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Abstract. - A fundamentally new approach to the chemical thermo- 
dynamics of open systems is presented. It is based on a new concept referred 
to here as the thermobaric potential. The usual difficulties associated with 
open systems are eliminated by considering a closed system where supply 
cells provide matter transferred internally. The procedure requires only 
mechanical and calorimetric concepts. Use of statistical mechanics or 
Nernst’s theorem is completely avoided without leading to Gibbs’s paradox. 
A new chemical potential is obtained as well as new and completely general 
expressions for the affinity and heat of reaction in terms of mechanical 
and calorimetric measurements. The heat of reaction is defined in a new 
way which excludes the heat of mixing and is more representative of the 
chemical energy than the current definition. Application to perfect gasses 
yields classical results with great clarity and simplicity. 

1. INTRODUCTION 

In the classical thermodynamics of open systems which exchange 

matter with the environment the definition of internal energy and 

entropy has always been the source of difficulties such as Gibbs’ para- 

dox. This is due to the fact that from the classical viewpoint these 

quantities are defined in terms of increments of heat or work absorbed 

by a given amount of matter as a closed system. The difficulties may 
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be partly surmounted by introducing statistical concepts and the pro- 
perties of matter near the absolute zero through Nernst’s theorem. We 
will show here that this procedure is not necessary and that the diffi- 
culties, including Gibbs’s paradox, may be avoided by using exclus- 
ively classical concepts. 

The principle of the method is to use a closed physical system consti- 
tuted by a primary cell and a serie of supply cells each containing one 
of the pure substances present in the mixture in the primary cell. We 
also adjoin a large isothermal reservoir at constant temperature called 
a thermal well. The primary and supply cells constitute a collective 
system and possess a collective potential already defined [l-2] and used 
many times earlier by the author. Matter is transferred from the 
supply cells to the primary cell by a reversible process which we have 
called a thermobaric transfer. It leads to a new concept, the thermo- 
baricpotential. The key to the procedure lies in the fact that the ther- 
mobaric transfer is accomplished by the use of mechanical pumps and 
heat pumps on the material belonging to the collective system. 

It is shown how the heat pumps do not require the use of material 
cycles but may use pure black body radiation. 

Hence while the primary cell is open, the collective system is not, 
and may be treated exclusively by classical methods. 

The concept of collective potential which is fundamental in the 
procedure also provides the basic concept in the principle of virtual 
dissipation introduced by the author [2] as a generalization of 
d’Alembert’s principle to nonlinear irreversible thermodynamics. 

The concept of thermobaric transfer leads to a new chemical poten- 
tial. Application to chemical reactions provides new expressions for 
the affinity and the heat of reaction. The latter is also defined in a new 
way which is more representative of the true chemical energy since it 
does not contain the heat of mixing. The results do not assume any 
perfect gas property. When applied to perfect gasses they yield imme- 
diately and very simply all the classical relations. 

2. THE CONCEPT OF COLLECTIVE POTENTIAL 

The principle of virtual dissipation developed in detail in an earlier 
publication [2] uses what we have referred to as the collective potential 

V = U - T,S (2.1) 
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where U is the internal energy, and S the entropy of the collective 
system while T, is the constant temperature of a large adjoined iso- 
thermal reservoir which we have called a thermal well. The term hyper- 
system denotes the combined system constituted by the collective sys- 
tem and the thermal well. When originally introduced in 1954-55 [I] 
the term generalized free energy was used for V. The term collective 
potential is to be preferred because it emphasizes the non homo- 
geneous character of the system which is not isothermal and may be 
composed of a large or infinite number of cells of different properties. 
Expression (2.1) in this context as a true thermodynamic potential with 
new highly useful properties as derived by the author [2] is to be 
distinguished from the concept of “ availability ” which has been 
known in the classical litterature as a mean of expressing the balance 
of available energy including a term dependent on atmospheric 
pressure. A crucial advantage of the collective potential over the 
classical potentials of Gibbs and Helmholtz is the property of addivity 
which is expressed by the relation 

v=fv, (2.2) 

This relation applies to the case where the collective system is com- 
posed of any number of cells each cell having an internal energy 
U, and entropy 9, while 

Y, = U, - TOY, (2.3) 

is called the cell potential. The cells may be infinitesimal and infinite in 

number, thus representing a continuum. The summation i in this case 
is replaced by a volume integral. 

In the analysis which follows we shall introduce two different mean- 
ings for the term cell potential. A closed cell potential discussed in 
section 3 considers a closed cell. A generalized concept of open cell 
potential introduced in section 4 describes the properties of an open 
cell. 

Another important property of the collective potential is obtained 
as follows. Let dW be the work done by external forces on the collec- 
tive system. In the absence of inertia forces, conservation of energy 
implies, 

dU = dW - dH, (2.4) 
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where dH, is the heat energy lost by the collective system. Assuming 
the hypersystem to be an isolated system the heat energy dH, must be 
absorbed by the thermal well whose entropy increase is 

ds, = dH, 
TO 

(2.5) 

We eliminate dU and dH, between equations (2.1) (2.4) and (2.5). This 
yields 

dV - dW = -T,dS’ (2.6) 

where S’ = S + S, is the total entropy of the hypersystem. This rela- 
tion is valid for any transformation reversible or not. 

It should be noted that equation (2.6) relating the collective poten- 
tial and the work done to the total entropy produced in the hypersys- 
tern was already used by the author in 1955 [l] and subsequent work, 
in a more restricted context. 

3. CLOSED CELL POTENTIAL. MATERIAL AND RADIATION HEAT PUMPS 

Consider a single closed cell, i.e. one such that matter is not exchan- 
ged with the environment. We shall call it the primary cell and its 
potential is denoted by Y. We adjoin to this cell an auxiliary cell of 
potential Y’ by which, using a reversible heat pump process, we trans- 
fer heat from the thermal well to the primary cell. The combined 
primary and auxiliary cell constitute a collective system of collective 
potential, 

V=Y’-l-Y (3.1) 

We may apply equation (2.6) and write 

dV-dW=dY’+dY-dW= -T,dS’ (3.2) 

Since the process is reversible the total entropy change of the hyper- 
system vanishes, hence 

dS’ = 0 (3.3) 

We assume that the process is quasi-static hence there are no inertia 
forces. The total work on the collective system may be written 

dW = dW, + dW, (3.4) 
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where dW, is the work of the forces applied to the primary cell while 
is the work accomplished by the heat pumps. Substitution of the 
values (3.3) and (3.4) into (3.2) yields 

dV + df = dW, + dW, (3.5) 

The heat pumps may be of two types. In one case we use as aux- 
iliary cell a small amount of matter actually infinitesimal which under- 
goes a closed reversible Carnot cycle extracting heat from the thermal 
well an injecting a certain amount of heat dh reversibly at the tempe- 
rature T into the primary cell. The pump may of course be reversed, 
acting like and engine extracting a heat energy dh from the primary 
cell. After each closed cycle dV’ = 0 and we may write (3.2) as 

dV = dW, + dWn (3.6) 

Hence the change of cell potential is the sum of the work done directly 
on the cell and the work of the heat pump. 

BLACK BODY RADIATION HEAT PUMP 

It is interesting to note that the pump does not require the use of 
matter as an auxiliary cell. The reversible heat transfer to the primary 
cell may be accomplished using only black body radiation. In this case 
the auxiliary cell may be a small cylinder with a pison. Strictly speak- 
ing in the limit this auxiliary cell is infinitesimal. The flat base oppo- 
site the piston contains a thermal window which becomes pervious to 
heat when opened. When it is closed the cell provides a completely 
reflecting cavity. We start with the thermal window against the ther- 
mal well and the piston against the window, so that the cavity volume 
is zero. We then open the thermal window and slowly move the piston 
creating a cavity being filled with black body radiation at a pressure 
corresponding to the thermal well temperature T,. The piston in this 
process performs negative work against the radiation pressure. The 
thermal window is then closed and the piston is moved to compress 
the black body radiation adiabatically until a radiation pressure is 
reached corresponding to the temperature T of the primary cell. The 
thermal window is then applied against the primary cell and opened. 
Moving the piston slowly until the volume of the cavity is zero, the 
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black body radiation is injected into the primary cell and again the 
piston does work against the radiation pressure. Through this entire 
reversible process the auxiliary cell starts and finishes with zero cavity 
volume so that the variation dV’ of its cell potential vanishes. Hence 
we may apply equation (3.6) where dWn now represents the total work 
accomplished on the black body radiation in the extraction from the 
thermal well, its adiabatic compression and its injection into the pri- 
mary cell. 

HEAT PUMP ENERGY 

An expression of considerable importance may be obtained for 
dW,, by using energy conservation equation for the primary cell. For 
a reversible process it is written 

dU = Tds + dW, (3.7) 

where U is the internal energy of the primary cell and ds the entropy 
supplied to it reversibly by conduction. For a closed cell and a revers- 
sible process, d9’ = ds and by definition (2.3) 

dV = dU - T,ds 

Substitution of the value (3.7) for dU yields 

dV = dW, -I- 6ds 

with 
8=T-T, 

Comparing with (3.6) we obtain for the work 

dW, = Bds 

we may write 

(3-g) 

(3.9) 

(3.10) 

of the heat pump 

(3.11) 

For a reversible process the entropy variation is 

ds d!! 
T 

where dh is the heat injected into the primary cell. Hence 

(3.12) 

dWH=;dh (3.13) 
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This is in accordance with the classical result for the efficiency of a 
reversible heat engine where 8/T is the Carnot efficiency. This result is 
valid for either the Carnot cycle heat pump or the radiation heat 

pump. 

4. OPEN CELL POTENTIAL. THERMOBARIC POTENTIAL, A NEW CONCEPT 

The foregoing analysis does not specify how the cell potential is to 
be defined for open cells, i.e. for the case where matter may be added 
or extracted from the cell. The case for open systems has always given 
rise to fundamental difficulties in classical thermodynamics. We intend 
to develop a novel approach to open system which avoids these 
difficulties. 

We shall consider a rigid cell of constant volume which will be 
referred to as the primary cell. This cell contains a mixture of various 
chemical species each being denoted by the subscript k. For simplicity 
we shall assume that the mixture and the pure substance are fluids in 
the range of temperatures considered. Actually this assumption is not 
essential and is only a matter of convenience as will be shown below. 
The state of the cell is defined by the masses mk of the various compo- 
nents in the cell, and by any two of the following variables; volume 
temperature and mixture pressure. For the time being we also assume 
that no chemical reaction occurs in the mixture. The case of a reacting 
mixture will be considered below in sections 6 and 7. 

In order to define a suitable potential for an open cell we consider 
a collective system obtained by adding cells constituted by large rigid 
thermally insulated reservoirs each containing a pure substance at the 
same pressure pO and the same temperature T, equal to that of the 
thermal well. We shall call these cells the supply cells. 

As part of the collective system we also add a small auxiliary cell 
with a piston whose motion may generate a cavity of zero volume 
initially. Strictly speaking we must consider the auxiliary cell to be 
infinitesimal in the limit. This is entirely similar to the auxiliary cell 
considered in the previous section in connection with the radiation 
heat pump. 

The auxiliary cell will be used as a pump to extract masses from the 
supply cells and inject them into the primary cell by a reversible 
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process. Consider the injection into the primary cell of a mass dmk of 
substance k. We proceed in three steps. 

First the auxiliary cell is made to communicate with the correspond- 
ing supply cell, the piston is then moved until the auxiliary cell con- 
tains a mass dm, at the pressurep,. The work done by the piston is 

dWr = -hdm, (4.1) 
P ok 

where pok is the density of the substances k at the pressure pO and 
temperature T,. We apply equation (3.9) to the system of the supply 
cell and the auxiliary cell considered as a closed system. Since the 
supply cell is rigid and thermally insulated the increase of collective 
potential is 

dVr = dWr = - fidm, (4.2) 
Pok 

We now close the auxiliary cell. By moving the piston and heating 
the fluid in a reversible process by heat pumps we bring it to the 
pressure pk and the temperature T. Again we apply equation (3.9). The 
increase of potential of the auxiliary cell in this process is 

dV,, = dmk 7 [pkd(i) + ed%] 

~oTo 

(4.3) 

The first term in the integral represents the work done by the piston 
on a unit mass of fluid, and dSk represents the entropy increase of a 
unit mass of substance k, during the process of heat pumping. In the 
integral 

Pk = f’k(Td’k) (4.4) 

is the density of the pure substance function of its pressure pk and 
temperature T. For simplicity, we use the same notation pk, T, for the 
final pressure and temperature, as for the variable pressures and tem- 
perature pk and T in the integral. Since the integral represents a 
change of potential its value is independent of the path of integration. 

Finally we assume that T is the temperature of the primary cell 
mixture, and that the pure substance k at the temperature T and 
pressure pk is in thermodynamic equilibrium when made to communi- 
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cate with the mixture through a semipermeable membrane. By dejini- 
tion this pressure pk will be called the partialpressure of substance k in 
the mixture. We may then inject the fluid reversibly through the semi- 
permeable membrane into the primary cell by moving the piston of 
the auxiliary cell. The work done by the piston is 

dWnl = bdm, 
Pk 

(4.5) 

In this third step the primary and auxiliary cells together constitute a 
closed system. To evaluate the increase of collective potential in this 
third step which is reversible we may again apply equation (3.9). No 
heat being supplied we put ds = 0. Hence the increase of collective 
potential is 

dV,,, = dWur = edm, 
Pk 

The total increase of collective potential V’ due to the reversible injec- 
tion of a mass dm, into the primary cell by the three foregoing steps is 

dV’ = dVr + dV,, + dWm 

This may be written 
dV’ = $kdm, 

where 

(4.7) 

(4.8) 

$k=pre+odik) 
POTO 

(4.9) 

We shall call this expression the thermobaric potential of substance k. 

Its value is independent of the path of integration. It constitutes a new 
concept. 

The transfer of a mass from the supply cell to the primary cell by 
the foregoing reversible process will be called a thermobaric transfer. 

A convenient evaluation of $k is obtained by choosing a path of 
integration first at constant temperature T&J = 0) from the pressure 
p0 to pk then at constant pressure pk from the temperature T, to T. We 
obtain 

(4.10) 
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In this expression pk is a function of pk at the constant temperature T, 
and Zkp is the specific heat per unit mass at constant pressure pk and 
variable temperature T. 

It should be pointed out that the definition (4.9) of the thermobaric 
potential is expressed in a form suitable for fluid components. Howe- 
ver this is not essential since $k may be defined physically as the revers- 

, ible work required to transfer a unit mass of species k from its supply 
reservoir to the primary cell. This becomes evident by applying equa- 
tion (3.6) to the collective system. We may write 

Where 

ekdrnk = dV’ = [W, + W,,]dm, 

PkT 

WHk = 

s 

8&k 

~oTo 

(4.11) 

(4.12) 

is the work accomplished by heat pumps, and Wk is the work accom- 
plished by all other forces. 

Hence the thermobaric potential 

+k = Wk + wHk (4.13) 

is the total energy required for the thermobaric transfer of a unit 
mass. 

At this point it is important to introduce the generalized concept of 
open potential of the cell by defining it as the collective potential of the 
system constituted by the cell and its supply cells. When dealing with 
open cells it will therefore be understood that the term open potential 
denoted by Y implies the generalized potential. We therefore write 

dV = dV’ = $,dm, (4.14) 

The justification for this generalization is due to the fact that the 
thermodynamic state of the collective system is entirely defined by 
those which define the state of the primary cell, since the masses 
acquired by the cell are the same as those lost by the supply cells. 
Further clarification on this point is provided in the next section. 

When several pure substances are supplied simultaneously to the cell, 
assuming it is rigid (no change of volume) and that no heat is supplied 
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directly to the cell, its increase of potential is 

dV = f &dm, (4.15) 

If a certain amount of heat dh is supplied to the cell by conduction, in 
a reversible manner at the temperature T of the cell, the supplied 
entropy is 

ds, = dh 
T 

(4.16) 

According to equation (3.9) the cell potential is increased by an 
amount Ods,, and dV becomes 

dY = f rl/,dm, + Bds, (4.17) 

The term l3ds, represents the work required by a heat pump to extract 
heat from the thermal well and inject the amount T&r into the 
primary cell. We shall refer to this process as a thermal transfer. 

Until now we have assumed no change of volume of the cell. Again 
we apply equation (3.9) with dW, = -pdv representing the work of 
the total pressure p acting on the cell due to the volume change dv. 

Hence dV becomes 

dY = - pdv + i &drnk + Ods, (4.18) 

The pressure p assumed here is the one measured for a reversible 
volume change. 

It will be noted that dV in this form represents the reversible work 
done by forces acting on the collective system. The term -pdv is the 
work due to the pressure acting on the primary cell, the terms $,dm, 
is the work due to thermaric transfer and ads, is the heat pump work 
required in the thermal transfer. 

The same additive property (2.2) applies to the generalized open 
potentials. The collective potential of any number of open cells is 

5. RELATIVE AND COLLECTIVE ENTROPY 

(4.19) 

An important distinction must be introduced regarding the defini- 
tion of entropy of an open cell. We shall consider the entropy Y of 

- 249 - 



M.A. Biot 

the collective system constituted by the primary cell and the supply 
cells, and refer to 9’ at the collective entropy of the open primary cell. 
As already pointed out the differential W of the open cell potential 
given by equation (2.3) is the increase of collective potential of the 
collective system of the primary and supply cells. It corresponds to an 
increase of collective entropy of the system equal to 

PIT 

d9 = idm, 
s 

dSk + dS, 

POT, 

where the first term is the entropy increase due to thermobaric transfer 
of the masses dmk while ds, is due to the heat injected into the primary 
cell. 

We put 
PIT 

s, = 

s 

ds, (5.2) 

POTO 

and call it the relative entropy of the pure substance. Hence 

k 

dY = xS,dm, + ds, (5.3) 

The term kS,dm, represents the increase of collective entropy due to - 
convection and dsT is the contribution due to conduction. 

Through the use of these definitions it is possible to avoid Gibbs’s 
paradox without recourse to statistical concepts. 

The collective entropy may be used as a state variable since it is a 
function of the temperature T of the primary cell and the masses mk of 
the various components in the cell. This is because the increase in the 
masses mk in the primary cell determines the masses mk which remain 
in the supply cells. The state of the supply cells is thereby determined 
at the same time. 

6. CHEMICAL POTENTIAL. NEW DEFINITION 

According to equation (5.1) the value of ds, is 

ds, = d9 - i&drn, (6.1) 
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Substitution of this value into equation (4.18) yields 

dV = -pdv + ipxdmk + 0dY (6.2) 

where 

pk = J/k - esk (6.3) 

provides a new chemical potential pk different from the classical 
concept. Note that it is defined entirely in terms of the properties of the 
pure substance and its partial pressure pk of equilibrium with the 
mixture at its temperature T through a semipermeable membrane. 

If the state variables of the cell are chosen to be v, mk and Y 
equation (6.2) implies 

av e -= 
a9 

(6.4) 

Note that the third of equations (6.4) is not used to define pk but 
constitutes a new result. This is a consequence of the new definition 
(6.3) of ,ak and is in contrast with current procedures. Since according 
to (4.9) 

d$k = 9 + ed& (6.5) 
Pk 

the differential of ,.& is 

dfik = dp, - skdT 
Pk 

(6.6) 

This quantity is analogous to Gibbs function except that now the 
relative entropy Sk is a perfectly defined entropy without any arbitrary 
constant. Equation (6.6) shows that there is no change in pk when the 
substance goes through a phase change at constant pressure and 
temperature. 
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7. CHEMICAL REACTIONS. NEW EXPRESSIONS FOR THE AFFINITY 

AND THE HEAT OF REACTION 

The foregoing analysis assumes that the substances composing the 
mixture in the open cell do not react chemically. 

If a chemical reaction occurs the analysis must be completed as 
follows. We shall first consider a closed cell. The mass variations of 
the various components due to the chemical reaction are written. 

dm, = vkd5 (7.1) 

where 5 is the reaction coordinate. If some of the substances do not 
participate in the reaction the corresponding values of vk are zero. 
Conservation of mass requires 

.&=o (7.2) 

The values of vk are also frequently written as 

Vk = v;&?, (7.3) 

where &Zk are the molecular masses and vi are called the stoichiometric 

coefficients of the reaction. 
For convenience we call dm, the masses produced by the reaction, 

positive values of vk corresponding to substances actually created, 
while negative values vk represent substances dissapearing in the 
reaction. 

If a chemical reaction d?J occurs the cell potential varies by an 
amount 

d9fC, = dU,, - T,dY,, (7.4) 

The cell is assumed rigid and adiabatic. 
Hence there is no change in internal energy 

As a consequence 

dU,, = 0 (7.5) 

dV’,,, = -T,d9’,, (7.6) 

where d9’,, is the entropy produced by the reaction. While a statisti- 
cal definition of d9’,, is implicit in this case, explicit use of statistical 
concepts will be avoided in its evaluation. Chemical equilibrium cor- 
responds to dY9,, = 0. 
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We now assume that after the reaction d5 has occured the cell is 
open and may receive heat, but remains rigid. If masses dMk are 
injected by thermobaric transfer and an entropy ds, is supplied by 
thermal transfer the open potential of the cell increases by an amount 
given by (4.17) i.e. 

dV-’ = 2 tikdMk + Ods, (7.7) 

The total increase of open potential is 

dV = dVch + d7cr’ (7.8) 
or 

df- = -T,dSP,,, + &,bkdMk + 8dsT (7.9) 

The increase of collective entropy d9’ is obtained by adding d9’,, to 
the value (5.3). Hence 

dY = dY,,, + is,dbf, + ds, (7.10) 

Elimination of ds, between equations (7.9) and (7.10) yields 

dV = -TdYC,, + ipkdh’fk + edy (7.11) 

We put 

A - dYCb 
T dr 

(7.12) 

Hence 

dY-= - Ade -I- f pkdMk + 8dY (7.13) 

The quantity A defined by equation (7.12) coincides with the affinity 
introduced by De Donder [3]. Simple considerations show that the 
variables <, Mk and Y completely define the state of the collective 
system for a given choice of initial conditions and supply cells since 
they determine the composition and temperature of each cell. 

When several reactions occur we write 

dY = - f A,d&, + &&dM, + ed.!? (7.14) 

where A, and 5, are the affinities and the coordinates of the various 
reactions. 
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The concepts of thermobaric and thermal transfers lead to new 
expressions for the affinity and the heat of reaction which we shall 
now derive. We assume that when a single reaction occurs in the 
primary cell we remove the products of the reaction hence 

dMk = -v,‘d( (7.15) 

Note that the “ removal ” is algebraic since vk may be positive or 
negative. Also we maintain the temperature T constant by supplying 
the required heat. The composition and temperature of the cell do not 
vary hence the pressure of the mixture is also constant. Therefore we 
may write 

(7.16) 

where Ii,, is the heat of reaction (positive when endothermic) at 
constant pressure and temperature with removal of the products of 
reaction. The usual heat of reaction at constant pressure and tempe- 
rature is 

(7.17) 

where hiT is the heat of mixture i.e. the heat absorbed by the mixture 
when a unit mass of substance k is injected reversibly at constant 
pressure and temperature into the mixture. 

Note that ti,, is more representative of the true chemical energy since 
it does not contain the additional energy due to mixing. For a perfect 
gas the heat of mixing vanishes and 

(7.18) 

During the process just described the variation of collective entropy of 
the system constituted by the primary cells and the supply cells is 
obtained from (7.10) introducing the values (7.12) (7.15) and (7.16). 
This variation of collective entropy is 

dY= (7.19) ’ 

We also consider a reference cell of affinity A’ temperature T’, pres- 
sure p’ partial pressures p; of the reactants and heat of reaction I&r,. 
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We assume that in the reference cell a backward reaction (-d<) 
occurs. The change of collective of entropy dP”, of this reference cell is 
obtained from (7.19) by substituting the corresponding values of the 
variables. We obtain 

(7.20) x 

where 
p’rT 

q = s dSk (7.21) 

~oTo 

When the forward and backward reactions occur simultaneously the 
state of he supply cells does not change since no matter is supplied. At 
the same time the state of he primary cells does not change. Hence the 
total entropy S of the collective system remains constant and we may 
write 

dS = dY + d.9, = 0 

Substituting the values (7.19) and (7.20) we derive 

(7.22) 

If the reference cell is assumed to be in chemical equilibrium, A’ = 0 
and 

(7.23) 

This result which is different from the one derived in standard text- 
books [4] expresses the affinity in terms of purely calorimetric measu- 
rements for the pure substances proviced we know the partial pres- 
sures pk and PI: of the reactants in the mixture. 

Another important result involving the heat of reaction is obtained 
by considering the change of internal energy of the collective system. 
For the primary cell this change is 

dU= -d*~v~~~~+Td~~)+6,Td~ (7.24) 

POT0 
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The first term in the integral is the work done on system and the 
remainder is the heat provided. Similarly for the reference cell the 
increase of collective internal energy is 

(7.25) 

Since the state of all cells remains the same the total change of internal 
energy dU is zero, hence 

dU + dU, = 0 (7.26) 

Substitution of the values (7.24) and (7.25) yields. 

(7.27) 

This result which expresses the heat of reaction in terms of mechanical 
and calorimetric measurements for the pure substances is more gene- 
ral than the classical Kirchhoff relation [4]. The path of integration is 
arbitrary. 

8. REACTING MIXTURE OF PERFECT GASSES 

For perfect gasses the heat of mixture vanishes. Hence with /$r = 0 
equaion (7.17) becomes 

hpT = t;,, h;pT, = h;,y (8.1) 

The heat of reaction is the same whether we remove or not the pro- 
ducts of reaction. The equation of state is 

Pk=Pk-$T 
k 

(8.2) 

where Mk is the molecular weight and R the universal gas molar 
constant. The entropy differential is 

1 
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where c,JT) is the molar specific heat of the gas at constant pressure. 
Combining equations (8.2) and (8.3) we obtain 

dpk 
-z + TdESk 

- ‘kf-1 dT (8.4) 

With this value and (8.1) relation (7.27) becomes 

where vi = vk/&i?k are the stoichiometric coefficients. Equation (8.5) 
coincides with the classical KirchhoflreZation when applied to perfect 
gasses. If we substitute into equation (7.23) the value (8.3) of dSk and 
the value h,, derived from (8.5) we obtain for the affinity 

A = RTlog K(T) 
pr”p;z . . . pp 

where K(T) is defined by the relation 

RTlog K(T) = -f v; je,drlnr + T.&J; lcq 

T’ G 

t RT&ogp; + $ - 1 h;sT, 
( > 

(8.7) 

For a given reference cell this is only a function of T. 
At chemical equilibrium A = 0 and (8.6) becomes 

pr’1p;2 . . . pp = K(T) 

For a mixture of perfect gasses the partial pressures are 

(8.8) 

Pk = PYk (8.9) 

where p is the total pressure of the mixture and Yk are the molar 
fractions. Hence equation (8.8) is written 

p- “K(T) = r;‘rp . . . 7;‘” (8.10) 

where v’ = iv;. This equation expresses the law of Guldberg and 

Waage for chemical equilibrium and K(T) is the equilibrium constant. 
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