expressed by 

Qi = ~Z,jqi (i,j = 1,2,***k) (8.11) 
with 

ztj =zji&j’P + Dij + PDfj + $mij (8.12) 
P + r, 

where r, > 0 and DWDijD~j and mij are all positive definite. The 
symbol p denotes the time derivative operator d/dt. For harmonic 
time dependence it becomes p = iw (w = circular frequency). Equa- 
tions (8.11) are integro-differential and represent a system with 
heredity. Viscoelastic solids are a particular case [l] [4]. 

Non-oscillatory character of unstable equilibrium. The initial state 
(qi = 0) may be an unstabls equilibrium. This will be the case if B 
may assume negative values. Assuming no driving forces (Qi = 0) 
it was shown that the instability is non-oscillatory [6-71 (p real 
positive). It should be noted that the instability due to 

8<0 (8.13) 

may be the result of either V < 0 or G < 0 or both, i.e. it may be 
purely thermodynamic, purely mechanical, or of mixed mechanical 
and thermodynamic character. 

Unstable equilibrium at minimum entropy. Consider the particular 
case where inertia effects are negligible for either small acceleration 
of masse, while G 

On the other hand 

= 0. In this case instability implies 

8=V<O (8.14) 

for this case W, = 0 and equation (2.11) implies 

V = -S’T, (8.15) 

In other words a maximum value of V at equilibrium implies a mini- 
mum value of the total entropy S’. This type of instability was dis- 
cussed in detail earlier [7, 41. In this form the instability may be 
interpreted in terms of probabilistic statistical concepts. 

- 22 - 



A virtual dissipation principle and Lagrangian equations 

9. NON-LINEAR THERMOELASTICITY 

AND HEAT CONDUCTION AS ILLUSTRATIONS 

Quasi-isothermal non-linear thermoelasticity was treated earlier [4]. 
It is extended hereafter to the completely general case. Consider an 
elastic continuum. A material point initially of coordinates Xi is 
displaced and acquires the coordinates 

ri = ri(Xk,t) = Xi + ui(xk9t) (9.1) 

The finite deformation is described by Green’s tensor (with dummy 
indices and the summation convention) 

'(aij f aji + ak,aki) Yij = 2 (9.2) 

with 
hi 

aii = G (9.3) 

The cells are now infinitesimal elements and summations are replaced 
by volume integrals. 
The collective potential may be expressed as 

V = 
s 

Y(yij,Y,xi)dSZ (9.4) 

52 

where dsZ = dx,dx2dx, and 52 is the initial volume. The term thermo- 
elastic potential [4-5, 71 has also been used for V in the present case. 
The cell potential Y and its entropy 9’ is for a unit initial volume 
at the location xi. 

The cell entropy may be split into a supplied entropy s and a produ- 
ced entropy s*. We write 

9=s+s* (9.5) 

When entropy production is due to thermal conduction, the beha- 
vior is quasi-reversible. Onsager’s principle is applicable leading to 
a dissipation function represented by a quadratic function of the rate 
variables. Results are expressed as follows [4]. 

We have introduced [3] [4] an entropy displacement field SI defined by 
the equation 2_ 

(9.6) 

- 23 - 
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where T is the temperature at the point ri while Hi denotes the rate 
of heat flow across a material surface which before deformation is of 
unit area and normal to xi. It was shown that, with the summation 
convention 

aSi ,y= -_ 
axi 

(9.7) 

and the rate of entropy production per unit initial volume is 

where 

S” = nijSiSj (9-g) 

Aij = lij = Aij(YUc,‘40X*) (9.9) 

is the inverse of the thermal conductivity tensor referred to a deformed 
element and defined by 

CL -n..I_i. 
aXi ” ’ 

The virtual intrinsic dissipation is 

S TGs*dO = S TIijSjGSidO 

R n 

Field equations. The thermoelastic analysis in 

(9.10) 

(9.11) 

the present formu- 
lation involves the evaluation of the displacement field Ui and the 
entropy field Sp. Field equations are readily obtained by applying 
the variational principle (5.5) which involves the intrinsic dissipation 
(9-11) and the restricted variation 6,V. In the present case it is written 

$ s 
(6RY + P;/i6Ui - ,O.%‘JUi + TLijSjGSi)dQ (9.12) 

R 

where p is the initial mass density at point Xi and ai is the body 
force per unit mass at the displaced point Xi + ZQ. Since &“Lr excludes 
the variation due to 6s* we write 

b,V=Ss.YdB=S(~da,j+~BS)dR (9.13) 

R R 
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We integrate by parts after introducing the values (9.3) and (9.7) 
for aij and s. These relations play the role of holonomic constraints 
expressing continuity and conservation. This yields 

Variations 6ui and 6Si are arbitrary and assumed to be applied only 
inside 52. 

Hence substitution of the value (9.14) into the variational principle 
(9.12) provides the six field equations 

(9.15) 

+ T~ijSj = 0 (9.16) 

Since aY/as = 8 equations (9.16) are the heat conduction equations. 
Both T and Aij are functions Of Yrj,xi and Y. Hence the six equations 

(9.15) and (9.16) contain seven unknowns, Ui, Si and s*. A seventh 
equation is given by expression (9.8) for the local rate of entropy 
production S”, in terms of Si,s*,xi and yij. 

Lagrangian equations and holonomic approximation. If the contri- 
bution of the produced entropy s* to the state variable Y remains 
small in comparison with the contribution of the supplied entropy s, 
the cell entropy Y may be written 

yes= -as, 
axi 

(9.17) 

and the system becomes holonomic. It is then completely described 
by two fields of material displacements ui and entropy displacements 
Si. They are written 

ui = uit9192 *.* 9nX/J 

si = WI92 *.. 9”Xd (9.18) 

in terms of generalized coordinates qi which are unknown functions 
of the time to be determined by Lagrangian equations (8.4). Note 
that in expressions (9.18) the time could also be included as a variable 

- 25 - 



44. A. Biot 

in addition to qi and xi. In order to obtain the Lagrangian formu- 
lation we need to evaluate the collective or thermoelastic potential 

(9.19) 

We also need 
tion D. They 

3: 

the kinetic energy F and the intrinsic dissipation func- 
are written 

~ = 5 
s 

pziitiidSZ = ~mij(q14143~i4j 

n 

D = ~ 
s 

T~ijSiSjdS2 = ~bij(qlqZ...q”)4i4j 

R 

(9.20) 

(9.21) 

where the temperature T is expressed as a function of yij, s and xk 

T = T(Y~~,.w& (9.22) 

It should be pointed out that in the present case the driving forces QI 
at the boundary may be expressed as mixed thermo-mechanical forces. 
This can be seen by considering the boundary to be in contact with 
thermal reservoir’s at various temperatures. The cell potential of these 
reservoir’s may be considered as contributing additional terms to 
the collective potential V of the system. This amounts to replacing 
W/dq, by (nk = unit normal) 

!? + 
a4i s 

On,~dB 
8% 

A 

The surface integral at the boundary A is the contribution of the 

(9.23) 

driving thermal reservoir’s to the potential term. However it may be 
considered as part of the driving forces by transferring it to the right 
hand side of the Lagrangian equations (5.4) putting 

Qi= - s 9nkazdA + fkazdA. 
I S i 

A A 

(9.24) 

The first integral represents the thermal driving forces, and the second 
the purely mechanical part due to driving forces fi per unit initial 
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area at the boundary. Note that 8 may be time dependent tempera- 
tures, since the driving reservoirs are fictitious and defined in terms of 
instantaneous values. 

Finally the body forces may be derived from a potential G such as 
a gravity force potential. This amount the replacing V by the mixed 
collective potential B = V + G already considered (8.5) in the gene- 
ral case. 

With these results the Lagrangian equations of the thermoelastic 
medium are written 

d as -- 
(> 

a9-+aD a9 
_+_-_=Qi 

dt &ji - G &ji aqi 
(9.25) 

Note that if the holonomic approximation is not sufficient, we may 
use an iteration procedure by which the holonomic approximation is 
considered as a first step. The values of qi thus obtained are used to 
determine 9* from equations (9.8) and (9.18). A simple time quadra- 
ture yields s* as a function of time. We then replace s by Y = s + s* 
in the Lagrangian equations and derive new values of qi as a second 
approximation. The procedure may be repeated. 

Quasi isothermal case and elastic instability. If the temperature 
increments 0 are small, we may write 

s, - Hi 
I-- 

T, 
(9.26) 

where Hi represents a heat displacement. The dissipation function 
becomes 

D=& 
s 

lijHiHjdSZ 
r 
R 

(9.27) 

and coincides with the relative dissipation function (7.2). This case 
was analyzed in detail earlier [4] and applied to a discussion of the 
nature of thermoelastic instability for the linearized case of an initially 
stressed elastic medium as already mentioned above in connection with 
equations (8.13) and (8.15). 

Non-linear heat conduction. The case of pure heat conduction is 
obtained by assuming zero deformation (rij = 0) and zero kinetic 
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energy (Y = 0). This case was treated and applied extensively in a 
sequence of papers originating in 1957 and collected in a monograph 
[5]. The principle of virtual dissipation may be simplified in this case 
leading to a rigorously holonomic system and corresponding Lagran- 
gian equations. 

We apply the variational principle (9.12) with restricted variations 
and intrinsic dissipation. 

It becomes 

s 
(6,~ + T~ijSjGSi)dO (9.28) 

R 
where 

(9.29) 

We assume arbitrary variations 6Hi to be different from zero inside 
52. We introduce the values (9.29) into the variational principle (9.28) 
and integrate by parts. This yields 

S(~ + n,j~j~dn=O 

0 

(9.30) 

Since the variations 6Hi, hence also 6Hi/T are arbitrary, this results 
is is equivalent to 

~6Hi + ~,j~jsHi dS2 = 0 
I > 

R 

(9.31) 

Finally another integration by parts yields 

s 
(Mh + ~ijiijsHi)dSZ = 0 

R 
with 

(9.31) 

h = aHi 
-Tg 

(9.32) 

This quantity was referred to as the heat content [5]. In the present 
case of pure heat conduction it plays the role of a state variable 
related to the temperature. 
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We write 
0 = 0(h) (9.33) 

By adding thermal reservoirs at the boundary the term 86h may be 
considered to include these reservoirs. It amounts to adding a surface 
integral at the boundary, and equation (9.31) becomes 

s 
(86h + li,~j6Hi)dSZ = - 

s 
Bn,sH,dA (9.34) 

R A 

This is the same variational principle as proposed earlier by the author 
for thermal conduction in 1957 (see [5]). 

It leads to Lagrangian equations developed and discussed exten- 
sively in a book [5]. The heat displacement field is expressed in terms 
of generalized coordinates 

H = Hi&q2 . . . qnxk) (9.35) 

The Lagrangian equations for qi derived from the variational principle 
(9.34) are 

av aD - +-=QQi 
8% adi 

where 
9 

V = da 
s s 

Odh 

R 0 

was called the thermal potential while 

is a thermal dissipation function and 

Qi = - 
s 

Bn,$I$dA 
I 

A 

is the generalized thermal force. 

(9.36) 

(9.37) 

(9.38) 

(9.39) 
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