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Abstract-The nonisothermal finite strain dynamics of a porous solid containing a viscous fluid is developed 
on the basis of a new thermodynamics of open systems and irreversible processes. The same theory is 
applicable to the mechanics of a nonporous solid with thermomolecular diffusion of a substance in solution. 
New fundamental concepts of “thermobaric” and “convective” potentials are presented in the context of 
porous solids. Field equations and Lagrangian equations with generalized coordinates are derived directly 
from a variational principle of “virtual dissipation”. Inclusion of nonlinear viscoelasticity and plastic 
behavior is indicated. Partial saturation of pore fluid is discussed. The theory is applicable to the mechanics 
of a non porous solid with thermolecular diffusion of several molecular species in solution, and under certain 
conditions to the analogous case of a porous solid containg a fluid mixture. It is shown how the Lagrangian 
equations provide the foundation of finite element methods. 

1. INTRODUCTION 

The isothermal and nondynamical finite strain mechanics of porous media has been developed in 
a recent paper[l], and applied to the particular case of semi_linearity[2]. The porous solid 
contains a viscous compressible fluid. 

Our purpose here is to extend the finite strain theory to nonisothermal deformations and to 
include dynamical forces. Thermodynamic coupling is taken into account between the Darcy 
type flow through the pores and the heat flow through both convection and thermal conductivity. 
Under certain assumptions the thermodynamic theory is completely isomorphic to the case of 
thennomolecular diffusion of a non porous solid containing molecules in solution. Also the theory 
is readily extended to the case of a porous solid containing a mixture of fluids with filtering effects 
and to non porous solids with thermomolecular diffusion of a variety of molecular species in 
solution. The approach embodies a new thermodynamics which is a natural outgrowth of the 
authors earlier variational Lagrangian thermodynamics in the linear context[3,4]. The 
fundamental step is provided by a generalization of d’Alembert’s principle to non linear 
irreversible thermodynamics and referred to as the “Principle of virtual dissipation”, which has 
been applied to nonlinear thermorheology[S-71. In addition in the case of open systems two new 
concepts have been introduced, the thermobatic potential [7,8] and another replacing the 
chemical potential which is referred to below as the convective potential. The thermobaric 
potential is a generalization of the pressure function used earlier in the isothermal case [ 1,2]. A 
non-traditional collective potential151 is also used which is essentially the same as introduced 
earlier in the linear theory[3] in 1955. 

Following a procedure applied repeatedly by the author, Onsager’s principle[9-121 is 
embodied in a local dissipation function whose coefficients vary from point to point and governs 
the coupled diffusive fluid and thermal flows including the Knudson effect. However the theory is 
more general and applies to properties which are not governed by Onsager’s principle such as 
plasticity. 

The finite strain is described by either Green’s tensor, or other components which often are 
more convenient. They may be nontensorial and were developed in more detail in earlier 
work[13-151. 

Nonlinear viscoelasticity and plasticity are also discussed based on the same unified 
thermodynamics. 

Field and Lagrangian equations are derived directly from the principle of virtual dissipation. 
The Lagrangian equations govern a complex system described in terms of global generalized 
coordinates as shown in detail for the particular case of heat transfer[22]. It is indicated how 
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these equations provide the foundation for a variety of finite element methods, using the 
generalized coordinates to describe the continuous system by means of discrete subelements. 

Attention should be called to the fact that the virtual dissipation principle provides the field of 
Lagrangian equations directly from the physical model in analogy with Hamilton’s or 
d’Alembert’s principles in mechanics. This is in contrast with the current emphasis on starting 
from already known differential field equations in order to derive a variational procedure leading 
to a new treatment for each particular case. 

The present theory is also fundamentally different from the nonlinear mechanics of mixed 
continua using Eulerian type variables which does not provide an adequate physical description 
and has led to much confusion and errors. The present material description has been usefully 
applied by many authors. More recently along these lines, physically realistic discussions and 
solutions have been provided by Rice and Cleary[16-181, and for the nonlinear mechanics of 
porous and granular solids by Barzant and Krizek[l9,2Q]. 

Note that the thermodynamic approach used here and initiated in 1954 is fundamentally 
different and more general than that of Coleman[21]. It constitutes a complete departure from 
current traditional concepts and methods. 

2.THERMOBARICPOTENTIAL 

A novel approach to the finite strain mechanics of porous&~ontainin&&&n the context 
of isothermal deformations, was developed by introducing the key concept of pressure 
function [ 11. For nonisothermal deformations we will show that a generalization of this concept 
may be obtained. We shall refer to it as the thermobatic potential. 

Let us briefly recall its isothermal definition. We consider a rigidly jacketed sample of the 
porous solid containing a compressible fluid. It is initially of unit volume and atmospheric 
pressure p,,. We call it a primary cell C, and consider it as part of a certain thermodynamic 
system. The other part of this system is a large rigid reservoir of fluid also at the pressure p. 
which we shall call a supply cell C,. The temperature TO of the whole system is maintained 
constant. We now assume the fluid in the primary cell to be at the pressure p, and evaluate the 
work required to transfer a unit mass of fluid reversibly and isothermally from the supply cell to 
the primary cell. This work is expressed by 

*=pf (2.1) 

where p is the fluid density 

P = P(P) (2.2) 

expressed as a function of the variable fluid pressure p. For simplicity we use the same notation p 
for the variable pressure in the integral and the upper limit p. The value (2.1) of the work is easily 
verified by integration by parts [ 11. This yields three terms which represent respectively, the work 
required to extract a unit mass from the supply cell, the work required to compress the fluid 
isothermally to the pressure p, and the work required to inject it into the primary cell. Since there 
is no overall change of volume the work of the atmospheric pressure is zero. Hence 4 represents 
the total work performed on the system of the two cells. Actually of course instead of a unit mass 
we must consider the transfer of an infinitesimal mass dm of fluid and the work required in this 
case is 4 dm. Thermodynamically this work is equal to the increase of total free energy F,,, of the 
two cells. Hence we may write 

dF,,, = d%, - T,, dy,,,. (2.3) 

The two cells C, and C, may be considered as a collective system where d%, and d.Y,,, represent 
the increase of collective energy and collective entropy of this system. The present definition of 4 
is the same as introduced in earlier work[l, 21 for the isothermal case. 

The concept has been generalized for nonisothermal thermodynamic systems[7,83. In the 
particular problem considered here it may be generalized as follows. We adjoin to the collective 
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system of the two cells a third component constituted by a large isothermal reservoir at the 
temperature TO which we call a thermal well. We now assume the primary cell C, to be at the 
temperature T with a fluid pressure p. In order to transfer reversibly a mass dm of fluid from C, 
to C, we must now heat the fluid gradually and reversibly to the temperature T, at the same time 
as we raise its pressure. This can be done if for every increase of pressure dp during the transfer 
we inject a certain amount of heat using a heat pump with the thermal well serving as a heat 
source. We assume that the primary cell acquires no other heat energy except that provided 
convectively by the foregoing transfer. Again we use the same notation T to designate the 
variable temperature during the transfer as well as the final temperature of the primary cell. The 
increase of total collective entropy of the two cells C, and C, due to this transfer is 

d.Y,,, = (2.4) 

where S is the increase of entropy of a unit mass of fluid when its pressure and temperature 
increase from pOTO to ~7’. We shall call S the relative entropy of the fluid. Similarly the increase of 
total collective energy of the two cells due to the transfer is 

(2.5) 

The first term is the mechanical work and the second term is the total heat absorbed. From (2.4) 
and (2.5) we derive 

da,,,-T,,dY,,,=$dm (2.6) 

where 

(2.7) 

and 

B= T-To. (2.8) 

The value (2.7) of ((, generalizes expression (2.1) to the nonisothermal case. It was obtained 
earlier [ 1, 81 and called the thermbark potential. Note that its value is independent of the path of 
integration. The foregoing transfer process of the mass dm from C, to C,, has been cahed a 
thermobaric transfer [8] 

It is also of interest to note that the second term is eqn (2.7) may be written 

(2.9) 

where dh is the amount of heat absorbed by the unit mass of fluid at each step of the transfer. 
Since O/T is the Carnot efficiency, the integral (2.9) represents the total work accomplished by the 
heat pumps in the thermobaric transfer of a unit mass of fluid. Hence 4 is the total work 
accomplished in this transfer. 

We should note that the pore fluid pressure p is defined thermodynamically as the pressure of 
an outside fluid in local contact with the solid and in thermodynamic equilibrium with it. 

More generally when the substance transferred is not a fluid I,/J represents the energy 
required[8] to transfer a unit mass of substance reversibly. 

3. COLLECTIVE POTENTIAL 
In the preceding section the mass dm of fluid was injected into the primary cell, assuming the 

jacket to be rigid and impervious to heat. The primary cell, being at the temperature T with pore 
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fluid pressure p, is now deformed adiabatically by certain forces acting on the jacket. The forces 
are those measured in the laboratory in excess of those due to atmospheric pressure, as explained 
in the paragraph at the end of this section. If we denote by dW the work of these forces, the 
increase of the total collective energy of the system is 

d%, = dW. (3.1) 

There is no change in entropy. Finally maintaining the jacket rigid again and using a heat pump 
we inject reversibly by conduction into the primary cell an amount of heat dh. Since the heat 
injected is at the temperature T it defines an entropy 

ds ~3 
= T' (3.2) 

The collective internal energy of the system and its collective entropy increase by the amounts 

d%T = T ds= 

dY$ = ds, (3.3) 

When we perform the foregoing transformations simultaneously adding the fluid mass dm, the 
heat T dsT and performing the work dW, the collective energy and entropy of the two cells 
C, + C, increase respectively by the amounts 

d% = d%w + d%,, -+ d% 

dY = dP’,,, + dP’T. (3.4) 

We write the differential expression 

d%-TodY’=dW+$dm+OdsT. (3.5) 

This expression is obtained by substituting the values (3.4), (2.4), (3.1) and (3.3). It is an exact 
differential 

dY=d%- T,,dY (3.6) 

of a function ‘Yf of the state variables of the two cells. It contains an arbitrary constant which may 
be put equal to zero by choosing values for a given initial state. Hence 

=V=%-TY. (3.7) 

We shall call “v^ the potential of the primary cell, or simply the cell potential. The justification for 
this is due to the important fact that the thermodynamic state of the supply cell depends only on 
m the mass of fluid transferred to the primary cell. However m is also a state variable of the 
primary cell. Hence in spite of the fact that the collective energy ‘% and collective entropy Y as 
well as the cell potential V refer to the pair of cells C, + C, they are functions only of the state 
variables of the primary cell C,,. 

According to relations (3.5) and (3.7) we may write 

(3.8) 

At this point it is important to note that sT is not a state variable of the system. In order to 
introduce explicitly the state variable Y instead of sT we write 

(3.9) 
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which expresses the collective entropy as the sum of the convected entropy S dm and the entropy 
dsT acquired by thermal conduction. Elimination of dST between (3.8) and (3.9) yields 

dV=dW++dm+BdY (3.10) 

where 

+=I)-tli (3.11) 

defines a new potential which we shall call the convective potential. It was already introduced 
earlier[8] in a more general physical chemical context. It replaces the concept of chemical 
potential and is defined quite differently and more precisely on the basis of purely mechanical and 
calorimetric concepts. 

Finally we must consider the deformation of the primary cell. In order to define the strain we 
consider the primary cell to be initially a cube of unit size which we shall call a unit element. An 
affine transformation of this unit element is represented by the homogeneous linear 
transformation 

fi = CijXj (3.12) 

where xi and & are the initial and final coordinates. This transformation contains a rotation and a 
deformation. The deformation is defined in various ways for example by means of Green’s tensor 

‘yij = $ (CkiCkj - Sij) (3.13) 

which is invariant under a solid rotation. 
For differential increments of deformation the work done by forces applied to the jacket is 

dW = Tij drip (3.14) 

As already pointed this is the work in excess of that due to atmosphere pressure. The coefficients 
Tii define the conjugate stress components. 

Alternative definitions of stresses and strains which may be more convenient in applications 
are discussed in the next section. The cell potential 

Yf = “Ir(yij, m, 97 (3.15) 

is now a function of eight state variables. They are the six strain components yii = yji the mass of 
fluid m acquired by the unit element in the pores and the collective entropy Y of the unit element 
and its supply cell. 

In practice it may be convenient to assume that in the initial state the forces acting on the 
jacket are those which are due only to the atmospheric pressure in the pores and the supply cell is 
also equal to pO. In the initial state we put V = Y = yii = m = 8 = 0. This means that the initial 
temperature of the unit element is T = To. Note the m denotes the mass of pore fluid added per 
unit initial volume. Under these conditions the temperature T of the element may be expressed as 
a function 

T = T(yij, m, 3 (3.16) 

of the eight variables yiiyii, m, Y. This point is discussed in more detail in Section 5 below. Note that 
if the fluid goes through a change of phase from liquid to vapor, the temperature T remains 
constant through the phase change while Y varies with the proportion of each phase present. 
Hence the use of Sp as a state variable instead of T provides a better description of the state of 
the system in the present case. 



584 M. A. BIOT 

With the value (3.14) the differential (3.10) of the cell potential is 

hence 

a’_e 
aY- * (3.18) 

(3.17) 

As already pointed out for the isothermal case[l, 21, by a contact transformation, these results 
lead to a large number of similar expressions where any group of eight independent variables may 
be chosen among the sixteen quantities Tij yij 4 m 8 Y. For example using the function 

9=7f-m4--eY (3.19) 

with yi, ,$ and 6 as independent variables we obtain 

(3.20) 

We now consider a collection of primary cells, and denote by “Ir, the potential of the cell (Y. The 
collective potential of this system is defined as 

v=T “vh. (3.21) 

According to (3.7) we may write 

7fa = %, - ToYa (3.22) 

where %!L and Ye are the collective energy and entropy of the particular primary cell a and the 
supply cell. Obviously 

$&_=U 

%Y_=S (3.23) 

where U and S are the total energy and entropy of the collection of primary cells and the supply 
cell. From (3.21)-(3.23) we derive 

V= U-ToS. (3.24) 

This additive property of the total collective potential (3.24) embodied in these results is a key 
feature of great practical importance which distinguishes it from the traditional thermodynamic 
potentials. 

For a porous solid considered as a continuum with a microstructure the cells are infinitesimal 
and the summation sign in (3.21) is replaced by a volume integral over the domain R occupied by 
the material in the space of the initial coordinates xi. 

The collective potential is 

(3.25) 
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where 

“v” = Wyij, m, 9, xk) (3.26) 

is the local cell potential per unit initial volume, and dR = dx, dxa dx,. If the porous continuum is 
not homogeneous Yf depends on the coordinates xi. 

Remark regarding the implicit inclusion of a constant atmospheric pressure or initial stresses 
When the measurements are made in a laboratory where the jacket of the test cell is under 

constant atmospheric pressure pO the work of this pressure need not be formulated explicitly in 
the work dW of the external forces. Actually it may be included implicitly in the energy U which 
is then assumed to contain a term p,u where u is the volume of the cell. In this case the stresses 
Z”ij in the external work (3.14) on the cell represents the excess of the stresses above those due to 
atmospheric pressure. The stresses due to the atmospheric pressure are 

G=p &I 
O 8% 

(3.27) 

where A is the volume after deformation of a unit initial volume as given by (8.6) below. The total 
stress is thus Z”ij + 7$ We may also consider the case where the jacket is subject to initial stresses 
Tij and the pore fluid is at a pressure p. different from atmospheric. This situation is frequent in 
geophysical problems. Again the stresses Tij which appear in expression (3.17) are the stresses in 
excess over the initial stresses T’,, the total stresses being Tij + T’,. 

Solid with capillary pores. Partial saturation 
The pores may be of very small size such that surface tension and adsorption play a major 

role. In this case the initial state may very well be one of complete dryness of the sample. Note 
that the fluid pressure p is defined thermodynamically as the pressure of a fluid in contact with 
the material and in equilibrium with it. One of the outstanding features of such material is the 
extreme sensitivity of the cell potential to small amounts m of the fluid in the pore. Its value may 
change rapidly as soon as m differs from zero. Such a behavior is related to the fact that small 
amounts of moisture in a material may generate enormous stresses if deformation is prevented. 
In this range of m we may talk of partial saturation and 4 defines a thermo-capillary potential 
which generalizes the concept of capillary pressure. 

Chemical potential 
The quantity 4 defined by eqn (3.11) plays a role analogous to what is known as Gibbs’ 

chemical potential p. In fact in earlier work[7,8] we have retained the traditional notation p and 
the term chemical potential, considering eqn (3.11) as a new definition of this potential in the 
context of a collective system. However the definitions of 4 and p are not exactly the same and the 
usual evaluation of p involves an indeterminacy as pointed out by Gibbs himself ([23] page 96) and 
in standard textbooks ([24] page 278). In addition the definition (3.11) does not involve any chemical 
property. For these reasons in order to avoid confusion it seems preferable to use the notation 4 
and call it the “convective potential.” 

4. OTHER TENSORIAL AND NONTENSORIAL DEFINITIONS 
OF STRESSES AND STRAINS 

In physical applications use of Green’s strain measure (3.13) and its conjugate stress Ki is not 
generally convenient. A useful procedure is to define the strain in terms of the coefficients of a 
local linear transformation relative to locally rotating axes. Such a definition was introduced by 
the author in 1939 in the context of initially stressed media. An expression valid to the second 
order for the strain is[13], 

1 
Eij = eij + $f?kiOkj + ekjWki) + ’ @k@jk 

2 
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where 

f?ij = k (t&j + Uji) Oij = i (Uij - Uji) (4.1) 

Uij = Cij - 8,. 

The strain in this case is referred to Cartesian axes undergoing a local rotation @ii. However as 
pointed out before [ 131 the choice of the rotation is arbitrary and is a matter of convenience. This 
was discussed in more detail earlier[14]. For example the reference rotating axes may be a 
material axis plus a material plane containing this axes. In particular in two dimensions we need 
only a single material direction to define the rotation. The three strain components in this case 
are[lS]. 

This strain measure is not a tensor. However it is much more convenient than the tensor concept 
when dealing with anisotropic media. It leads to the very useful concept of “slide modulus”[lrl] 
which is also not a tensor component. The whole theory of porous media presented here remains 
valid replacing yii by eiP Stresses Tij conjuguate to E<j may not be tensorial and are obtained by the 
principle of virtual work. 

5.EVALUATIONOFTHECELLCOLLECTIVE 
ENTROPYANDPOTENTIAL 

The collective entropy of the cell is obtained by integrating eqn (3.9) along a suitable path 
from an initial state 1 where yii = m = 0 = t,b = d = 0 to a final state 2 defined by the state variable 
3/ij, m, 0. We write 

(5.1) 

Note that s(yij, m, T) is the relative entropy of the fluid in contact and thermodynamic 
equilibrium with the solid in the state defined by yijyii, m and T. We may first deform the material UP 
to a strain yij along a path m = 8 = 0. The heat absorbed along this path h,(w) is a function of yii. 
Then we integrate along the path 8 = drii = 0 varying m. The heat absorbed along this path hz(yii, 
m) is a function of 3/ij and m. Finally we integrate along the path dyij = dm = 0 varying the 
temperature T. The value of the integral (5.2) thus obtained is 

9=~h,(yij)+~h*(Yij,m)+ 
m 

s(yii, m) dm + 
=1 

(5.2) 
II 0 I 0 I To 

T c(x, m, T) dT 

where c is the specific heat of the material per unit initial volume in the state yij, m and T for 
dYii = dm = 0. We may solve eqn (5.2) with respect to T and obtain 

T - To = B(yij, m, 3. (5.3) 

The value of the cell potential is obtained by integrating (3.17) also along a suitable path. Hence 

V= ‘(Tijdrij+4dm+edY). 
I 1 

(5.4) 

We may choose the path 8 = m = 0 up to a value yii of the strain, then drij = 0 = 0 up to a value 
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m, and finally dyfj = dm = 0 up to a value 9’. Note that for 8 = 0 we may put 4 = $. We obtain 

where v is the elastic strain energy at 8 = 0 and m = 0. 

6. PRINCIPLE OF VIRTUAL DISSIPATION 

A variational principle in irreversible thermodynamics developed earlier[3] in a more 
restricted context has been extended to completely general systems and given the name of 
“Principle of virtual dissipation”[5]. It constitutes an extension of d’Alembert’s principle to 
irreversible thermodynamics and has been applied to a unified formulation of nonlinear 
thermorheology[6,7]. Its derivation for the present case is briefly outlined below. 

Consider the porous medium occupying an initial domain a, undergoing deformations with 
internal heat and fluid mass transfer defined by certain field variables. We consider variations of 
the system such that mass and heat flow variations vanish at the boundary. Conservation 
constraints are obeyed for internal mass and heat flow. We may write 

SU=6W (6.1) 

where SW is the virtual work of the external forces acting on the system. According to 
d’Alembert’s principle it includes the work of the reversed inertia forces. Also 

SS = (6s + Ss*) dR (6.2) 

where s* is the entropy produced per unit initial volume and s the entropy supplied by 
conduction and convection. Since there is no heat or mass flow at the boundary we may write 

Hence 
I dsdR=O. 
n 

(6.3) 

SV=SU-T,,SS=SW-To Ss*dR 
I 

(6.4) 
n 

or from (3.25) 

I (SY+ T&s*) da - SW = 0. (6.5) 
n 

Using eqns (3.18) we may write 

where & is a restricted variation obtained by putting Ss* = 0. Substitution of the value (6.6) of S‘V 
into (6.5) and using (3.25) yields 

The virtual work SW may be written 

(6.7) 

(6.8) 6 W = -2 I&i + 2 QSqi - SG 
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where Sq, represent any form of coordinates describing material displacements, Ii are inertia 
forces, Qi are the applied boundary forces in excess of atmospheric pressure and G is the 
potential due to gravity or any other similar field. 

We derive 

where 

(6.9) 

(6.10) 

is a “mixed collective potential”. Equation (6.9) expresses the principle of virtual dissipation 
obtained earlier [5,6] in a more general context. The virtual dissipation is T6s* and TS* is the 
local rate of intrinsic dissipation. It was called intrinsic because the local heat produced is at the 
temperature T and part of it may still produce useful work in the presence of a thermal well at a 
lower temperature T0[5, 61. (The dot denotes a time derivative.) The virtual dissipation defines 
dissipative forces Xk by the relation 

(6.11) 

where rk are arbitrary local coordinates. It was shown[3,5,61 that Onsager’s principle leads to the 
relation 

where 9 is a local dissipation function 

while 

(6.13) 

bkr = b, = bkr(‘J& m, sp) (6.14) 

are functions of the local state variables 3/ii, m and Y. We may also write 

where g* is the rate of entropy production per unit initial volume. 
Introducing the dissipation function the variational principle (6.9) is written 

(6.15) 

7.DISSIPATION FUNCTION AND ENTROPY PRODUCTION 

The deformation of the porous solid is defined by the vector field 

4 = 6(Xi, t) (7.1) 
9. 

where 4 are the coordinates of a material point at time t and Xi are the initial coordinates at t = 0. 
The differential relation 

(7.2) 

defines a local affine transformation analogous to (3.12) where 
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a6 
cii = axi’ (7.3) 

With this value of cii the local deformation is defined by Green’s tensor (3.13) or the strains 
defined in Section 4. 

The fluid flow and the heat flow are defined by two fields already introduced 
previously [l, 7,14,22]. Consider a unit material area initially perpendicular to the xi axis. We 
denote by Mi the total mass of pore fluid which has flowed through this area during its 
deformation. It satisfies the following holonomic mass conservation constraint 

aMi 
m=-z (7.4) 

Similarly we denote by I;ri the rate of conduction heat flow through the same area and define a 
local rate of entropy flow through conduction 

fJ,T = !f& 
’ T’ 

Again through the same area the local rate of entropy flow through convection is 

Integration with respect to time defines a total entropy displacement vector 

Si = ST + Si”* 

The total entropy per unit initial volume is 

Y=S+S* (7.8) 

where s* is the entropy produced and 

as 
s=-z 

(7.5) 

(7.6) 

(7.7) 

(7.9) 

is the entropy supplied by convection and conduction. 
The deformation and thermodynamic state are completely defined by the ten variables &, M,, Si 

and s*. 
We shall consider the case where the rate of entropy produced per unit initial volume depends 

only on the rate variables &fi and SIT, i.e. on the thermal diffusion, and the fluid flow relative to the 
solid. The dissipation function is a quadratic form in h and $’ 

(7.10) 

The coefficients Cf, Cz” and Aij are functions of the local state variables yijyii, m and 9. From (7.6) 
and (7.7) we write 

3’ = $ - f&. (7.11) 

Substitution of this value into expression (7.10) yields 

The coefficients are also function of the local state variables. The last term represents the 
IJSS Vol. 13 No. 6-G 
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dissipation when Qi = 0 hence for pure heat conduction. The thermal resistivity tensor hii is the 
inverse of the thermal conductivity of the deformed mixture of fluid and solid. Its nature has been 
extensively discussed in [ 141 for the nonporous thermoelastic solid. 

The coefficient 12;” represents the coupling between mass flow and thermal flow exemplified 
by the Knudsen efect for a rarefied gas in capillary-size pores. 

The foregoing results may be further verified as follows. Conservation of entropy is expressed 

by 

(7.13) 

where fl is the initial domain occupied by the porous solid and A is its boundary. The rate of 
entropy produced per unit initial volume is S *. The rate of entropy flow by convection across a 
unit initial boundary area is S&lini and (fiini/T) is the rate of entropy flow by conduction across 
the same unit initial area. The significance of the convective term is obvious if we note that 
-SdMini dA represents the entropy acquired by the domain R when a mass -diNhi dA is 
injected reversibly and adiabatically through the surface element dA. Equation (7.13) may be 
written 

Since R is arbitrary we derive 

(7.14) 

(7.15) 

which leads to eqn (7.8). 

8.VARlATIONAL DERIVATION OFTHE FIELD EQUATIONS 

The unknown deformation and thermodynamic state is described by the ten field variables 5, 
Mi, Si and s*. We apply the principle of virtual dissipation (6.16) by varying &, Mi and Si inside 
the domain a. Since there are no variations S& at the boundary we put Qi = 0. The potential G is 

(8.1) 

where % is the potential of the body force per unit mass and ma the initial total mass per unit 
volume. 9l is a function of &a Hence 

Also 

where 

We remember that & implies a variation excluding as*. 

(8.3) 

(8.4) 
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Also, with the value (7.12) for the dissipation function 9 we write 

591 

(8.5) 

1n order to evaluate the virtual work of the inertia forces we consider an element of unit initial 
volume. After deformation this volume becomes 

(8.6) 

where A is the Jacobian of the transformation. The momentum of this element in the xi direction 
is 

li = (m. + m)& + Mlh. (8.7) 

The second term is due to the pore fluid motion relative to the solid and &is the rate of mass 
flow in the relative motion per unit area of the space & after deformation. This quantity may be 
expressed in terms of !L& defined above by expressing the rate of mass flow F through an 
arbitrary material surface in two different ways. We write 

F = 
I 

Mini dA = 
I 

R#jttI dA’. (8.8) 
A A’ 

The first integral is through a surface A of normal ni in the space xi and the second through the same 
material surface A’ of normal nl in the space &. The quantity Rlj is the cofactor of- the 
Jacobian 

1 ax, 
A’=-A=det z. 

II 
(8.9) 

Relation (8.8) shows that 

n;i; = R;J$ (8.10) 

The cofactor Rii may be expressed in simpler form by considering the linear transformation of d& 
indo dx, and solving for dli. This yields 

~=!$=AR;~. 

With the values (8.10) and (8.11) the momentum (8.7) becomes 

(8.11) 

(8.12) 

It is a well known theorem of mechanics that the resultant inertia force of a system of variable 
mass is composed of two terms. 

In the present case it is composed of %&/c% and an additional term due to the rate of flow of 
momentum of the pore fluid out of the volume A. If we neglect the square of the fluid velocity 
relative to the solid this additional term becomes very simple and the total inertia force per unit 
initial volume is 

(8.13) 
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The virtual work of the inertia forces depends on the virtual displacement S& and a virtual 
displacement 6Ui of the fluid due to SMi. Per unit initial volume this virtual work is 

(8.14) 

The second integral is over the volume A of the unit element after deformation, ai is the 
acceleration of a fluid particle relative to the solid and p is the fluid density. We shall neglect the 
term aJui. This amounts to neglecting the effect of the relative inertia force on the relative fluid 
motion and is consistent with the assumption that the relative microvelocity field distribution is 
dominated by viscosity forces and determined entirely by ZL&. 

We may write 

(8.15) 

On the other hand according to (8.10) 

SM: = R:iSM+ (8.16) 

Hence 

As&f! = s SM. 
’ axi J* 

k_ 

(8.17) 

With these values the virtual work of the inertia forces (8.14) integrated over the volume 0 is 
written 

(8.18) 

By introducing the values (8.2), (8.3), (8.5) and (8.18) in the variational eqn (6.16) we derive 

(8.19) 

Using the values (7.3), (7.4) and (7.9) for Cij, m and s, we integrate by parts and cancel the 
coefficients of &, SMi and SS, in the integral. This yields the differential equations 

a a 
ax,, ac, -(mo+m)ar,= (7 a(e ~+-$&fJ , 

These nine field equations along with eqn (6.15) for S* namely 

(8.20) 

(8.21) 

(8.22) 

Ts* = 29 (8.23) 

determine the ten unknown field variables. 
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We note that due to the relation ti = -aiG&/aXi the inertia term may be written 
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Since 

substitution in (8.24) yields a last term analogous to a Coriolis force. 

9. COUPLED THERMAL-DARCY FLOW AND 
THERMOMOLECULAR DIFFUSION 

According to eqns (3.18) we may write 

a”lr 
aY= 8. 

Hence eqns (8.21) and (8.22) omitting the inertia terms for simplicity, may be written 

arp+LE=0 
aXi ah& 

f+e&=o. 
1 I 

(8.24) 

(8.25) 

(9.1) 

(9.2) 

They consitiute a thermodynamic generalization for coupled thermal-Darcy flow in a deformed 
medium. We may refer to cp as a “mixed convective potential” since it includes the work against 
the potential % required to transfer a unit mass into the primary cell. We assume that the supply 
cell is located at a point where B = 0. It is of interest to put eqns (9.2) in another form which 
brings out more explicitly its physical meaning. From (9.1) (2.7) and (3.11) we derive 

aQ a+ a% 1 ap _ ao a% 
--+-=---S---+-’ 

axi axi aXi p a& , (9.3) , 

On the other hand we have 

and from (7.10), (7.11) and (9.4) we derive 

Using the second set of eqns (9.2) this becomes 

(9.4) 

(9.5) 

(9.6) 
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Substitution of the values (9.3), (9.4) and (9.6) in eqns (9.2) yields 

1ap+JE+!g=() 
p axi ax, aM, 

z+g=o. (9.7) 

Note that the pore fluid pressure p in those equations is the pressure defined thennodynamicaIly. 
In other words it is the pressure of the fluid in contact with an element of the porous medium and 
in thermodynamic equilibrium with it. 

Equations (9.7) are linear in &C and $’ with a symmetric coefficient matrix. These properties 
embody the Onsager relations. 

10.NONPOROUSSOLIDWITHTHERMOMOLECULARDIFFUSION 
OFASUBSTANCEIN SOLUTION 

This refers to finite nonisothermal dynamics of a solid which contains a certain molecular 
species in solution. Under the action of deformations, changes in the temperature and 
conecntrations generate coupled thermal and molecular diffusion. This introduces a general 
irreversibility in the systems. 

It is quite obvious that this case is completely isomorphic to the foregoing problem of the 
porous solid. No new theory is required, and the field eqns (8.20~(8.23) are completely 
applicable. We exclude of course the additional dissipative term due to solid strain rate which is 
discussed in Section 11. We have assumed local thermodynamic equilibrium in both cases, and as 
a result they are governed by the same unifying thermodynamic theory. If the substance in 
solution is a fluid we consider a state of thermodynamic equilibrium when it is in contact with an 
element of the solid. Under these conditions the pressure p of the fluid defines the partial 
pressure of the material in solution and the corresponding thermobaric potential. lf the substance 
cannot be identified with a fluid under conditions of equilibrium with the solid, the general 
thermodynamic theory remains valid. 

Il. POROUS SOLID WITH AFLUID MIXTURE,FILTERING 
PROCESSES,ANDNON POROUSSOLID 

WITHMULTIPLETHERMOMOLECULARDIFFUSION 
The foregoing results may be immediately generalized to porous solids with a mixture of fluids 

provided molecular diffusion within the pores occurs at a faster rate than convective diffusion so 
that local equilibrium is assumed. This covers certain filteting processes and differential diffusion 
of adsorbed layers of the various molecular species. Also the theory is the same for a non porous 
solid with multiple thermomolecular diffusion of several substances in solution. 

Each molecular species is denoted by the index k. For each species we write equations similar 
to (7.4) and (7.11) I 

(11.1) 

The cell potential and the dissipation function are 

The latter is a quadratic function of !tkF and $? The field equations of Section 8 become 

a a -(-~-(m,+m,~=~+~(e5;ni,*) 
%Xj dCij 

(11.3) 
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where 

Also the convective potential becomes 

595 

(11.4) 

(11.5) 

The relative entropy S, of each substance in the case of fluids is defined by its state of equilibrium 
with the solid through a semipermeable membrane[8]. 

12. SOLID STRAIN RATE, INTERNAL COORDINATES, 
VISCOELASTICITY AND PLASTICITY 

In the foregoing analysis the dissipation was assumed entirely due to thermal conduction and 
the relative motion of the fluid in the pores. In many cases a realistic analysis requires that much 
more complex physical behavior be taken into account. First the dissipation in the viscous fluid 
may depend on the overall strain rate of the solid matrix. In addition local internal coordinates 
qk may be used to describe local fluid migration due to squeezing effects between grains and 
microcracks or uneven pore sizes. Other physical chemical effects may be taken into account. 
Plasticity may be included by introducing internal coordinates qs which represent the motion of 
plastic slip centers. The potential per unit initial volume is then a function 

and the total rate of dissipation is 

9, = 9 -t 9~ + f: Rscjs (12.2) 

where 9% is the function 

It represents the dissipation not due to plasticity and we may assume that it obeys Onsager’s 
principle locally. Hence $9” is a quadratic form in cij, ti, C& 4.. The dissipation function 9, embodies 
along with 7f the non-linear thermoviscoelastic behavior as discussed in[6] for the non porous 
solid. It was also discussed in111 for the isothermal porous solid. Developement of the present 
combination of both cases follows the same lines. 

The last terms 2 R,t& in 9, represent the rate of dissipation due to plasticity and R, is a 
function or functional of qs and c&. As inciated in[6], the principle of virtual dissipation yields 
the additional field equations for qs. Strain hardening is represented by freezing the values of qs 
for an increasing number of slip centers. On the other hand internal brittle failure such as the 
gradual generation of microcracks is represented by having an increasing number of values of R, 
drop to zero as qs increases. The plasticity treatment may be further generalized by assuming that 
the relation between R, and q. may be temperature dependent. Note that the plastic coordinates 
qs may be coupled through the expressions (12.1) and (12.3) of 7f and 9”. Physically this means 
that they exert mutual forces on each other through the continuous medium. A viscoelastic 
interaction of this type is discussed in a more detailed analysis[6]. It may be due physically to 
elasticity of the surrounding medium and the motion of a continuous field of interacting 
dislocations distinct from the plastic slip centers. 

13. LAGRANGIAN EQUATIONS 

In order to simplify the presentation we shall restrict ourselves to the case where there is only 
a single molecular species in the pores or in solution and that the dissipation is only due to the 
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thermal and material diffusion transport. However the Lagrangian procedure is completely 
general. We consider the fields 4, Mi, Si to be expressed in terms of n generalized coordinates qi 
as 

ti = 5(4*, xl, t) 

M = M,(qk, XI, t) 

si = S(q,, Xl, t). (13.1) 

In addition the field s* of entropy produced is expressed by n’ additional coordinate q: as 

s* = s*(q;, Xl, t). (13.2) 

The values of qi and q: are unknown functions to be determined. Lagrangian equations for the 
unknowns qi are immediately obtained from the variational principle (6.16) without going through 
the field equations by applying variations Sqi. This implies variations of Mi and S at the boundary. 
In order to make these variations “internal” as required by the variational principle (6.16) we 
assume that the boundary is in contact with a continuous distribution of fluid cells each with a 
value 6 and cp. They are considered as part of the domain n. Following a procedure developed 
repeatedly in previous work[l, 5,6, 141 we derive the Lagrangian equations 

I.+a9 a9 --7+-= Qi 
’ 3% aqi 

where 

(13.3) 

(13.4) 

This integral over the initial boundary A is a mixed mechanical thermodynamic boundary driving 
force. The mechanical force per unit initial area at the boundary is fi in excess of that due to 
atmospheric pressure, and the first term represents the corresponding generalized forces which 
are represented as Qi in the variational principle. The additional terms in Qi are due to the driving 
cells at the boundary. Note that 9 is a function of qi, q1 and t. As shown in[5] the dissipation 
function of the system is 

D = 
I 

9 dR = D(qi, q;, Qi, t). (13.5) 
n 

If t does not appear explicitly in eqns (12.1) D is a quadratic form in di, with coefficients 
depending on qi and ql. The generalized inertia force is obtained from (8.18). We write 

L= 1 dQ. -(3.16) 

In addition to the n Lagrangian eqns (13.3) we need n’ additional equations for ql. These may be 
obtained by writing the relation 

TS* = 29 (13.7) 

at n’ suitably chosen points xi. 
In many practical problems the contribution of s* to the state variables may be neglected and 

we may simplify the equations by putting q: = 0. 
The Lagrangian equations open the way to powerful new techniques of analysis of porous 

media defined as global systems by means of generalized coordinates which bypass the need of 
any field equations. Such techniques were developed in detail for problems of heat transfer [22] 
and their extension to mass diffusion problems was discussed. 
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14. FINITE ELEMENT METHODS 
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The Lagrangian formulation provides also the foundation of a large variety of finite element 
methods. For example we may divide the space fi into a large number of tetrahedral cells. The 
field values of &, Mi and S at the vertices are chosen as generalized coordinates qi, while the 
values of s* at the same vertices are chosen as 4:. Values of these fields inside the cell may be 
represented by linear interpolation of the values at the vertices. The unknowns ~7~ and 4: are then 
determined by the Lagrangian eqns (13.3) and the eqn (13.7) for s* at each vertex point. Note that 
the values of yir, M and s which appear in the coefficients of eqn (12.7) at each vertex may be 
chosen as the average of their constant values in the tetrahedra with this common vertex. 
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