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SUMMARY 

A GENERAL principle of virtual dissipation in irreversible thermodynamics is applied to a solid under 
initial stress with small non-isothermal incremental deformations and coupled thermomolecular 
diffusion and chemical reactions. Dynamical field and Lagrangian equations are obtained directly 
by variational procedures. In addition, the treatment embodies new fundamental concepts and 
methods in the thermodynamics of open systems and thermochemistry. The new concept of ‘thermo- 
baric potential’ is briefly outlined. The theory is also applicable to porous solids with ‘diffusion- 
like’ behaviour of pore-fluid mixtures. General validity of viscoelastic correspondence for chemical 
or other relaxation processes with internal coordinates is indicated in acoustic propagation and seismic 
problems. 

1. INTRODUCTION 

VARIATIONAL principles and a corresponding Lagrangian approach to irreversible 
thermodynamics (BIOT, 1954, 1955) were originally developed in the linear context. 
This includes the particular case of a continuum under initial stress as treated 
extensively by the writer in a monograph (BIOT, 1965). Our purpose here is to extend 
the theory to an initially-stressed continuum including heat conduction, molecular 
diffusion of various substances in solution in the solid, and multiple chemical 
reactions. 

The variational principle which actually constitutes a generalization of 
d’Alembert’s principle to irreversible thermodynamics is also applicable to non-linear 
systems as shown more recently (BIOT, 1975, 1976b). It achieves a synthesis between 
thermodynamics and classical mechanics. However, in the present theory it will be 
sufficient to use the principle in its earlier form in the linear context. 

The formulation of the variational principle introduced a non-classical 
‘collective potential’ which has been used repeatedly in many applications, including 
the treatment of piezoelectric crystals (MINDLIN, 1961, 1974). 

The problems cited above did not involve molecular diffusion or chemical 
reactions. In order to deal with these problems, a new concept was developed, 
referred to as the ‘Thermobaric potential’ (BIOT, 1976a). Its derivation is briefly 
outlined in Section 3. 
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The concepts of incremental strain with local rotation, incremental stress and 
collective potential for a continuum initially in thermodynamic equilibrium under 
initial stress are developed in Sections 4, 5 and 6. In the definition of strain, attention 
is called to the importance of separating the deformation from the rotation and to a 
non-tensorial definition. The entropy production based on ONSAGER’S (1931) principle 
is evaluated in Section 7 for coupled thermomolecular diffusion. 

The field equations are derived directly from the variational principle in Section 8. 
The differential equations obtained are completely general and govern the dynamics 
of the small perturbations of a continuum under initial stress with thermomolecular 
diffusion and in the presence of a potential body force field. They constitute a new 
result. Derivation of such equations directly from a single physical and general 
variational principle is in contrast with current procedures which generally require 
a knowledge of the differential field equations in order to establish the variational 
properties in each case. 

Lagrangian equations with generalized coordinates are obtained also directly 
from the variational principle in Section 9. The generalized boundary driving forces 
are of mixed mechanical and thermodynamic nature. Basic reciprocity relations are 
implicit in these equations valid for all kinds of systems and boundary conditions. 
They constitute a general law for all linear thermodynamic systems and do not 
require a special derivation for each particular problem, as wrongly assumed by 
many workers. 

The results are generalized to include chemical reactions in Section 10 which 
embodies a new treatment of physical chemistry and of the chemical affinity (BIOT, 
1976aJ977). The acoustic propagation is discussed in Section 11 from the view- 
point of internal coordinates with chemical or other relaxation effects such as micro- 
phase changes. A generalized form of the principle of viscoelastic correspondence 
is formulated. 

Wave propagation in solids with chemical reactions has been treated by 
NUNZIATO (1973) without initial stress and diffusion and by a more traditional type 
of chemical thermodynamics. 

Attention is called to the applicability of the present theory to porous solids in 
those cases where the diffusion of a fluid mixture through the pores behaves as a 
molecular diffusion. 

2. COLLECTIVE POTENTIAL OF A CELL 

Consider a homogeneous element which is initially a unit cube under the initial 
stresses S,. With cube edges along Cartesian axes, Sij are the force components 
acting on the faces. The cube is at uniform temperature. This solid element will be 
called a primary cell C,. We shall assume that it may‘lose or acquire matter in the 
form of pure substances in solution. Hence it is an open thermodynamic system. 
A new approach to such systems has recently been developed which we shall briefly 
outline here. 

We adjoin to the primary cell a set of large rigid supply cells C,, each containing a 
pure substance k. The supply cells are all at the same pressurep, and temperature To. 
As shown earlier (BIOT, 1976a, 1977), the choice of the same pressure and temperature 
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for all supply cells is required to avoid the Gibbs paradox. We also adjoin a large 
isothermal reservoir at the temperature To which we have called a thermal well. 

The system constituted by the primary cell C,, the supply cells i Csk, and the thermal 
well has been called a hypersystem. 

This hypersystem is now assumed to undergo a reversible transformation pro- 
duced by external forces. In this transformation, heat and matter are transported 
reversibly within the hypersystem. No heat or matter are exchanged with the 
environment. The work performed on the system includes the work of reversible 
heat pumps to transfer heat between cells at different temperatures. We denote 
by i the-total reversible work on the hypersystem. 
dynamics yields the relation 

V=@+HO, 

where % is the internal energy of the system of cells 
energy acquired by the thermal well. 

The first principle of thermo- 

(2.1) 

CP + 5 C,, and Ho is the heat 

An important property of V is obtained by considering that the transformation 
is reversible; and hence the total entropy of the hypersystem remains unchanged 
and may be put equal to zero. We write 

Y +H,/T, = 0, (2.2) 

where Y is the collective entropy of the system C, + i C,,. Elimination of HO 

between (2.1) and (2.2) yields 

V=@-T,Y. (2.3) 

The state variables of the supply cells are the masses mk of the various substances 
extracted from these cells and transferred to the primary cell. Since the mk are also 
part of the state variables of the primary cells, the latter completely determine the 
values of % and 9’. Hence, V is a function only of the state variables of the primary 
cell. It is therefore possible to refer to V, 9 and Y as the collective potential, 
collective energy and collective entropy of the primary cell C,. 

3. THERMOBARIC POTENTIAL: A NEW CONCEPT 

In its initial state, the cell C,, is assumed to be a cube of unit size. The deformation 
is homogeneous and defined by six independent variables Eij = Eji which are not 
necessarily tensor components. Their definition will be discussed in Section 4. The 
corresponding itress components 2ij = Zij are defined by the work Zij deij accom- 
plished in obtaining any arbitrary strain differential. Assume that the cell undergoes 
such a differential deformation, while masses dm, are injected reversibly into it and 
a differential amount of heat is absorbed. This change being accomplished reversibly, 
the concentrations of the pure substances and the temperature T of the cell are 
assumed to remain uniform. By definition, the increase in the collective cell potential 
is 

(3.1) 
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0 = T-T,, d+=dh/T,,. (3.2) 

In equation (3.1) and all subsequent ones we drop the summation sign for indices 
except those of mk. 

The term 8 dsT is the work required by a heat pump extracting heat at the 
temperature TO from the therma well and injecting an amount d/r in the primary 
cell at the temperature T. 

The quantity & represents the reversible work required to extract a unit mass of 
substance k from the supply cell C,, to bring it into thermodynamic equilibrium at 
pressure pk and temperature T with the primary cell C,, and to inject this mass into 
the primary cell. We have called & the thermobaric potential, and referred to the 
mass transport as a thermobaric transfer. Although this definition is quite general, 
we shall assume that the pure substances are fluids. In this case, pk is the pressure 
of the substance in equilibrium with the primary cell through a semi-permeable 
membrane. By definition, we have called pk the partial pressure of the pure substance 
in the primary cell. The value of I/Q obtained earlier (BIOT, 1976a,1977) is 

hb., T) = ‘rT dpk 
POT0 k +ed4y 

(3.3) 

where ~6~ is the entropy differential of a unit mass of pure substance. The first term 
represents the work accomplished during thermobaric transfer by the varying 
pressure pk acting on the fluid at various corresponding densities pk. This is verified 
by integration by parts of this term\ which yields three terms and bring out the work 
of extraction from C,k and injection into C,. The term 8 dS, is the work accomplished 
by the heat pumps at every step for each intermediate temperature 13. The integral 
(3.3) is independent of the path of integration. The entropy of a unit mass of pure 
substance k in equilibrium with the primary cell is 

P*T 

s, = j dd,. 
POTO 

(3.4) 

We shall call Sk the spec$c relative entropy of the pure substance in the primary 
cell. 

Injecting into the primary cell, the mass dm, in equilibrium with it does not 
produce any entropy. Hence, the increase of collective entropy of the primary cell is 

dY = i Sk dm, + dsT, (3.5) 

where the first term is due to convection and dsT is due to heat conduction. 

4. INCRE~~ENTAL STRAIN 

The definition of stress by means of the virtual work ~ij BE+ is quite general and 
&ij may be Green’s strain tensor. However, in problems of incremental stresses, it is 
essential to avoid spurious complications which arise from the use of Green’s tensor. 
This is accomplished by using a definition of strain introduced by the writer in 1939 
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In equation (4.7,) read 

rlll = Ml. 

On the second line after equation (5.4) read 

Since Eij, mk and Y are state variables, . . . . 

In equation (6.15) replace 

5 ~(5iVmk by i 4~(4hl~ 

Equations (6.16) should read 

age(gi) ag(xi) s .u 
agi --= axi iJ j3 Y(li) = YiUi+Q(Xi). 

In equation (6.18) replace 

k 

imkUi b 1 gi WkUi). 

In equation (7.9), replace 

In equation (8.6), replace 

PiiiSui by 6Ui. 

In equation (8.9), replace 

Shk: by 6M;. 

In equation (11.6,), read 

t?ij=~($+~). 
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and developed extensively in a book (BIOT, 1965). In this definition, we start with a 
linear transformation of coordinates 

[i = (Sij+Eij)Xj (4.1) 

with six independent coefficients &ii = sji which are chosen to represent the finite 
strain. The linear transformation (4.1) is then followed by a solid rotation and the 
resultant, total transformation becomes 

<i = (6, +Uij)xj. (4.2) 

The cij’s are funcuons of the nine coefficients aij. To the second order, we have 
shown 

Qj = %j + rlij, (4.3) 
where 

?u = 3(ekjcO,i+eki@kj+~ki~kj) (4.4) 
and 

eij = tlaij + aj3~ Oij = 3(Uij_Uji). (4.5) 

Actually, the procedure is general and yields &ij to any order. 
As pointed out (BIOT, 1965, p. VII and 1973, p. 483) this definition is quite 

flexible and not unique. For example, in two dimensions we may start from the 
linear transformation 

and choose the three coefficients .EQ 1, Q*, cl2 = &21 as non-tensorial components of 
strain. To the second order, it has been shown (BIOT, 1974) that sij is given by (4.3) 
with 

?ll = 39 fib2 = --3a21(%2 +a2A 

r12 = rt21 = 3a2&22-%). > 
(4.7) 

Similar non-tensorial definitions may be obtained in three dimensions (BIOT, 
1973). 

This leads also to the non-tensorial concept of slide modulus which is essential 
in the theory of initially-stressed media (BIOT, 1965)-a point which seems to have 
been overlooked in the current literature. 

When dealing with a non-homogeneous deformation the transformation (4.2) 
is replaced by a linear transformation between differentials dEi and dx, and the 
coefficients Uij become 

Uij = aui/axj, (4.8) 

where ui = gi- xi is the displacement field, and xi are the initial coordinates. 

5. INCREMENTAL CELL POTENTIAL 

A unit cube element of the solid under initial stress Sij at the temperature To is 
subjected to small perturbations, represented by small strains &ii, small increases 

20 
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mk of masses in solution, and a small increase in temperature 8. We put 

Tjj = Sij + tij, J/k = hx+Ah (5-l) 

where tij is the incremental stress per unit initial area and referred to locally rotated 
axes. Also, 

(5.2) 

is the value of $k in the initial state, where Pek is the partial pressure of substance k 
in this state. To the first order, we also write 

A’h = p;kJ;o z 
Again, if we neglect second-order quantities, then 

k 

(5.3) 

(3.5) becomes 

9 = c iOkmk+sT9 (5.4) 

where & is the initial relative specific entropy and sr is the increase of entropy due 
to the heat supplied by conduction. Since Eij, mk and J,+ are state variables, (5.4) 
leads to the important conclusion that Eij, mk and sT may be chosen LZ state variables. 
The fact that sr is now a state variable leads to considerable simplification. This 
is a consequence of the linearization and is not true in the non-linear theory. 

For convenience, we shall drop the word ‘collective’ to designate the cell 
potential V. With the values (5.1) for Zij and $k, its differential (3.1) becomes 

dV = dv + S,j d&, + i J/Ok dmk, 

where 

dv = tij deij + f A$k dmk + 8 ds,. 

(5.5) 

(5.6) 

In the linearized theory, we need evaluate Icr only to the second order. Hence, in 
the value of v we have replaced tii d&ii by tij de,. Although Y appears to represent 
an incremental potential this is not a true local concept. Actually, it is preferable 
to refer to v as the local incremental potential. This will be justified in Section 6 
by showing that v embodies true local properties. If the material is locally stable, 
physically this leads to the important conclusion that v is positive dejinite. Equations 
(5.5) and (5.6) generalize the expression derived earlier in the purely thermoelastic 
context (BIOT, 1973). The incremental cell potential v is a quadratic function of the 
state variables eij, mk and sr with the properties 

av a0 
de,j = tip 

- = A$k, am, 
5 = 0. 

T 
(5.7) 

Since the value of v is independent of the path of integration, it is convenient to 
integrate (5.6) first at constant temperature (6 = 0). This yields a value of v 
at 0 = 0, viz. 

(5.8) 
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with the properties 
C.Y~= C’tr = C?? = @ 

c;; = ci; ;k, = 6:. 
> 

(5.9) 

We then integrate (5.6) by varying the temperature with deij = dm, = 0. Since 
dsT = (c/T,) dtJ, we derive 

_ 1 ce2 

v=v+~X’ 
(5.10) 

where c is the heat capacity of the cell per unit volume for de, = dmk = 0. Hence, 
by neglecting higher order quantities, c is the heat capacity in the initial state 

(e, = mk = I9 = 0). 
We may also express sr to the first order as 

STTo = Yijf?ij + i hkmk + CO. (5.11) 

The coefficient Yij = Yji is the heat absorbed at constant composition and tem- 
perature (mk = 19 = 0) per unit strain e,j. The coefficient h” is the heat absorbed 
when a unit mass of mk is injected reversibly at eij = 8 = 0. Solving (5.11) for 6 
and substituting into (5.10) yields v as a quadratic form in eii, mk and sr. We then 
obtain tij, A$k and 0 as linear functions of eij, mk and sr by applying (5.7). 

A physical interpretation of the coefficients in expression (5.8) is easily obtained. 
For mk = 0, we have 

t.. = CYe U *J PO’ (5.12) 

Hence, Cr; are the incremental elastic coefficients at constant composition and tem- 
perature (mk = 0 = 0). Also, at constant temperature (0 = 0) we derive 

(5.13) 

where pOk is the density of the pure substance at the initial temperature To and 
partial pressure pok. Hence, the coefficients on the right-hand side may be interpreted 
in terms of increments of partial pressure pk-pok. 

6. COLLECTIVE POTENTIAL OF AN INITIALLY STRESSED CONTINUUM. 
EQUILIBRIUM CONDITION 

An important property of the collective potential is additivity. Hence, for a 
finite continuum occupying an initial domain R, its collective potential is 

where di2 = dxl dx2 dxg is the volume element in the initial coordinates xi. The 
displacement field of the solid is ui = <,- xi and V is the local cell potential per unit 
volume. The collective energy and entropy of the system are 

U=j%dQ, S=jcY’ddn, (6.2) 
n cl 

where % and 9’ are the collective energy and entropy per unit initial volume as 
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defined in Section 2 to include the contribution of the supply cells. From (2.3), 
(6.1) and (6.2), we derive 

V = U-T,S. (6.3) 

If heat and matter are exchanged only within the continuum, then the supply cells 
remain unchanged. Conservation of energy requires 

u = w, (6.4) 

where W is the work performed by external forces on the continuum. With this 
value for U, equation (6.3) becomes 

V-W =-ToS’. (6.5) 

We have written S’ instead of S because it now represents the total entropy produced 
in the continuum. This relation is the same us derived earlier (BIOT, 1955). In 
differential or variational form, equation (6.5) is written 

6V-6W = -TO&S. (6.6) 

If the continuum lies in a potential body force field, such as gravity, then we may 
write the variational equation (6.6) as 

6(V+G)-6W’ =-T&S’, (6.7) 

where G is the potential energy in the body force field and W’ is the work performed 
by other forces. The potential energy G is 

G = J(P + k m) %tJ da. 

In this expression, p is the density at the initial point xi in the initial state, m, are 
the masses added per unit initial volume at the displaced point ri, and I is the 
body force potential per unit mass at the displaced point gi. 

We shall now transform the variational equation (6.7) taking into account the 
initial equilibrium of the continuum. This is expressed by stating that there is no 
virtual production of entropy (SS = 0) for variations with suitable conservation 
constraints on the variables Ui, mk and sr in the initial state. 

Since 6v = 0 in the initial state, the variation 6V derived from (5.5) and (6.1) 
becomes 

Also, around the equilibrium state, the variation 6G is 

(6.9) 

(6.10) 

The virtual work of the tractions fi applied at the boundary A in the initial state is 

6 Wk, = S fi 6Ui dA. (6.11) 
A 

The equilibrium condition in the initial state is obtained by putting 6s’ = 0 in (6.7). 
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With the values (6.9), (6.10) and (6.11) for 6 Ves, 6G,, and SW& this condition is 

6V,,+6G,,-&Vb, = 0. (6.12) 

By subtracting (6.12) from (6.7) we obtain 

6 S (~+Sii~ij) d~++6G_6G,,-6~i” = -T, 6s’, (6.13) 
n 

where 

6Wi,=6W’-Sfi6uidA (6.14) 
A 

is the work of incremental forces. The variational equation (6.13) now applies to 
non-equilibrium conditions. We may write the value of 6G more explicitly as 

To the first order, we write 

(6.15) 

(6.16) 

with 

Hence, 

B = a29(xi) g = as(xi> 

ii aX,aXj' ’ aXi ’ 
(6.17) 

(6.18) 

By introducing this value into (6.13) we obtain the variational relation 

S~-SWi, = -To 6S’, 
where 

(6.19) 

(6.20) 

As mentioned previously, the incremental potential v represents a local thermo- 
dynamic property since the other terms are either due to the body force field or can 
be made to vanish locally (vii = 0) by a suitable rotation of the coordinate axes. 

Expression (6.20) for the collective potential of an initially-stressed system is a 
generalization of expressions derived earlier for an isothermal or a thermoelastic 
medium (BIOT, 1965, 1973). Note that for a uniform gravity field, 9ij = 0. If 
incremental boundary tractions Afi are applied per unit initial area, then the incre- 
mental work (6.14) becomes 

6 Wi, = 6 Wi:, + S Afi 6U, dA, (6.21) 
A 

where 6 Wi:, is the work of the remaining incremental forces. 

6.1 Partial pressures in the equilibrium state 

An interesting property of partial pressures pk of the various substances in 
solution is obtained by considering the variational equilibrium condition (6.12). 
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We vary only the masses 6m, inside Sz. Hence, 6 Wd, = 0. Equation (6.12) becomes 

SC k ~0k +s(xi)] 6mk dn = 0. 
a 

(6.22) 

We must satisfy the constraint of mass conservation 

d6m,dR=O. (6.23) 

This is satisfied identically by putting am, = 8(6F$8xi where 6F: are arbitrary 
vectors. Substitution of this value of 6m, in the integral (6.22) and integration by 
parts yields 

(6.24) 

or 

hap,,+!?!=,, 
POk axi axi 

(6.25) 

where pOk is the partial pressure of substance k in the initial state of equilibrium 
at the temperature To and pOk is its corresponding density in the pure state. Hence, 
isobaric surfaces of partial pressures in the equilibrium state coincide with equipotential 
surfaces 9 = const. 

7. ENTROPY PRODUCTION AND THE PRINCIPLE OF VIRTUAL DISSIPATION 

The initially-stressed continuum is a thermodynamic system in equilibrium in 
its initial state. Small perturbations obey the principles of linear thermodynamics 
(BIOT, 1955). It was shown that the virtual dissipation may be written (with the 
summation convention) 

To 6s’ = dD 6qi, 
&Ii 

(7.1) 

where qi is any extensive state variable satisfying the fundamental energy and mass 
transport constraints as well as the mechanical constraints. The invariant D is a 
quadratic form in the time-derivatives iti This formulation embodies ONSAGER’S 
(1931) principle. The rate of entropy production is 

&-$0. 
0 

(7.2) 

Following d’Alembert’s principle we may include the reversed inertia forces as body 
forces. The virtual work (6.21) is then 

SW;, = -Ii 6qi +Qi 6qi, (7.3) 

where I, are generalized inertia forces and 

Qr 6qi = S Afl6Ui dA (7.4) 
A 
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is the virtual work of the incremental boundary tractions Afi per unit initial area. 
The variational equation (6.19) becomes 

6B + ~ 6qi + Ii 6q, = Qf Sq,. (7.5) 
I 

Equation (7.5) constitutes the basic variational principle of linear thermodynamics 
(BIOT, 1955). This principle was recently generalized in the same form for non-linear 
irreversible thermodynamics and referred to as the principle of virtual dissipation 
(BIOT, 1975, 1976b). 

In order to apply this variational principle we must define the variables to be 
varied. These variables are the material displacement vector Ui, the mass displace- 
ment vectors M:, and an entropy displacement vector ST satisfying the holonomic 
constraints 

aij = aui/dxj, mk = - aM#?xi, ST = - aSiT/& (7.6) 

The rate of mass flow per unit area for each substance relative to the solid is @ 
(BIOT, 1970, p. 162). The entropy displacement (BIOT, 1970, p. 167) is defined by 
the relation 

ST = &i/To, (7.7) 

where 8, is the rate of heat flow due to conduction per unit area. If 9* denotes the 
rate of entropy production per unit volume, then the local dissipation function per 
unit volume is 

gd = $T,S*. (7.8) 

This is a quadratic form in the local rate variables tif and ST, and hence 

(7.9) x’ 

The subscript d indicates that it represents the dissipation due to thermomolecular 
diffusion. The symmetry properties of the coefficients are evident from the nature 
of the quadratic form. 

The term n,jSTST represents the rate of entropy production due to thermal 
conduction in the absence of mass flow (&If = 0), (MEIXNER, 1941). The tensor ~ij 
is the inverse of the local thermal conductivity. 

The total dissipation function of the continuum is 

D=sC&da. (7.10) 
R 

An important property of linear systems with small perturbations results from the 
fact that the entropy produced s* is a second-order quantity. Therefore its contri- 
bution to the state variables is negligible. Hence, ui, Mi and SF completely describe the 
state of the continuum to thefirst order. 

8. FIELD EQUATIONS DERIVED FROM THE VARIATIONAL PRINCIPLE 

The unknown fields to be determined are ui, MT and ST. The dynamic differential 
field equations which govern these unknown vectors are obtained directly from the 
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variational principle (7.5) by varying Ui, i@ and ST arbitrarily inside the domain R. 
The variation of (6.20) is 

where 

AK, = PQ, uj + i Bi mk. 

From (5.6), noting that 26e, = s(aij+uji), we may write 

60 = tij da, + i A$k 6ti, + 8 Js,. 

Using the holonomic constraints (7.6) and integrating by parts, we obtain 

(8.2) 

(-r,+aKi)&i+ig (A4&6M:+E SST d&2 ] (8.3) 
i 1 

with . 

The virtual dissipation is 

The virtual work of the inertia forces is 
.$. $/&P’I 

>( 
Ii 6qi =[@$U; ; i m&iii +a:) 6$] ,dR. 

x 

(8.4) 

(8.5) . 

(8.6) 

The initial mass of substance k per unit initial volume is mOk, 6~: is the virtual 
displacement of the substance due to 6M:, and u: is the acceleration of the substance 
relative to the solid in which it is dissolved. We may write 

6~: = 6Mf/m,,, a: = I$/m,,. (8.7) 

By introducing the kinetic energy per unit volume, 

d = t/Xi; + i liin;rik + 4 i n;rikti,k/m,,, 

the virtual work (8.6) of the inertia forces becomes 

(8.8) 

(8.9) 

We substitute the values (8.3), (8.5) and (8.9) of 68, (aD/&ji)6qi and Ii 6q, in the 
variational principle (7.5), and vary arbitrarily hi, 6Mf and SST inside R. Hence 
the term Qi 6qi at the boundary vanishes. By equating to zero the coefficients of 
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6Ui, 6Mf and SST we obtain the dynamical field equations 

301 

(8.10) 

These equations govern acoustic propagation with initial stress and thermomolecular 
dtfision. They are linear in the unknown field components Ub Mf and ST. They 
are valid for a nonhomogeneous continuum, non-uniform initial stress and body 
force field. In this case, the coefficients are functions of the initial coordinates. 

The last two groups of equations containing gd govern the thermomolecular 
diffusion for which the driving forces are the inertia force (d/dt)(i%/a&ff), the tem- 
perature gradient 80/8x, and the gradient (a@xi)A+, of A&. According to (8.4), 

(8.11) 

where A% = Qiui is the increase of body force potential ‘3 when we follow the 
material displacement Ui in the potential field 8. Hence, the driving force (8.11) 
is the increase of gradient of the mixed potential lc/k+ ‘3. According to (6.24), we 
verify that this driving force vanishes in the initial state of equilibrium. 

_ 9. LAGRANGIAN EQUATIONS DERNED FROM THE VARIATIONAL PRINCIPLE 

We note that the differential field equations (8.10) are in a Lagrangian form. 
In fact, the field variables may be considered as a particular case of generalized co- 
ordinates. Completely general Lagrangian equations may be derived directly from the 
variational principle (7.5). We write the unknown fields in the form 

ui = uiCql, 6?2, - - -3 4m x3, 

MT = M:(q,, q2, . . . , qn, 4, 

i ST = ST(q0 q2, * * * 3 cl”, -%I, 

(9.0 

where qi are generalized coordinates. In particular they may be of the ‘penetration 
depth’ type (BIOT, 1970). If need be, expressions (9.1) may also include the time 
explicitly; however, for simplicity, we shall assume that this is not the case. The 
collective potential B is now a function of qi: 

S = B(qi). (9.2) 

The total dissipation function (7.10) is 

D = S ~~ do = 4Bij414j (9.3) 
R 

and the total kinetic energy is 

.F = j d da = $T,ji.jiqj. (9.4) 
n 

The coefficients Bij and Tij are functions of qi. 
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An important particular case is obtained by choosing for the representation (9.1) 
linear functions of qi with coefficients which are functions of the coordinates xi. 
In this case, D and F become quadratic forms in di with constant coefficients Bij 
and Tij. The collective potential also becomes a quadratic form in q1 

9 = SAijqiqj (9.5) 

with constant coefficients Ai,. 
The variational principle (7.5) assumes that the fields Mf and ST do not vary 

at the boundary of R. In order to avoid this restriction, following a procedure 
already used many times earlier (BIOT, 1955, 1973, 1975), we adjoin to the system 
driving cells at the boundary and we consider them to be part of the domain 0. 
These driving cells provide a contribution 8’ to the collective potential such that 

68’ =I (i A4* ‘2 + 0 ‘$f) nj 6qj dA, (9.6) 

where the surface integral is over the boundary of the continuum. In the variational 
principle (7.5) we may then replace B by S + 9’. By a classical procedure we also 
obtain the virtual work of the inertia forces in the form 

Hence, the variational principle (7.5) leads to the Lagrangian equations 

as ao a9 
--++,+-=Qi, 

dq, aqi aqi 

(9.7) 

(9.8) 

where 

represents a generalized boundary driving force of mixed mechanical and thermo- 
dynamic nature. It generalizes similar expressions obtained earlier (BIOT, 1973, 
1975). Numerous techniques have been developed for the solution of complex 
problems by these Lagrangian methods (BIOT, 1970, LARDNER, 1967, CHUNG and 
YEH, 1975, PRASAD and AGRAWAL, 1972, 1974, and YEH, 1976). When the fields 
(9.1) are chosen as linear functions of the generalized coordinates qi, the Lagrangian 
equations become linear: 

+g+a$=Qi (9.10) 

with the same constant coefficients as in the quadratic forms (9.3), (9.4) and (9.5). 
We may of course express these results in Hamiltonian form by writing the 

variational principle as 

6(~ +P) + gdq, - Qi 6qi dt = 0, 
I 1 

(9.11) 

where the integration is with respect to the time t. 
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In the linear equations (9.10), the coefficient matrices are symmetric. As a 
consequence, the response qj to a force Qi is equal to the response qi due to a force 
Qj equal to Qi. This basic reciprocity property is valid for all linear thermodynamic 
systems and does not require’a new proof for each particular problem and for each 
set of boundary conditions. Note that qi and Qi are quite general and include local 
fields and forces. 

10. EXTENSION TO A SOLID WITH CHEMICAL REACTIONS 

Consider a cell where several chemical reactions may occur. Masses of the various 
substances produced per unit cell volume are expressed by 

dmk = i vkp d&,, (10.1) 

where 5, are the coordinates of the various reactions. Mass conservation implies 

For a forward reaction (d& > 0), some masses ‘produced’ are positive, and some 
are negative. The pure substances in the reaction may be less or larger in number 
than the substances exchanged by the diffusion. 

Following an earlier derivation (BIOT, 1976a,1977), we consider reactions taking 
place in a rigid adiabatic closed cell. Since the energy of the cell does not vary (dU 
= 0), it follows from (2.3) that the change in cell potential is 

dY-,, = - To dY,,,, 

where dsP,, is the entropy produced by the reactions. We put 

(10.2) 

(10.3) 

where A, are the affinities as defined by DE DONDER (1936). At chemical equilibrium, 
A, = 0 and we choose 5, = 0. Hence, A, and 5, are first-order quantities. Equation 
(10.2) becomes 

dT,,, = - f A, dr,,. (10.4) 

For a cell which is open and neither rigid nor adiabatic while at the same time 
undergoing chemical reactions, the change of incremental cell potential is the sum 
of expressions (10.4) and (5.6); and hence 

dv = - f A,, dtp -I- tij de, + i A$k dMk + 8 ds,. (10.5) 

We have replaced the mk by Mk to indicate that they represent the masses 
acquired by diffusion as distinct from the vkp& which are produced by the chemical 
reactions. The state variables of the cell are now gP, eij, Mk and sr. The incremental 
potential v is a quadratic form in these variables. From (10.5) we derive 

avjacp = -A,, av/aei, = tjj, aV/akfk = A& au/as, = 8. (10.6) 
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By choosing cP, e+ Mk and 8 as state variables we have the linear relation 

TosT = yijeij + f hkMk + f h,,<, + co, (10.7) 

which generalizes (5.11) and where h, is now the heat of each reaction for 

eij = Mk = e = 0. 

A simple way to evaluate v and the affinity is obtained by considering the system 
composed of a primary cell C, with the potential v and a reference chemical cell 
C,, with a potential v’. The latter is assumed to be in equilibrium so that v’ = 0. 
Masses vkp<p are transferred from C,, to C, by thermobaric transfer while the state 
of C,, remains unchanged by allowing the chemical reaction to supply the masses 
extracted. Thus, V’ remains equal to zero and the total potential change is Y + v’ = v. 
In this process, we assume that we maintain constant the temperature (0 = 0) in 
both cells. The state of the system obviously depends only on the masses m, contained 
in CD whether they are the result of chemical reactions or thermobaric transfer. 
Hence, the value (5.8) of ij is valid with chemical reactions provided 

mk by 

mk=f vkptp +.hdk. 

When the temperature is also varied, the potential is equal to (5.10): 

1 ce2 

v=fi+E 

According to equations (10.6), the affinities are given by 

we replace 

(10.8) 

(10.9) 

(10.10) 

The partial derivatives &??,@c, and iLYe/&&, are obtained from (10.7) and (10.8). 
Hence, 

-Ap=~qp% ehp 
am, To’ 

(10.11) 

The derivative ai+%& is given by expression (5.13) whose physical significance has 
already been discussed. We thus obtain for A,, the linear expression (with the value 
(10.8) for ml) 

A, = - i vkpC:jeij - E Ck’vkpm, + 9. 
0 

(10.12) 

It remains to relate A,, to the reaction rates &,. The Onsager principle leads to the 
dissipation function 

gch = To $, = 4 5 BP, e, k,, (10.13) 

where S,* is the rate of entropy production by the chemical reactions and BP,, are 
constant, symmetric, rate coefficients. We have the property 

(10.14) 
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The dissipation function for simultaneous thermomolecular 
reactions is 
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diffusion and chemical 

(10.15) 

Note that the dissipation functions !SYd and ~3~~ are uncoupled because the former 
involves vectors whereas the latter involves scalars. This is in accordance with 
Curie’s symmetry principle. 

Using (10.9) and (10.7), the value of u is derived as a quadratic form in &,, eii, 
Mk and ST. Application of the variational principle, as in Section 7, leads to the field 
equations 

$(g)-gjbij+Sp”!$) +AKi=O,’ 

$ Sk +;Ai&+gk=O, 
( i> i 5 

?!!+!5!!=0, 
) (10.16) 

ax, as; 
-A, +$ = 0. 

P / 

Lugrungiun equations (9.8) are also obtained by adding to (9.1) a representation of 
tp by means of the generalized coordinates 

5, = MI13 q2, * * -9 cl”9 4 (10.17) 

and introducing a dissipation function 

D=@ddrR, (10.18) 
R 

where ~3 is given by (10.15) and includes the chemical dissipation. 

11. ACOUSTIC PROPAGATION WITH CHEMICAL AND OTHER RELAXATION EFFECTS 

According to (10.6) and (10.14) we may write 

av a0 - =t 
%l 

ljy $jij-,, =A’!&, E = 8, 
a0 a9,, 
@P -++==- 

These equations have the form 

au - Q,, aSi_ $ + ‘$ = 0, 
P P 

(11.1) 

(11.2) 

where Qi represents the driving forces tij, Ai,bk and 8, and qi represents the conjugate 
variables eij, Mk and ST. The potential v is a quadratic form in qi and {,, while Such 
is a quadratic form in &,. Equations (11.2) are Lagrangian equations derived and 
discussed in the general context of linear thermodynamics and represent a system 
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with internal coordinates &,. It was shown (BIOT, 1954,197O) that the other coordinates 
qi are related to the driving forces Qi by the operational relations 

Qi = (i D& 5 + Dij) qj, 
s 

(11.3) 

where p = d/dt is the time-derivative operator. The coefficients D& and D, are 
symmetric and positive definite. The relaxation constants r, are positive. For 
harmonic time-dependence proportional to exp (icot), the value of p is ice. The 
operational equations (11.3) may also be interpreted as Laplace transforms. For the 
general case, the operational expression represents an integral operator 

p& f(t) = 6 exp [r&’ - 01 MO 
s 

(11.4) 

Equations (11.3) are integro-differential relations between the driving forces tii, 
A$k, 8 on the one hand and the response variables eil, Mk, sr on the other hand. 
We may write them, symbolically, as 

(11.5) 

where [Z] is the operational matrix of (11.3), and 

~~j=~(~~~~), M’=-~, s~=-f. (11.6) 

These relations represent a generalized form of viscoelasticity which are essentially 
the same as those introduced more specifically in the mechanics of viscoelastic solids 
(BIOT, 1954,1965). The viscoelasticity in the present case is due to chemical relaxation. 

Substitution of the values (11.5) in (8.10) yield the acoustic propagation equations 
under initial stress with thermomolecular diffusion and explicit chemical relaxation 
effects. 

Viscoelastic correspondence introduced as a consequence of irreversible thermo- 
dynamics (BIOT, 1954, 1955, 1965) is confirmed here in the same general context; 
namely, solutions of (8.10) without chemical relaxations are immediately extended 
to include these simply by replacing the matrix [Z] of constant coefficients by the 
operators. It is important to point out the extreme generality of this procedure. 
It may be applied, for example, to the Lagrangian equations (9.10) including explicitly 
the constant coefficients representing the matrix [Z] without chemical relaxation and 
then replacing the coefficients by the corresponding operators. This should be 
extremely useful in the solution of seismic problems. 

11 .l Other relaxation eficts 

A large variety of relaxation effects other than chemical ones, such as micro- 
scopic phase changes, intergranular viscosities, etc., lead to the same type of 
equations with suitable internal coordinates. 
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