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AbstraetA new method is developed, analogous to a hodograph method, for the nonlinear finite strain and 
stress analysis of thick-waged cylinders and spheres under internal and external pressure. The problem is 
reduced to solving a single ordinary differential equation of the first order. It is applicable to plastic or elastic 
materials. The case of porous cylinder with fluid seepage is also discussed. The method provides drastic 
simplifications while remaining quite general and rigorous. 

1. INTRODUCTION 

A classical procedure of solving nonlinear ordinary differential equations with two unknowns has 
been used extensively in many applications, and is generally referred to as the hodograph 
method. In this procedure two simultaneous equatiosns with two unknown functions of time are 
replaced by a single first order differential equation from which the time is eliminated. In this 
equation one of the unknowns is considered solely as a function of the other which becomes the 
independent variable. 

A similar procedure may be used in a completely general finite stress and deformation 
analysis with axial or spherical symmetry. In this case, there are two principal stresses to be 
evaluated, one in the radial direction and the other normal to this direction. In analogy with the 
hodograph method we have shown that an ordinary differential equation may be derived were the 
radial stress is the unknown and the other is the independent variable. The procedure was 
presented earlier [ l] in the context of the stress analysis around cavities in rock. Our purpose here 
is to show how it is applicable to thick walled cylinders and spheres and provide further 
extensions of the theory for triaxial strain and porous materials. 

The method is applicable to large strains and stresses and materials which are strongly 
nonlinear, whether plastic or elastic. Materials may be either isotropic or orthotropic in the radial 
direction. 

A considerable advantage of the method results from the fact that the basic solution is given 
by a curve in a plane where the coordinates are the principal stresses. Since yielding or cracking 
conditions are usually expressed by a curve in the same plane, failure is determined very simply 
by the intersection of this curve and the solution curve. The usefulness and simplicity of this 
approach is well illustrated in previous work [ 11. The name hodograph method finds its origin in a 
classical problem of nonlinear dynamics of a mass point, governed by the following equation 

$=f(x$) 
where x is the displacement as a function of the time t. It may be written in the form 

dx 
;II= v* 

The new variable v is the velocity. Dividing the first equation by the second yields 

(1.1) 

U-2) 

dv v -=- 
dx f(x, a)’ 
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(1.3) 
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This is a first order differential equation where u is the unknown and x the independent variable. 
The method used in the present analysis is a generalization to the case where the equations are of 
the type 

2 = cPUlfl(X, Y) 

g= (PW2(X, Y>. (1.4) 

By a procedure similar to the hodograph method we obtain the first order differential equation 

dy = f& Y) 
dx fk Y) 

(1.9 

with a single unknown y function of x. In the application to static problems of the present paper 
the equations are of the type (1.4) and the role of t is played by the radial coordinate r with 
cp(r) = l/r. 

2. THICK-WALLED CYLINDER WITH FINITE PLANE STRAIN 

Finite deformation with axial symmetry is defined as follows. A material point initially at a 
distance r from the axis is displaced by a finite amount V, along the same radial direction. The 
value of V is assumed to be a function of r only. At a displaced point the finite plane strain is 
represented by the principal component E, in the radial direction and the principal component ez 
in the circumferential direction. Their values are 

dV 
El =dr 

V 
c2=7 (2.1) 

The corresponding principal stresses 71 and 72 respectively in the radial and circumferential 
directions are defined as normal forces acting at the coordinate r + V, per unit initial area of the 
medium. Positive values of 71 and r2 represent tensile stresses. The equilibrium condition for 
these stresses is obtained from the principle of virtual work 

27~ /+ (r,&, + ~26~2)~ dr = 0 
JO 

(2.3) 

where a and b are the inner and outer initial radii of 
definition (2.1) for e1 and e2 we derive 

d71+ 71- 72 -= 0. 
dr r 

On the other hand elimination of V between eqns (2.1) leads to 

de2 ~I-62 -=- 
dr r’ 

the cylinder. By varying V with the 

(2.4) 

(2.5) 

Finally elimination of r between eqns (2.4) and (2.5) yields 

dr, r1- 72 
_=-- 

de2 El - Ez’ (2.6) 

We now assume that finite stress-strain relations in plane strain are known in the form 
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El = E1(71,72) 

62 = E2(71,72). 
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(2.7) 

They may represent finite elastic of plastic deformations. The material may be orthotropic 
provided the directions of symmetry are radial and circumferential. Substituting the values (2.7) 
of e1 and e2 into eqn (2.6) we obtain 

dr, ae21aT2 -=- 
dr2 [(El - e2)/(71- T2)lf JC2/3Tl' (2.8) 

Since the right side is a known function of r1 and r2, eqn (2.8) is a first order ordinary differential 
equation for r1 as a function of r2. Its integral is 

72 = $(T, 0 (2.9) 

where C is a constant of integration. Using the equilibrium eqn (2.4) we derive 

The value of C is obtained from this equation by writing 

dr, 
(c1(r1, C) - 71 

=lop$ 

(2.10) 

(2.11) 

where TV and Tb are the radial stresses at the inner and outer radii, a and b. 
Hence a complete solution is derived where rl, 72 and V are obtained as functions of r. Note 

that r1r2 are the stresses at the displaced points of coordinates r + V. 
The solution for the case where pressures per unit deformed area are given at the inner and 

outer radii as well as the stress-strain relations for isotropic or elastic materials has been 
discussed earlier [ 11. 

A considerable advantage of the present solution is due to the fact that it is a curve in the T]T~ 
plane. Yield or fracture curves are also represented in the same plane so that intersection of the 
two curves yields the failure condition. This was discussed earlier[l] in the context of rock 
fracture. 

The finite strain of a rubber membrane with a circular hole under axially symmetric stretching 
has been analyzed by deriving a first order differential equation with the two stretch ratios as 
variables [2], using the tensor invariants of isotropic elasticity. This special case may be solved 
immediately in the elementary and more general context of the hodograph method. 

3. THICK-WALLED CYLINDER WITH TRIAXIAL STRAIN 

The same eqns (2.1) and (2.4) are valid for radial and circumferential strains and for the 
equilibrium conditions for the stresses r1 and TV. The difference lies solely in the fact that the 
radial and circumferential strains E, and l 2 now depend also on the axial strain es. We write 

El = EdTl, 72,631 

E2 = 471, 72, E3). (3.1) 

If we assume the axial strain l 2 to be constant it plays the role of an unknown parameter and we 
may proceed exactly as in the previous case where e2 = 0. The solution of the differential eqn 
(2.8) is now written 

72 = $(Tl, c, Es) (3.2) 

with two unknown parameters C and l 3. Two equations are available to determine these 
parameters. The first one is (2.11) which depends on the stresses at the circular boundaries. The 
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other is provided by the expression for the total axial force 
local axial stress as 

The total axial force is then 

b 

F(C, Es) = 277 7314 dr. 

E It is obtained by expressing the 

(3.3) 

(3.4) 

In this integral 73 is expressed as a function of r, C and e3 using eqns (2.10), (3.2) and (3.3). Hence 
if we know the total axial force F we may determine C and es from eqns (2.11) and (3.4). If the 
deformation is not large F’ may be evaluated from the internal and external areas of the end plates 
of the cylinder as well as the internal and external pressures applied. 

The stress-strain relations (3.1) and (3.3) are valid for orthotropic plastic materials with axes 
of symmetry oriented radially and circumferentially. For elastic materials it is easily shown by a 
procedure similar to that used previously[l]. That the functions must satisfy the conditions 

a~, ae2 -=- 
ar2 a7, 
ar3 a6 _-- 
a7,- ae, 
a7, ae2 -=-- 
ar2 ae,’ 

(3.5) 

These relations are a consequence of the existence of an elastic potential. 
If the material is isotropic the stress-strain relations are determined by a single function with 

the property 

&I, x2, x3) = (p(x1, x3, x2). (3.6) 

We may then write 

El = (p(71,72,73) 

E2 = (p(T*, 73,711 (3.7) 
E3 = q(73,71,7*). 

The last equation is solved for 73. This value is then substituted in the values of e1 and e2, thus 
yielding eqns (3.1). For an elastic material the function cp must satisfy the additional relation 

ae, ae, -=- 
ar2 a7; (3.8) 

4. POROUS THICK-WALLED CYLINDER 

In many applications the cylinder wall is constituted by a porous material, such that when 
fluid pressure is applied internally a fluid flow takes place radially through the pores. For constant 
or approximately constant permeability, assuming negligible fluid compressibility and Darcy’s 
law, the radial distribution of fluid pressure in steady state flow is 

p =A logr+B (4.1) 

where A and B are constants determined by the boundary conditions at the inner and outer wall. 
We shall also assume the deformation to be sufficiently small so that p at r and r + V is 
approximately the same. These assumptions find their application in the fact that a large category 
of porous materials are strongly nonlinear already in a range not exceeding a 1% strain. 
Another applicable assumption is expressed by introducing e$ective stresses T1, T2. We write 
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71 = 7, - p 
72= ?2-p. 
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(4.2) 

Since positive values of To, r2 represent tensile stresses we see that the effective stresses ?,, ?* are 
the stresses in excess above the hydrostatic fluid stress -p. For simplicity we shall assume plane 
strain deformations (es = 0). However the treatment may be extended to triaxial strain following 
the procedure of the previous section. 

We first consider the stress-strain relations in plane strain for the case p = 0. They are written 

If we now apply a total hydrostatic pressure p in the fluid and the solid matrix the strain 
becomes 

El = Cd?,, 52) - cp 
Ez = E*(T,, F,) - cp (4.5) 

where c is a plane strain compressibility. These relations embody the properties of semi-linearity 
already discussed earlier[3]. Strictly speaking of course eqns (4.5) embody a physical 
approximation which should not alter results significantly. 

Substitution of the values (4.2) into the equilibrium eqns (2.4) and of the values (4.5) into 
eqns (2.5) yields 

dT1 ?,-7rA=0 
dr+ 

dgz E, - d+ CA -- Y 
dr 

0. 
I 

By eliminating r between these two equations we derive 

Hence the procedure of Section 2 
differential eqn (2.8) is replaced by 

df1 - 

(4.6) 

d7, ?,-72- A 

z=- E,--~-CA’ (4.7) 

for the non-porous material is valid in this case and the 

ada 
d72 - - [(E, - EZ + cA)/(?, - 5 -A)] + at--,/a?,’ (4.8) 

This is again an ordinary differential equation for 6,, with 6 as independent variable. The case of 
isotropy and perfect elasticity is treated in the same manner as before [ I]. The integral of (4.5) is a 
curve in the plane ?,C of the effective stresses which provides a particular convenient tool for the 
prediction of material failure. 

As an illustration consider the case of a porous cylinder subject to a pressure pl at its interior 
radius r = a and a smaller pressure pz at its exterior radius r = b. The value of A in this case is 
negative and equal to 

A=-+$$$. (4.9) 

In the plane 7& the slope of the integral is equal to zero on the straight isocline 

?,-6-A =0 (4.10) 

which is represented in Fig. 1. At both r = a and r = b the effective radial stress ?, is zero. A 
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Fig. 1. Integral curve i, vs 7, for a porous cylinder subject to internal pressure p, and external pressure 
pJ& >p2). Circumferential effective stresses are 7*,, and Fzb at inner and outer radius respectively. 

brief examination of the other isoclines shows that the integral of eqn (4.8) must resemble the 
curve shown in Fig. 1. The value of the radial effective stress 7, is maximum on the straight line 
(4.10). 

5. THICK-WALLED SPHERE 

The case of spherical symmetry was also analyzed in the earlier work [ 11. The principal stress 
and strain in the radial direction are 71 and Ed. In any direction normal to a radius the stress and 
strain are r2 and e2. The stresses are again per unit initial area and the finite radial displacement is 
V. By the principle of virtual work the stress equilibrium equation is found to be 

dr1 2(71--2) 

dr+-= 

o 

r 
(5.1) 

Equations (2.1) for the strain remain the same and the stress strain relations are written 

El = E1(71,72) 

62 = E2(71,72). (5.2) 

Note that in this case the material is assumed to be transverse isotropic with the axis of symmetry 
along a radius, and the stress 72 applied isotropically around this axis. The differential eqn (2.8) 
now becomes 

dr, 2aE21a72 -=- 
dn ](6 - ~~)/(r, - T~)I + 2a62/a71’ (5.3) 

The material may be plastic or elastic. The case of isotropic as well as elastic materials has been 
discussed[ 11. A simple quadrature analogous to (2.10) is obtained from the equilibrium eqn (5.1) 
and yields the initial coordinate r as a function TV. 
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