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A thermodynamics of open systems has been developed which provides an entirely new theoretical framework 
based on novel concepts without any recourse to statistical mechanics, The standard chemical potential is replaced 
by a convective potential itself derived from a new concept referred to as the “thermobaric potential”. Entropy 
convected by addition of masses into an open system is obtained using only classical concepts without leading to 
Gibbs’ paradox. A generalized Gibbs-Duhem theorem is derived. Application to chemical systems leads to new 
expressions for the affinity and an “intrinsic” heat of reaction which excludes the heat of mixing and is more re- 
presentative of the true chemical energy. These expressions involve only mechanical and calorimetric concepts. 
They are much more general than the standard formulas which are restricted to temperature variations. The van? 
Hoff-le Chatelier principle is extended to open systems in terms of the new convective potential. 

1. Introduction 

The thermodynamics of open systems following 

Gibbs’ transitional approach has always been the source 
of difficulties. Basically this is due to the fact that 
masses are added to the system while the classical 
definition of energy and entropy are defined as in- 
creases of these quantities for given masses. Gibbs’ 
paradox provides a typical example of inherent in- 
consistencies. The difficulties are generally resolved 
by the use of statistical concepts. 

However it is possible to develop a new approach 

to the thermodynamics of open systems which is 
completely self-consistent and avoids the aforemen- 
tioned difficulties. This can be accomplished entirely 
within the framework of classical thermodynamics 

without introducing any statistical concepts. 
The principle of the method is to use a closed 

physical system of given masses constituted by primary 
cells and a series of supply cells each containing a pure 
substance. We also adjoin a large isothermal reservoir 
at constant temperature called a thermal well. The 
two types of cells and the thermal well constitute a 
hypersystem. Each primary cells is at its own tempera- 
ture and together they constitute a nonisothermal 
system. 

In any transformation by a reversible process the 

work accomplished on the hypersystem defines the 
collective potential. No external matter or heat is added 

to the hypersystem and as a consequence it is shown 
that the collective potential is a function of the state 
variables of the primary cells only. 

Matter is transferred internally from the supply 

cells to the primary cells by a reversible process which 
we have called a thermobaric transfer. This leads to two 

new concepts, the thermobaric potential and the 
convective potential, derived earlier [l] in a less de- 
tailed presentation. The key to the procedure of thermo- 
baric transfer is the use of reversible mechanical pumps 
and heat pumps on the material within the hypersystem. 

awhile the primary cells are open, the hypersystem is 
both closed and adiabatic. 

The new concept of convective potential replaces 
Gibbs’ chemical potential and is defined far a given 
hypersystem without any undetermined constant. The 
basic difference with Gibbs’ approach and standard 
potentials is discussed in detail in section 8. 

One of the important features of the new approach 

is an expression for the entropy convected by masses 
added to the system which avoids Gibbs’ paradox. 
The Gibbs-Duhem theorem is also generalized in 
terms of the new convective potential. Very general 
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conditions of equilibrium and stability of heteroge- 
neous systems are readily obtained. 

Application to chemical reactions leads to new and 
completely general formulas for the affinity and heat 
ofreaction already obtained earlier [l] by a slightly 
different reasoning. They are expressed in terms of 
purely mechanical and calorimetric concepts. They 
involve a new intknsic heat of reaction which excludes 
the heat of mixing and is more representative of the 
chemical energy than the standard concept. By con- 
trast classical formulas for the affinity and heat of reac- 
tion are less general and restricted to temperature varia- 

tions. 
Classical results for reacting perfect gasses are derived 

very simply from the foregoing general results. A gene- 
ralized van? Hoff-le Chatelier principle is also derived 
for an open system in terms of the convective potential. 

2. Collective potential of a closed cell 

We consider an homogeneous cell at a uniform tem- 
perature T which will be called a primary cell C,. We 
adjoin a large isothermal reservoir at a uniform tempera- 
ture T,, referred to as a thermal well TW. It is assumed 
large enoughso that a finite quantity of heat added 
to it changes its temperature only by a negligible 
amount. The system constituted by the cell C, and the 
thermal well TW is called the hypersystem (fig. 1). 

We assume that this hypersystem undergoes a revers- 
ible transformation. In this transformation no heat is 

exchanged between the hypersystem and the environ- 

ment. However within the system heat may be absorbed 
by the primary cell and the thermal well by using 
reversible heat pumps. Work is also performed on the 

system by external forces applied to the primary cell 
and by the heat pumps. Starting from a given initial 
state we define the collective potential of the system as 

cl T c* 

r, I TW 

1 
Fig. 1. Hypersystem constituted by a primary cell Cp at tem- 
perature T and a thermal well TW at temperature TO. 

v=wpR+wH, (2.1) 

where CWPR is the reversible work on the primary cell 
and %$I the work of the heat pumps. Thus %’ is equal 

to the total reversible work done on the system. In 
this transformation the temperature T of the primary 

cell may vary. 
Since cI1 represents the energy of the hypersystem 

the first principle of thermodynamics yields 

V=V(q&-H. (2.2) 

The quantity ?c is the classical energy of C,. It is a 

function of the state variables 4i of C,. The quantity 
H is the amount of heat energy absorbed by the thermal 
well. The collective potential V is thus a function of 
the state variables qi and H of the hypersystem. 

The important property here is that V is actually 
a function of 4i only. This is a consequence of the 
second principle of thermodynamics and can be shown 
as follows. Consider an infinitesimal heat pump cycle 
where dh is the heat energy absorbed at the tempera- 
ture T by C,, and dH is the heat absorbed by the 
thermal well at the temperature TO. It follows from 
the second principle (see ref. [2] p. 146) that we may 
write 

dH=-(T,,/T)dh=-Todd, (2.3) 

where dJ is the increase of entropy of C,. Hence 
eq. (2.2) may be written 

9’= U-T& (2.4) 

Since d is a function of qi the collective potential 

cV = V(qi) (2.5) 

is a function only of the state variables qi of the pri- 

mary cell C,. As a consequence we may refer to CZI as 
the collective potential of the primary cell, or more 
simply, as the cell potential. 

As pointed out [I] the heat pumping need not be 

accomplished by means of a material cycle.Black body 
radiation may be used. A certain amount of radiation 
energy extracted from the thermal well is compressed 
adiabatically to the temperature of the primary cell 
and injected into it. 

If the primary cell undergoes an irreversible trans- 
formation without acquiring any heat energy, the 
first principle yields 

u=twp, (2.6) 



M.A. Biot/New concepts and results in thermodynamics with chemical applications 185 

where Cw, is the work accomplished on the primary 
cell in the irreversible transformation. Substitution of 

eqs. (2.6) in eq. (2.4) yields 

CJ - %$, = -TOJ . (2.7) 

Since no heat is provided to C, 

; > 0 (2.8) 

represents the entropy produced and 

Wp>V. (2.9) 

Hence V is the minimum work required for a given 

transformation. 
In differential form we may write eq. (2.1) as 

dv = d%‘,, + d%‘, . (2.10) 

On the other hand the work performed reversibly by 
the heat pump to inject an amount dh of heat energy 

into the primary cell is 

dCklH=dH+dh. 

According to eq. (2.3) we may write 

(2.11) 

dcWH=(B/T)dh=OdcL 

Hence eq. (2.10) becomes 

(2.12) 

d‘-V=dcWpR+BdJ, 

where 

(2.13) 

6=T-TO (2.14) 

is the excess temperature and d J is the entropy sup- 
plied reversibly to the primary cell by conduction. 

The collective potential as a new thermodynamic 
potential to replace the traditional approach was in- 
troduced by the author in 1955 [3] for the purpose 
of developing a thermodynamics of complex non- 
isothermal irreversible systems. Although presented 
at the time in the context of linearity it is obviously 
quite general. The definition of this potential in the 
following sections in terms of reversible work on a com- 
plex hypersystem including supply cells is a new 

development [ 11. 
Prior to 1955 an expression similar to eq. (2.4) 

containing an additional term had been used by Gibbs 
([4] p. 40) not as a potential but in an inequality 
which yields a stability criterion for a system surroun- 
ded by an environment at constant pressure and 
temperature. It was later interpreted as a measure of 
available energy balance. 

3. Collective potekial of an open cell. Thermobaric 
potential 

We shall now define and evaluate the collective 
potential for an open primary cell when masses may 
be added to the cell. We consider a hypersystem con- 
stituted by the primary cell C,, a thermal well TW and 
a set of supply cells CSk, each containing a pure 
chemical species identified by the index k (fig. 2). The 
supply cells are large rigid cells all at the same pressure 
pO and the same temperature TO. For convenience 
this temperature is chosen to be the same as that of 
the thermal well but this is not required. However the 
pressures and temperatures of the supply cells must 

be chosen the same. As will be shown below (section 
5) this condition is required in order to avoid Gibbs’ 
paradox. The material added to the primary cell is 
provided entirely by the supply cells so that matter 
is transferred only internally within the hypersystem 
by reversible work. The supply cells are large enough 
so that removal of a finite quantity of substance 

changes the pressure and temperature of the cell by a 
negligible amount. 

We define the collective potential of this hyper- 
system as in the preceding section. It is the total 
reversible work accomplished-on the hypersystem by 
forces external to it while no heat energy is exchanged 
by the hypersystem with the environment. The con- 
dition of reversibility requires that in general the work 
accomplished by the external forces includes the work 
of heat pumps. The heat acquired or lost by the cells 
and the thermal well at different temperatures is pro- 
vided entirely by heat pumps. Arbitrary amounts of 
the pure substances are also transferred internally and 
reversibly between C, and C,, by a combination of 
mechanical work accomplished directly by forces ap- 
plied to the pure substance and by heat pumps. 

- 

I I T c, 

xl TW 

I I 

Fig. 2. Hypersystem constituted by a primary cell Cp a set of 
supply cells CS~ and a thermal well TW. 
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The collective potential thus defined is expressed 

in the same form (2.2) as before 

‘-X’= ?C+H, (3.1) 

where His the heat energy acquired by the thermal 
well. However Y!.! is now the collective energy of the 
system C, t E:, C,, constituted by the primary cell 
and set of supply cells. These quantities are defined 
by their increase above an initial state for which they 
are assigned the value zero. The state variable of the 
primary cell CP are represented by a set qi plus an 
additional number of variables mk each representing 
the mass of the pure substance k added to the primary 
cell. On the other hand the state variables of the supply 
cells are simply the same variables mk since the masses 
added to the primary cells are extracted entirely from 
the supply cells. 

As an important consequence the system C, 
t xk C,k of primary and supply cells is determined 
entirely by the state variables of the primary cell. 
Hence the collective energy U of the system C, 

+ zlk %k 

q = v(qi, mk> 9 (3.2) 

is a function of the state variables qi and mk of the 
primary cell C,. 

Furthermore it is easy to -show that H in expression 
(3.1) is also a function of 4i and mk. This is done by 
following the same procedure as in the preceding sec- 
tion. Taking into account the fact that the transforma- 
tion is reversible, the total change of entropy of the 
hypersystem is zero. Hence 

&H/T,,=O, (3.3) 

where H/T,, is the entropy increase of the thermal 
well and J the entropy increase of the system C, 
t 2, C,k of primary and supply Ceh. This entropy 
is a function of qi and mk 

J=d(qi, mk). (3.4) 

Because Q! and J are defined completely by the state 
of C, alone we may refer to them as the collective 
energy and entropy of the primary cell. Combining 
eqs. (3.1), (3.2), (3.3) and (3.4) we derive 

v= cZ (4ij mk) - To J(qi, mk) . (3.5) 

This important result expresses the fact that the collec- 
tive potential V is a jknction only of the state variables 

qimk of the primary cell. Hence again we may refer 

to 33 as the collective potential of the primary cell or 
more simply as the cell potential. 

We shall now proceed to evaluate 33 in terms of 
measurable quantities. By definition 

d‘Y = d%‘,, + F $kdmk + 6 dsT . (3.6) 

The term d Cw,, is the reversible work of external 
forces on the primary cell and is the same as in eq. (2.13). 
The term 8 ds, as in eq. (2.13) represents the work of 
a heat pump. We use the notation ds, instead of dJ 
to indicate that ds, is not the total entropy supplied 
to the cell but only that part which is supplied directly 
by thermal condution. This distinction is necessary 
since we shall see that the total collective entropy 
increase d3 in the case of an open cell is the result of 
both thermal conduction and material convection. 

If we put d%‘,, = dsT = 0, hence if the primary 
cell is in a rigid envelope and if no heat is supplied 
directly to the cell, the remaining terms 

d=l’= F $k dm, (3.7) 

represent the work required to transfer reversibly masses 
dmk from the supply cells to the primary cell. The 
quantity J/k is the work required to transfer a unit 
mass of substance k under the conditions described. 
Since c)3 depends only on the final state, $k is in- 
dependent of the path followed in this transfer. We 
have referred to $k as the thermobaric potential of 
the substance and the corresponding process as a 
thermobaric transfer [ 1 ] . The thermobaric potential 
may be written 

(3.8) 

The term Gil)‘ is the work required to extract rever- 
sibly a unit mass from the supply cell C,k. After ex- 
traction this mass is now outside C,k in a state 1 at 
the temperature To and in thermodynamic equilibrium 
with C,k. The unit mass is then brought reversibly to 
a state 2 at the temperature T of the primary cell and 
in thermodynamic equilibrium with it. The work re- 
quired to bring the unit mass from state 1 to state 2 
is denoted by I/$~. It includes the work ‘%$ik of 
the forces applied directly to the unit mass in combina- 
tion with the work done by a continuous sequence of 
reversible heat pumping. We write 
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2 
(2) - (2) 

G(l)k - Qql)k + s 
0 dF,, . 

1 
(3.9) 

The second term is the work of heat pumping. The 
differential dF,,pplays the same role as ds, in eq. (3.6). 
It represents the increase of entropy of a unit mass of 
substance k due to the absorption of heat provided by 
the heat pump at each infinitesimal step in the thermo- 
baric transfer. 

When the unit mass has been brought to state 2 at 

the temperature Tin thermodynamic equilibrium with 
the primary cell we inject the mass into this cell by 
reversible work. This work is represented by the terms 
$3. 

The foregoing results are quite general and are valid 
for solids and fluids. We shall evaluate the thermo- 
baric potential for the case where the pure substances 
are fluids throughout the range of temperature and 
pressures considered. In this case 

$p’ = -P&)k 9 (3.10) 

where p0 is the density of the substance at the tem- 
perature To and pressure p. of the supply cell. Note 
that l/pok represents the volume of the unit mass. 
Similarly we write 

$f)= PklPk , (3.11) 

where pk and pk are respectively the density and pres- 
sure of the substance at the temperature T and in 
equilibrium with the primary cell. The pressure is 
therefore that of the substance in equilibrium with 
the contents of the primary cell through a semipemze- 
able membrane. 

The work performed by the pressure acting on the 
unit mass of fluid from state 1 to state 2 is 

‘ 

%J”(& = - s pk d(l/Pk) a (3.12) 

Note that d(l/pk) is the volume differential of the 
unit mass. Substitution of eqs. (3.9) (3. lo), (3.11) 
and (3.12) into eq. (3.8) and integration by parts of 
eq. (3JZ)“yields 

$‘k = j ((l/Pk)dPk + e dsk). 

1 

(3.13) 

This may be written 

pkT 

$k = l ((l/Pk) dPk + 0 $4 3 (3.14) 

PO To 

indicating explicitly the initial and final states by po, 

To and pk, T. To avoid undue heaviness of notation 
we use the same symbols pk and T as in the final 
states for the variable values of pressure and density 
along the path of integration. As already pointed out 
the value of $k is independent of the path followed. 
Eq. (3.14) for J/k was derived previously by the author 

PI* 
In the present development we shall restrict our- 

selves to the case where the pure substances involved 
are fluids and the primary cell is constituted by a fluid 
mixture. The cell potential 

‘%r =v(U, T, mk) (3.15) 

is then a function of the state variables u, T, mk of 
the primary cell where u denotes its volume. The 
variables u and T play the role of qi in eqs. (3.2) (3.4) 
and (3.5). If p denotes the pressure of the fluid mixture 
in the primary cell we may write the value of dcWP, 
in eq. (3.6) as 

d%‘,, = -p du . 

Hence eq. (3.6) becomes 

(3.16) 

dCV=-pdut F J/kdi’?‘lk+6dST. (3.17) 

To evaluate V as a function of v, mk and T by inte- 
grating (3.17) we note that the result is independent 

of the path of integration. Hence we first integrate at 
constant volume (du = 0) and at constant temperature 
To(B = 0) and vary the masses injected from zero to 
mk. The value of clJr obtained is 

(3.18) 

where 

pkTo 

#k = s (l/Pk)dPk. 

POT0 

(3.19) 

We then maintain mk constant (dmk = 0) and the 
same constant temperature To(O = 0) while varying 
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the volume. During this process cl? varies by an amount 
of 

(3.20) 

where 

P = P(U> mk) (3.21) 

is a function of the volume u at constant temperature 
To and constant mk. Finally we maintain constant 

the volume u (du = 0) and mk (dmk = 0) and vary the 
temperature of the primary cell. The corresponding 
variation of c11 is 

V”(u, mk, T) = i 6 ds, = i (e/T) c dT, (3.22) 

TO TO 

where 

c=c(U,mk, T) (3.23) 

is the heat capacity of the primary cell at constant 
VOhUne u and COrMant mk as a function of the tem- 
perature. The total value of V thus obtained is 

~(U,,k,T)=c13’+~“+~“‘. (3.24) 

It is interesting to point out that ST in expression 
(3.17) is not a state variable since it does not represent 
a total entropy change and excludes the part of entropy 
change due to material convection dmk into the cell. 
It will be shown below how to express dV so that 
all the differentials are state variables. 

Definition of partial pressure: The pressure pk of 

the pure substance in thermodynamic equilibrium 
with the primary cell may be referred to as the partial 
pressure of the substance in the cell. This is purely a 
mutter of definition which has the advantage of com- 
pletely general applicability. 

Case of a solid cell: The case where the primary 

cell is composed of solid matter with pure substar!ces 
in solid solution or contained in pores has been dis- 
cussed in a concurrent paper [5] 1 

4. Collective entropy and convective potential 

Attention will now be called to an important 
concept involved in the present analysis, namely the 

collective entropy (3.4). Assuming a fluid primary 

cell, u and T play the role of qi and eq. (3.4) may be 
written 

J=&,mk, T). (4.1) 

This collective entropy J is defined as the increase 
of entropy of the collection of cells C, + zk C,k con- 
stituted by the primary cell and the set of supply cells. 
As already pointed out this collective entropy J is a 
function of the state variables u, mk and T of the 
primary cell. This is due to the fact that the state of 
the supply cells is determined entirely by the masses 
mk extracted which are exactly equal to the masses 
injected into C,. 

We may therefore speak of the collective entropy 
of the primuly cell. 

Similarly we may speak of the collective energy 
(3.2) of the primary cell. In the present case with qi 
represented by u and T we may write this collective 
energy as 

?1=q(U,mk, T). (4.2) 

Let us now examine the increase of collective en- 
tropy during a thermobaric transfer. There is no change 
of entropy during extraction of dmk from the supply 
cell since the process is reversible and adiabatic. The 
mass dmk extracted is now in state 1 at the pressure 
and temperature, po, To. During the process of bringing 
this mass to state 2 an amount of heat dh provided 
by the heat pump is injected into the mass dm, at 
every step. The temperature at each step is denoted 

by T. During a continuous sequence of steps the 
entropy of the mass dmk is increased by the amount 

2 2 

s 
T-‘dh = dm, s d$ , (4.3) 

1 1 

where d$ is the increase of entropy of u unit muss of 
the pure substance k at every step. We may put 

2 

s 
d& =$ (4.4) 

1 

and call it the specific relative entropy of substance k 
in state 2. Hence eq. (4.3) becomes 

2 

s 
T-k =$ dmk . (4.5) 

1 
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This is the increase of collective entropy of the system 
constituted by the cells C, + C,, and the mass dm, 
when the latter has been brought to state 2. 

The mass dm, in state 2 is now by definition in 
thermodynamic equilibrium with the primary cell. 
Therefore its injection by a reversible process info the 
primary cell does not change the collective entropy. 
Hence the increase of collective entropy dJ due to the 
thermobaric transfer of a mass dm, is 

dJ=Qdmk. (4.6) 

When more than one substance is injected into the 
primary cell the increase of collective entropy is 

dd=T $dmk. (4.7) 

Note that injection of the masses dm, is accomplished 
adiabatically. If we now inject an amount of heat 
d/z, directly into the primary cell the collective en- 
tropy increase due to this heat injection is 

dsT = T%, , (4.8) 

where T is now the temperature of the primary cell. 

Again d/z, is assumed to be provided by a heat pump. 
The total increase of collective entropy due to the 
injection of the masses dm, and the heat dh, is the 
sum of expressions (4.7) and (4.8) namely 

dJ= T Qdmk+dsT. (4.9) 

Using the same notation as in eq. (3.14) for states 1 
and 2 we may write the value (4.4) of S, in state 2 as 

pkT 

9 = 
s dyk , (4.10) 

POT0 

where pk and Tare the pressure and temperature of 
the pure substance in equilibrium with the primary 
cell. 

With these results we may introduce the collective 
entropy differential dJ into the value (3.17) of dV . 
From (4.9) we derive 

ds,=dJ- F$dmk. (4.11) 

Substitution of this value into eq. (3.17) yields 

d‘-V=-pdv+; &d??Zk+8d& (4.12) 

where 

@k = $k - e$ . (4.13) 

This result is the same as obtained previously [l] and 
we shall refer to f$k as the convective potential. Be- 
cause of relation (4.1) we see that the collective en- 
tropy J may replace T as a state variable. Hence with 
u, mk and d as state variables of the primary cell 

v = ?%, mk+$ (4.14) 

becomes a function of these variables. The exact dif- 
ferential (4.12) implies the following fundamental 

relations 

(aV/aU)mk,” = -P 3 ca Cll/amk)u,d = @k 2 

@WWu,,, = e . (4.15) 

They are the same as the relations obtained earlier [l] . 
The convective potential $k plays a role similar to a 
chemical potential pk while being different from it. 
It seems therefore preferable to use a different termino- 
logy for $k instead of considering it as a new defini- 
tion of pk as done in ref. [l] . We should note that 
$k in contrast with the standard procedures for pk is 
defined in a precise way by eq. (4.13) and not by 
eqs. (4.15). The latter constitutes an independent 
theorem. 

By substituting the value (3.14) of J/k into eq. 
(4.13) and taking the differential of $k we obtain 

d& = (l/&) dPk - Tk dT. (4.16) 

This can be seen to be the Gibbs function of the pure 
substance per unit mass except that in contrast with 
the standard definition the entropy Fk does not con- 

tain any undetermined constant. 
As a consequence of eq. (4.16) @k remains constant 

through a phase change at constant pressure and tem- 
perature. 

5. Heat and entropy of mixing and avoidance of 
Gibbs’ paradox 

When masses dmk are injected reversibly we have 
seen that the change of collective entropy is given by 
eq. (4.9). If the process is adiabatic 

dsT = 0 . (5.1) 
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quently the heat of mixing vanishes for perfect gasses 

hpkT = 0 . (5.12) 

Hence the entropy produced (5.8) becomes 

ds* = T [$(R,, T) -$(P, T)] dm, . (5.13) 

The relative entropy of a unit mass of perfect gas is 

$(p, T)=m,’ 
[ 

i ckptT) T-l dT - R log(?‘/pu) 

TO 

1 > 

(5.14) 

where ckp is the molar specific heat at constant pres- 
sure, 3711, is the molecular weight, and R is the uni- 
versal molar gas constant. Substitution of the entropy 
(5.,14) into (5.13) yields 

ds* = R F %,’ log(p/pk) dm, . (5.15) 

In this expression p is the total pressure of the 
mixture in the primary cell while pk is the pressure 
of a pure gas component in equilibrium with the 
mixture through a semipermeable membrane. 

We may express ds* by introducing the molar 
fraction yk of each gas in the mixture. The standard 
notation is avoided here to prevent confusion with 
Cartesian coordinates Xi used below. For a perfect 
gas mixture we may write 

P/c =PYk * 

Hence 

(5.16) 

ds* = -R F %,’ log -,k d??‘l, . (5.17) 

If we apply this to two identical gasses in equal con- 
centrations y1 = y2 = f and with the same molecular 
weight %, = 311, = ?X we find 

ds*=RVZ-110g2dm, (5.18) 

where dm is the total mass of gas added (dm = dml 
+ dm2). Hence in this case eq. (5.17) implies that the 
mixture of identical gasses by diffusion under condi- 

tions of constant pressure and temperature leads to 
an increase in entropy. The fallacy of course lies in 
the assumption of the validity of eq. (5.16) in this 
case. Since pk is defined by equilibrium through a 
semipermeable membrane application of eq. (5.16) 
to identical gasses implies that the membrane can 

act as a Maxwell demon and distinguish between two 
categories of identical molecules. 

The foregoing derivation of the paradox does not 
differ essentially from Gibbs’ original discussion 
(ref. [4] p. 166) as well as those of standard text- 
books of Rocard (ref. [6] p. 25) and Finkelstein 
(ref. [7] p. 160). All these discussions point to a hid- 
den fallacy introduced in the formulation namely that 
identical molecules may be distinguished by a physical 
process. 

6. Extension of the Gibbs-Duhem theorem 

In the foregoing development we have assumed that 
mk represent masses of the pure substances added to a 
primary cell without specifying the initial contents of 

cell. We shall now assume that the cell is constituted 
exclusively by a fluid mixture of the pure substances 
and that mk denotes the total mass of each substance 
in the cell. Following a procedure already originated 
by Gibbs (ref. [4] p. 87) we start with a cell of vanish- 
ing volume with given values of the pressure p tem- 
perature T and concentrations: 

ck = mk/F mk . (6.1) 

We maintain constant p, 19, C k while we inject masses 
into the cell by thermobaric transfer. Under these 
conditions the partial pressures pk and the specific 
relative entropies $ of the pure substances remain 
COnStark Hence the convective potentials #k also 
remain constant. With these constant values we inte- 
grate expression (4.12) putting v = & = b = mk = 0 
in the initial state of zero mass. This yields 

(6.2) 

Since we start with arbitrary values of p, @k and 0 
this expression for v is quite general and is valid for 
arbitrary values of u, mk and J. 

An important consequence of this result is ob- 
tained by differentiating eq. (6.2) i.e. 

d33=-pdv-vdpt F &dmk 

(6.3) 
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If the, nonpotential forces perform no work (IV;, = 0) 
we derive the important relation 

Y’= -T,,S' . (7.10) 

In the equilibrium state variations which satisfy the 
required constraints produce no entropy. Hence the 
equilibrium condition is 

6’9 =.6S’ = 0. (7.11) 

In the vicinity of equilibrium the increase of ‘P is 

A3’= -T,AS’. (7.12) 

Since the entropy produced AS’ is positive, ATmust 
be negative and the system is in unstable equilibrium. 
On the other hand, if A 3’is positive in the vicinity of 
equilibrium the deviation cannot occur and the equi- 
librium is stable. 

We have considered a finite number of primary 
cells, however we may consider a continuous primary 
system. The primary cells are then infinitesimal and 
the summation in eq. (7.2) is replaced by a volume 
integral. The collective potential is 

V=J=C’d.Q, 

n 

(7.13) 

where da = dx, dx,dx, is the volume element with 
Cartesian coordinates Xi and 31 is the local cell poten- 
tial per unit volume. The value of G is 

G= p$‘d& 
s 
Cl 

(7.14) 

where p is the mass per unit volume and G(Xi), a 
function of the coordinates, is a body force potential 
per unit mass. We assume the outlets of the supply 
cells to be located on the equipotential surface 9 = 0. 
The generalized collective potential (7.7) is 

3’= (=Ptp$j’)da. s 
CZ 

(7.15) 

We assume that this continuous medium is contained 
in a rigid adiabatic vessel. Introducing expression 
(4.12) for 6v the equilibrium condition is 

+p6Q +$j’6p 
J 

da==, (7.16) 

where 6mk are the variations of the masses of various 
substances per unit volume, hence also 

6p= TSmk. (7.17) 

Eq. (7.16) must be valid for arbitrary variations. Let 
us first vary the volume putting 6mk = 6J = 0. The 
volume variation is 

6V = C (a/ax,) 6Ui ) 
i 

(7.18) 

where 6Ui are arbitrary material displacements. Also 

i 
(7.19) 

Substitution of eqs. (7.18) and (7.19) in eq. (7.16) 
yields after integration by parts 

p-l aplaXi + ag laxi = 0 , (7.20) 

which is an obvious static equilibrium condition. We 
now vary mk and J and put 6v =-0 with the con- 
straints 

j&?ZkdR=j8ddR=0, (7.21) 

s2 52 

which express mass conservation and no variation of 
the total entropy. These constraints are verified iden- 
tically if we put 

6mk = C (a/ax,)8E~ , 
i 

6J = z (a/axi)6Fi, (7.22) 
i 

where SEik and SF; are arbitrary vectors with zero 

normal components at the boundary of a. Substitu- 
tion of expressions (7.22) into (7.16) yields after 

integration by parts 

(a/&i) (4k t 9) = 0 , ae/axi = 0 . (7.23) 

Hence at equilibrium $k t $j’ and the temperature T 
are constant throughout the domain a. From eq. (4.16) 
with aT/axi = 0 we derive 

a@&& = (l/Pk) @&xi . (7.24) 

Hence from (7.23) 

(l/&) a&/&$ + @/axi = 0 . (7.25) 

Thus we conclude that the partial pressure gradients 
of each substance in the mixture is the same as if the 
pure substance were alone in the potential field 9 
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with a suitable choice of average density. Partial pres- 
sures are therefore constant on equipotential surfaces. 
This result is completely general and does require the 
substances to be perfect gasses. If there is no body 
force field ( 9 = 0) the partial and total pressures are 
uniform throughout. 

8. Comparison with Gibbs’ work and standard 
potentials 

At this point some comparison is in order with the 
classical concepts and methods introduced by Gibbs. 
He starts with an expression which in his notation 
(ref. [4] p. 63) is written 

de=Tdq-pdv+ F pkdnzk. (8.1) 

He calls E the energy of an open homogeneous cell at 
the temperature T, pressures p, volume v and entropy 
n while dm, are the masses of the various pure sub- 
stances added to it. Gibbs’ chemical potentials pk are 
then by definition the differential coefficients of 

drn, in eq. (8.1) which is known as the Gibbs equation. 
The value of pk is thus obtained by evaluating de for 
da = dv = 0. According to Gibbs’ statement (ref. [4] 
p. 9.5) this is accomplished by bringing into the pri- 
mary cell a unit mass of the pure substance from a 
initial state by a reversible process and the mechanical 
work in this process is equal to pk. Upon completion 
of the process all masses involved except the primary 
cell are returned to their original states. The original 
entropy of the added mass is chosen to be zero and 
the process being reversible no change in entropy n 
occurs by the addition of the substance to the primary 
cell. 

The difference with our procedure is immediately 
evident. Elimination of V between eqs. (3.5) and 
(4.12) for an open primary cell yields 

dU=TdJ-pdvt F &dmk. 03.2) 

While similar to Gibbs’ eq. (8.1) its significance is 
fundamentally different. In the first place ?( and d 

are the collective energy and entropy of the combined 
set of primary and supply cells. They are given a pre- 
cise definition within the framework of classical 
thermodynamics for closed systems since no matter 

is added to the system. In addition the convective 
potentials @k are defined independently from eq. (8.2) 
by eq. (4.13) based on the concept of a thermobaric 
potential. Hence eq. (8.2) in contrast with eq. (8.1) 
does not define & but constitutes a theorem. Also 
in contrast with Gibbs’ procedure the supply cells do 
not return to their initial states after the mass transfer 
is completed and the work of extraction from the 
supply cells is taken into account in the collective 
energy Zc . Another fundamental difference is brought 
out by eq. (4.9) for the entropy differential dd which 
shows that it is not independent of dm,. It contains 
a term IZk Sk dm, which represents the increase of 
entropy of the primary cell due to Convection, so that 
a reversible transfer of masses does not imply d ccj = 0. 
This point was completely overlooked by Gibbs. 

There is also the question of indeterminacy of 
& which contains an arbitrary constant for each sub- 
stance. This point was recognized by Gibbs’ himself 
(ref. [4] p. 96). The difficulty has remained until 
today as pointed out in standard textbooks. For ex- 
ample, Hatsopoulous and Keenan (ref. [2] p. 278) 
state that a characteristic of the chemical potential 
is its indeterminateness for a change in temperature, 
so that changes in chemical potential are determined 
experimentally only at constant temperature. Prigogine 
and Defay (ref. [8] p. 66) bypass these difficulties by 
“presuming” that the energy and entropy of an open 
cell may be expressed in terms of the masses added 
using statistical concepts when needed. In our defini- 
tion of the convective potentials @k in the context of 
a given hypersystem no indeterminacy occurs. 

Note that we may derive a function analogous to 
Gibbs free energy for a primary cell by putting 

9=Vtpv-J6. (8.3) 

From the value (3.5) of 33 we derive 

9=%-TJtpv, (8.4) 

where v is the volume of the cell. This expression 
differs from the standard potential by the fact that 

U and d are the collective energy and entropy and 

do not involve any indeterminacy due to arbitrary 
constants. 

9. Application to chemical reactions 

The concept of thermobaric transfer may be ap- 
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plied to analyse the case where a chemical reaction 
occurs in the primary cell. New formulas for the 
affinity and the heat of reaction are obtained. Although 
already presented earlier [l] these formulas were 
derived by a slightly different reasoning. The method 
presented here evaluates the entropy produced by 
the chemical reaction entirely within the framework 
of classical thermodynamics and without any recourse 
to statistical mechanics. 

Consider a reaction occurring in a primary cell. The 

masses of the various reactants “produced” by the 
reaction are 

dm,=+d$, (9.1) 

where g is the reaction coordinate. Conservation of 
mass requires the condition 

FVk =o. 

Hence some terms are negative. For convenience if 
d.$ > 0 we shall call dm, the masses “produced” 
whether they are positive or negative. In order to ex- 
tend the concept of collective potential to this case 
we consider a hypersystem constituted by a primary 
cell C,, a thermal well TW and a reference chemical 
cell C, (fig. 4). The cell C, is a large rigid reservoir 
at the pressure p’ and temperature T’, where the re- 
acting substances are in chemical equilibrium. It is 
large enough so that a chemical reaction does not 
affect significantly the total pressure p, the tempera- 
ture T or the partial pressures pi of the pure sub- 
stances in the cell. 

We shall also need a new definition of the heat of 
reaction already introduced earlier [l] . Consider a 
reaction d[ occuring in a rigid primary cell and let us 
remove the products of reaction so that the compo- 
sition of the cell does not change. At the same time 

q T 

Fig. 4. Hypersystem constituted by a primary cell Cp a refer- 
ence chemical cell C,h at the temperature 7” and a thermal 
well TW. 

we maintain a constant temperature by providing heat 
to the cell. As a consequence the total pressure also 
remains constant. Under these conditions the heat 
provided to the cell is denoted by 

h,, dg > (9.3) 

where hpT will be called the intrinsic heat of reaction 
at constant pressure and temperature. It excludes the 
heat of mixing. The standard heat of reactions is 

(9.4) 

where h& is the heat of mixing as defined by eq. (5.2). 
The intrinsic heat of reaction &T is more represen- 

tative of the true chemical energy than h,, since it 
does not involve the heat of mixing. 

We now assume a forward reaction de in the chemi- 
cal cell C,.n and a simultaneous backward reaction 
-dl in the primary cell C,. The products of reaction 
of masses vk d{ are extracted from C,_n and injected 
into Cp by thermobaric transfer. At the same time 
using heat pumps amounts of heat i;‘T’ dg and 
-?$,pT d[ are fed into C& and Cp respectively. We 
denote by j$,lT’ the heat of reaction in Cc, and by 
EppT the heat of reaction in C,. Under these conditions 
the composition temperature and pressure of the cells 
CP and Ceh remain constant. Hence the collective 
energy U does not vary. This is expressed by 

dU = (g;T’ - zpT) dt 

(9.5) 

The first term in the integration represents the work 
done on the masses transferred, while the second 
term is the heat injected into these masses. In the 
integrand pk and Tare the variable pressure and tem- 
perature of the masses being transferred while in the 
upper limit they represent the partial pressures and the 
temperature in C,. In the lower limit ok and T’ are 

the partial pressures and temperature in the reference 
chemical cell C&. From eq. (9.5) we derive 

pkT 

EpT - j&f = 7 Vk /- @Pk/Pk + Tdyk). (9.6) 

PIT’ 
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This new and very general expression for the intrinsic 
heat of reaction was already obtained earlier [l] . Note 
that its validity does not require the reference chemical 
cell to be in equilibrium. 

If we perform the same mass and heat transport 
process after freezing the reaction in C,, the injection 
of heat --EpT dt and masses Vk dl induces a change 
of state in C, which is the same as if the chemical 
reaction has taken place in the rigid cell without any 
addition of mass or heat from outside the cell. Also 
the state of the chemical cell C, remains unchanged. 
Furthermore since the chemical cell C, is assumed to 
be in equilibrium, this modified transport process be- 
comes a reversibl_e transformation thermodynamically 
equivalent to the chemical reaction. The increase of 
the collective potential dv in this process according 
to our definition of section 3 is the associated revers- 
ible work on the hypersystem by applied forces and 
heat pumps. According to eq. (3.17) with du = 0, this 
reversible work is 

pkT 

dQ’ = d$ F Vk 1 (dpkjpk + 8 d$) 

PAT’ 

t (e’~;p,*/~- BhpT/T)dg, (9.7) 

where 0 = T - T,, and 8’ = T’ - TO. By rearran’ging 
the terms and taking into account eq. (9.6) we may 

write 

d‘l9 = -(TO/T) A d$ , 

where 

(9.8) 

The quantity (A/T) d[ is obviously the increase of col- 
lective entropy in the modified reversible transport 
process. Hence it is also the entropy produced when 
an irreversible chemical reaction dt occurs in a rigid 
isolated primary cell. We may call A the affinity of 
the reaction since this is compatible with the defini- 
tion introduced by de Donder [9]. However, in the 
present case a new formula (9.9) is obtained for A as 
already derived previously [I] . (Note the misprint 
in eq. (7.23) of ref. [l]). Expression (9.9) fo’r the 

affinity and entropy produced involves only 
mechanical and calorimetric concepts and does not 

make any use of statistical concepts as in the standard 
procedures. 

Elimination of EppT between relations (9.6) and 

(9.9) yields 

PIT P/J 

A = T V,T 1 d$ - T Vk s (d&l& + Td$) 

PIT’ P$+ 

+ (T/T’- 1) Eptp’T’ , (9.10) 

which may be compared with the expression given by 
Prigogine and Defay (ref. [8] p. 50 eq. (4.17)) which 
is less general and valid only when the temperature is 
varied. 

Denoting the entropy produced by 

dJ, = (A/T) d4‘ , (9.11) 

we may write eq. (9.8) in the forrr 

dv=-Adt+OdJch. (9.12) 

For a frozen chemical reaction the increase of the 

collective potential (4.12) is given by 

d% -pdvt F $kdMk+f?d&, (9.13) 

where dMk now represent masses which do not partici- 
pate in the reaction and are injected into the primary 
cell from the outside by thermobaric transfer. The 
total increase of masses due to those acquired by con- 
vection and by the chemical reaction is 

dQ=Vkd$+dMk. (9.14) 

The total increase in the collective cell potential is 
obtained by adding expressions (9.12) and (9.13). We 
obtain 

dc23=-Adg-pdvt T &,dMk+ed& (9.15) 

where the collective entropy increase of the cell is 

d3 =dJ, +dJ’=AT-ldg+ p ykk’+dST. 

(9.16) 

10. Classical results for reacting perfect gasses 

For mixtures of perfect gasses we shall obtain a 
new very simple derivation of classical results. The 
equation of state of the pure substance is 
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pk=pkRwklT, (10.1) 

where VXk is the molecular weight and R the universal 
molar gas constant. From (5.14) the entropy differen- 
tial is 

d$ = 7X,’ [ckp(T) T-‘dT - (R/pk)dpk] , (10.2) 

where ckp is the molar specific heat at constant pres- 
sure. Combining (10.1) and (10.2) we derive 

dp,& + TdQ = %,$cpk(T)dT. (10.3) 

For perfect gasses the heat of mixture vanishes, hence 

h,T = $T . (10.4) 

The heat of reaction is the same and equal to the 
standard definition whether we remove or not the 
products of reaction. Substitution of expressions 
(10.3) and (10.4) into (9.6) yields 

h PT - hbc,l= T v;, ; ckp(T)dT, (10.5) 

T’ 

where 

vi = VkVIQ (10.6) 

are the stoichiometric coefficients. Eq. (10.5) coincides 
with the classical Kirchhoff relation wheriapplied to 
perfect gasses. 

By substituting expression (10.2) and (10.3) into 
the value (9.10) of the affinity we obtain 

I, , 
A = RT log[K(T)/p;‘py . . . p& , (10.7) 

where we have put 

RTlogK(T) = 

T F vi ;ckp(T)T-‘dT- T vi jckp(T)dT 
T’ 1 

-, 

+ RT c v; logp;, + (T/T’ - 1) h;lTl . (10.8) 
k 

For a given reference chemical cell, K(T) thus defined 
is a function only of the temperature T. 

For chemical equilibrium the entropy production 
must vanish, hence A = 0. In this case eq. (10.7) yields 

p;‘p? . . . p$ = K(T), (10.9) 

where K(T) is the’equilibrium constant. 
For a mixture of prefect gasses the partial pressures 

Pk are 

Pk =PYk 3 (10.10) 

where p is the total pressure of the mixture and yk 
are the molar fractions. Hence eq. (10.9) becomes 

, I 
p-“K(T) = r’;l$ . . . yik ) (10.11) 

where v’ = zk vi. Eq. (10.11) expresses the law of 
Guldberg and Waage for chemical equilibrium. 

Another classical result is obtained by taking the 
derivative of eq. (10.8) with respect to the tempera- 
ture after dividing the equation by T. Taking into 
account Kirchhoffs relation (10.5) we obtain 

(d/dT) log K(T) = hpT/RT2 . (10.12) 

This is the classical van ‘t Hoff relation. 

11. Generalized van’t Hoff-le Chatelier principle 

The problem of displacement of chemical equili- 
brium of an open cell under variations of pressure, 
temperature and masses injected is immediately 
resolved using the foregoing results. We consider the 
state of the open cell to be defined by its pressure p, 
its temperature T, the reaction variable g and the 
masses Mk of.substances injected. Partial derivatives 
with respect to any of these variables imply that the 
other three remain constant. The entropy produced 
by the reaction is 

t 
s* =T-’ Adg, 

s 
(11.1) 

50 

where &-, is the value of [ at equilibrium (A = 0). To 
the second order eq. (11 .l) may be written 

s* = ;T-‘([ - &)2aA/al. (11.2) 

Stability requires that the entropy produced decreases 
for any departure from equilibrium, hence 

aA/ag < 0 . (11.3) 

Since A is a function of p, T, &’ and Mk, maintaining 
equilibrium requires. 

&l=$$lpt~dTta$d~t c g&kfk=O. 
k ati (11.4) 
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By adding d(pv - 0~3) to eq. (9.15) we obtain the volume, is exothermic and increases the convective 

exact differential potential @k of the particular substance injected. 

d(Vtpu-OJ)=udp-JdT-AdE+T @&I$. 
(11.5) 

This implies 

This constitutes a generalized form of the van? 

Hoff-le Chatelier principle for open systems in terms 
of the new convective potential. The simplicity and 
generality of the present derivation must be compared 
with the more restricted form of the principle as 
treated in standard textbooks (e.g. see [8] p. 271). 

a_4 au aA ad aA aGk 
_=_.--) -=-) -_=_-. 

ap at aT at aMk at (11.6) 

Also be definition 

adlag = h,,lT 3 (11.7) 

where h,, is the standard heat of reaction at constant 
pressure and temperature. With the values (11.6) and 
(11.7) eq. (11.4) becomes 

a@k 
$$dg=$dp-%dTt &$M”. (11.8) 

Consider the case where we increase the pressure p, 

the temperature T, and the masses injected Mk either 
separately or simultaneously, i.e. we put 

dp>O, dT>O, dMkS=O. (11.9) 

Since ZL?l/a~ < 0 the reaction will regress (dt < 0) if 

aV/a.$>o, -h,+o, a&/at>o, (11.10) 

hence if the forward reaction’ increases the 
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