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As a contribution toward unification and interdisciplinary perspective it 
seems appropriate here to call attention to an extensive body of results 
established by another school regarding the thermodynamic aspects of 
instability leading to dissipative structures. The theory deals with the linear 
irreversible thermodynamics of deviations from a state of equilibrium 
which is unstable, as distinguished from unstable perturbations in the 
vicinity of a nonequilibrium steady state. However, as pointed out below, 
special cases of instability of steady-state flows may also be analyzed by 
similar methods. 

This general approach provides a systematic thermodynamic analysis of 
continua which are initially stressed in a state of unstable equilibrium. 
Typical classical examples are elastic buckling in compression, and a 
viscous fluid in equilibrium in a gravity 
gradient. In general perturbations of the 
Lagrangian equations 

field with an unstable density 
unstable equilibrium obey the 

where ‘3 is the kinetic energy, CiJ the dissipation function defined in terms 
of entropy production, and ‘3’ is a new mixed mechanical and ther- 
modynamic potential different from the classical thermodynamic po- 
tentials. The generalized coordinates qi define the nonisothermal perturba- 
tions from the initial state of stressed equilibrium. Instability arises from 
the fact that C!?’ is not positive-definite. 

The theory was developed over the last 20 years starting in 19541e3 with 
a Lagrangian-variational formulation of irreversible thermodynamics, fol- 
lowed by a sequence of applications and further developments, some of 
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which are given in the reference section 4-l’ The theory of viscoelasticity of . 
initially stressed solids and fluids including thermodynamic foundations 
was presented in systematic fashion in a book puplished in 1965.18 

With the use of internal coordinates the thermodynamics embodied in 
(1) are readily applicable not only to viscous fluids but to viscoelastic 
solids with memory. This aspect of viscoelasticity based on internal 
coordinates as developed earlier,’ to 3 was also presented in a book by 
Fung.2s 

Unstable solutions are proportional to exp(pt) where according to a 
basic theorem Ref. 18, P. 441 p is real and positive. Thus for systems governed 
by (1) the incipient instability is nonoscillatory. 

The theorem is applicable to viscoelastic solids if we assume that the 
hereditary behavior is due to a large number of unobserved internal 
coordinates included in the generalized coordinates qi governed by (1). 
Note that the theorem assumes an initial state of equilibrium but an 
unstable one. It should be noted that it is still applicable to instability in 
the vicinity of a state of steady flow in cases were the system may be 
approximately represented by (1) as occurs in many problems of viscous 
buckling of solids. However other types of problems with steady heat flow 
may lead to oscillatory instability.24 

It is not possible here to outline all the numerous applications and 
therefore only a few of the highlights will be mentioned. Stability in the 
thermodynamic context was discussed at a IUTAM colloquium in Madrid 
in 19553 followed by an application to the folding instability of an 
embedded viscoelastic layer in compression.4 This brought out the impor- 
tant qualitative role played by thermodynamic principles and the 
appearance of dissipative structures embodied in the concept of dominant 
wavelength, thereby showing that such structures do not necessarily require 
a nonlinear thermodynamic behavior. The folding instability of a porous 
layer and its thermoelastic analogy were also analyzedl”1 as an application 
of the general stability theory of porous dissipative solids.13 

The instability of a multilayered viscous fluid in a steady state of 
compressive flow with finite strain subject at the same time to gravity 
forces was given a general and systematic treatment.‘6~‘8’19 This theory 
considers small displacement perturbations superposed upon finite dis- 
placements which themselves are time dependent and constitute the initial 
unperturbed steady flow. A general theory of instability was also devel- 
oped for a multilayered system including materials with couple-stresses 
and was applied to thinly laminated layers.22 

Numerous applications have been made to problems of geological fold- 
ing of layered rock under tectonic stresses and the results have been 
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verified experimentally.“, ‘* Such geological features provide another ex- 
ample of dissipative structures. A particularly interesting result is repre- 
sented by a numerical evaluation of the actual time history of folding of a 
layered viscous medium in compression starting with a local bell-shaped 
deviation from a perfectly flat layer. i*,‘* The gradual appearance of a 
dissipative structure in the form of folds may be followed as time goes on, 
and the wavelength of these folds turns out to be insensitive to the type of 
initial disturbance. It is also pointed out that a multiplicity of initial 
disturbances each generating its own structure similar to a sinusoidal wave 
packet may give rise to mutual interference patterns. 

In the special case of destabilizing gravity forces the theory was applied 
to the formation of salt domes in geophysics, under transient conditions of 
gradual sedimentation and time dependence of thickness and compaction 
of the material overlying the salt layer.*‘,*’ A particularly interesting 
feature of the results is some kind of degeneracy exhibited by the cell 
pattern showing that triangular, hexagonal, circular, and many other 
patterns are equally unstable. Thus the appearance of any particular 
pattern should be very sensitive to boundary constraints, perturbations of 
these constraints, and initial conditions. It was shown that a system of 
localized irregular initial perturbations may produce a system of ring- 
shaped cells with a mutual interference pattern. Results are in good 
agreement with observed geophysical structures and geological time scales. 

Finally it should be noted that the theory is not restricted to linear 
perturbations as exemplified by more recent work on nonlinear thermo- 
elasticity, the thermodynamics of elastic instability, and postbuckling be- 
havior.23 

The Lagrangian approach outlined here provides not only deeper and 
unified physical insights but also powerful methods of approximate analy- 
sis formulated directly in terms of generalized coordinates of complex 
systems. This procedure does not require any preliminary knowledge of the 
differential field equations of the system. This is in contrast with the purely 
formal so-called projection methods based on abstract functional space 
theories. 
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